用户名: 密码: 验证码:
淡水环境重金属监测用“标准背角无齿蚌”群体的建立及移殖应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背角无齿蚌(Anodonta woodiana)隶属于软体动物门,瓣鳃纲,蚌目,蚌科,无齿蚌属,在全球广泛分布。基于背角无齿蚌作为指示生物的贝类监测已成功评价太湖重金属、有机锡及有机氯等持续性污染物污染状况。然而,迄今基于贝类的生物监测(包括被动监测和主动监测)均依赖于采集野生资源。这就面临着样本的规格、年龄、生长率、发育程度等生物学因子以及污染暴露史难以控制;一定程度上会破坏野生贝类资源量,在某些水域甚至采不到样本等棘手问题。创新性地开发出生物学背景相同,遗传质量稳定,污染本底值低,可向待测水域移殖和回捕,即标准化了的监测专用背角无齿蚌(本文称之为“标准背角无齿蚌”)群体,既可以解决上述问题,又能适应今后建立大规模、规范化、信息化的“淡水贝类观察”监测研究体系的需求。为实现该目的,本论文主要从以下几个方面开展了研究:
     1.不同水域背角无齿蚌体内重金属积累的差异性:比较研究了中国水产科学研究院淡水渔业研究中心南泉基地(无明显外源污染)、太湖梅梁湾(历史上污染较为严重)以及云南茈碧湖(高原洁净水体)中的背角无齿蚌软组织中重金属(A1、Cr、 Mn、Fe、Co、Ni、Cu、Zn、As、Mo、Ag、Cd、Ba、T1及Pb)的积累特征。结果表明,南泉基地养殖蚌中A1、Mn、Ni、Cu、Zn、As、Cd、Ba、Fe和Cr的含量显著低于梅梁湾野生蚌(P<0.05);茈碧湖野生蚌中A1、Mn、Ni、Cu、Zn、As、Cd、Ba和Pb的含量显著低于太湖梅梁湾(P<0.05);虽然南泉基地养殖蚌和茈碧湖野生蚌中的重金属积累均显著低于太湖梅梁湾但前者中的Cu、As和Pb含量仍高于后者(P<0.05)。太湖梅梁湾、南泉基地和茈碧湖蚌的金属污染指数(MPI)分别为11.1、1.8和1.0。另外,南泉基地养殖蚌中A1-Cd, Cr-Mo, Fe-Zn, Fe-Cd, Fe-Pb及Zn-Pb含量间呈显著相关性(P<0.05);茈碧湖野生蚌中Cr-Fe, Cr-As, Mn-Bs, Fe-Mo和Mo-Ba含量间呈显著相关性(P<0.05);而梅梁湾野生蚌中Mn-Cu, Mn-Zn, Mn-Mo, Mn-Cd, Mn-Pb, Fe-Ni, Fe-Cu, Fe-Cd, Fe-Pb, Ni-Cu, Ni-Pb, Cu-Mo, Cu-Cd, Cu-Pb, Zn-Mo, Zn-Cd, Zn-Pb, Mo-Cd, Mo-Pb以及Cd-Pb含量间呈显著相关性(P<0.05);后者的重金属积累关系远较前两者复杂。显示出背角无齿蚌中重金属的积累程度及复杂性与其生活环境的污染背景有密切关系,在较为洁净的水域繁育和养殖的背角无齿蚌应该可以控制其体内环境重金属积累在较低的水平。
     2.“标准背角无齿蚌”群体的建立:首次详细研究了背角无齿蚌从受精卵至性成熟的全生活史过程的生境条件、发育机制和生长规律。结果表明:钩介幼虫指数(Gin)为0.077,属于大型;钩介幼虫寄生在黄颡鱼(Pelteobagrus fulvidraco)鳃丝上发育到刚脱落稚蚌的生物学零度是8.89℃,有效积温为86.39℃·d;寄生期间,壳长增长显著(P<0.01)。0-60d稚蚌由原钩介幼虫状逐渐向成体形态转变,斧足、鳃、心脏、肠道、出水管及入水管等器官渐渐发育完全;60d以后幼蚌的形态结构与成体相同;至750d,90%以上的个体发育至性成熟并开始进行繁殖。背角无齿蚌为异速生长,0-60d稚蚌壳长(L)与生长时间(t)呈二次函数关系,L=0.383-0.031t+0.003t2(R2=0.953,P<0.01);60-750d幼蚌的壳长(L)、壳宽(W)、壳高(H)与生长时间(t)呈逆函数关系,分别为L=67.071-3364/t(R2=0.924,P<0.01),W=25.875-1326/t(R2=0.779,P<0.01)和H=41.441-2092/t(R2=0.907,P<0.01)。然而,壳长、壳宽和壳高之间均满足线性相关,关系式分别为L=8.168+2.208W(R2=0.921,P<0.01),L=1.557+1.571H(R2=0.973,P<0.01),W=0.641H-0.663(R2=0.920,P<0.01),L=4.868+0.875W+0.929H(R2=0.950,P<0.01),表明三者之间按照一定的比例保持等速增长。本研究人工繁育的条件下成功建立有12000余只生物学背景和遗传质量可控、标准化的背角无齿蚌养殖群体,并发现水温、水流速率和养殖密度是影响蚌存活率的关键因素。
     3.不同生活史过程“标准背角无齿蚌”重金属积累的动态:应用电感耦合等离子质谱仪分析了不同生活史阶段“标准背角无齿蚌”(钩介幼虫,幼蚌软组织和壳,及母蚌软组织和壳)中重金属(Al、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Mo、 Ag、Cd与T1)的积累动态,并进一步使用X射线电子探针微区分析仪分析了母蚌壳中重金属(A1、Ag、Co、Cu、Fe、Mn、Mo、Se、T1和Zn)的分层特征。结果表明:钩介幼虫中重金属总体含量较低,但Cr (0.5μg·g-1)、Ni (0.9μg·g-1)和As (5.0μg·g-1)已明显检出。幼蚌(S1)(平均壳长17.5mm)和幼蚌(S2)(平均壳长35.8mm)软组织中重金属(Cr、Ni、As、Se、Cu、Zn和Cd等)含量很低,且含量水平一致(P>0.05),但是Co、Cu、Mo、Ag和T1显著高于母蚌(P<0.05)。母蚌软组织中Ni、Zn、As、Se和Cd含量显著高于幼蚌(P<0.05),且As的含量较高,甚至超出了我国《食品中污染物限量》中的最大残留量。幼蚌和母蚌壳中重金属组成和含量总体比较稳定,基本呈Fe> Mn> A1> Ag> Mo> Cu> Co> Se> T1> Cr≈Ni≈Zn≈As≈Cd的趋势。此外,Mn的含量在珍珠层显著高于棱柱层(P<0.05),而其余重金属在壳层中分布均匀。提示除母蚌会残留原采集环境、钩介幼虫会受到母蚌重金属背景的少量影响外,全人工繁育并养殖的幼蚌中环境重金属污染程度非常轻,积累背景非常低。
     4.野外水域“标准背角无齿蚌”的移殖重金属监测:移殖“标准背角无齿蚌”幼蚌至太湖五里湖和武汉东湖作为“实验组”,并保留在南泉基地的同一批蚌为对照组;每3个月定期回收样本,进行重金属监测的初步应用。结果表明:移殖3mo,南泉基地Mn、Mo、Ni、Zn、Pb、As和Ba的含量显著上升(P<0.05),而Al的含量显著下降(P<0.05);五里湖Fe、Ni、Cr、Zn、As、Mo、Mn、Ba、T1和Pb的含量显著上升(P<0.05);东湖Mo和As的含量显著上升(P<0.05),而Cr、A1、T1和Pb的含量显著下降(P<0.05)。其中,Mn、Fe、Zn、Cd、Ba和Pb在南泉的含量最高,而Al、Cr、Ni、Cu、As、Mo和Tl在五里湖的含量最高。南泉基地、五里湖和东湖的MPI分别为8.6、14.1和1.6。移殖6mo,南泉基地Fe的含量显著下降(P<0.05);五里湖Fe、Mo、Cr、Ni、As、Ba、T1和Pb的含量显著下降(P<0.05);东湖Mo的含量明显上升(P<0.05),而Fe和As的含量显著下降(P<0.05)。其中,Ni、Cu和Tl在三者中均未检出,Cr、Mn、Fe、Zn、As、Mo、Cd、Ba和Pb在南泉的含量最高,而A在五里湖的含量为最高。南泉基地、五里湖和东湖的MPI分别为1.7、0.4和0.3。有效地反映了不同水环境重金属污染的时空动态特征。
     本研究客观地证实了背角无齿蚌重金属积累与不同污染程度水域的背景相关,在有效掌握了背角无齿蚌生境条件、发育机制和生长规律并建立了确保存活率方法的基础上,成功建立了生境、种质、规格、年龄、生长及发育程度等一致的“标准背角无齿蚌”群体。并通过对其不同生活史阶段的个体进行了重金属积累特征和背景的跟踪研究,为移殖对象的选择和监测结果的解释奠定了必要的基础。进而创新性地移殖“标准背角无齿蚌”至不同水域,有效地反映了不同水环境的重金属含量时空动态特征。所有这些为正在开展的淡水渔业环境重金属“背角无齿蚌观察”研究提供了移殖监测的新思路,也为今后“标准背角无齿蚌”群体的完善和应用的拓展提供了理论基础。
Anodonta woodiana (Mollusca, Lamellibranchia, Eulamellibranchia, Unionidae, Anodonta) is a worldwide-distributed freshwater mussel, which has proven useful for temporal and spatial monitoring of persistent pollutants (e.g., heavy metals, organotins, and organochlorines) in aquatic environments as bioindicators. To date, however, the utilization of mussel-based monitoring (both passive biomonitoring and active biosurveillance) is generally dependent on field-collected mussels. As a result, it is difficult to ensure that the mussels will possess the same biological factors (e.g., size, age, growth rate, sexual maturity) and exposure history of heave metals. These conditions may significantly influence the bioaccumulation pattern and fate of heavy metals. Moreover, sample collection may also be difficult or impossible as wild mussels sometimes are rare, or even absent at study locations. In addition, sampling of wild mussels possibly destroys their nature population. Herein, it must be very important to establish an innovative 'standardized' mussel population for environment monitoring (e.g.,"standardized A. woodiana" of the present study) possessing the same biological factors, stable inherited quality and low background of heavy metals. Furthermore, the mussels can subsequently be transplanted and retrieved for metal pollution monitoring. There is no doubt that that the approach of artificial propagation and culture of unionid mussels will be very helpful to set up such a population. Corresponding studies have been conducted in this study to establish a "standardized A. woodiana" population, which can contribute the large-scale, standardized, informationalized biomonitoring system of "Fershwater Mussel Watch". The main results can be summarized as follows:
     1. The difference of heavy metal bioaccumulation in A. woodiana from different waters:Bioaccumulation characteristics of heavy metal (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Ba, Tl, and Pb) in soft tissues of cultured A. woodiana from Nanquan Aquatic Base of Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (without obvious exogenous metal pollution), and wild mussels from Meiliang Bay of Taihu Lake (suffered relatively serious pollution) and Cibihu Lake in Yunnan Province (a very clean plateau lake) were investigated by an Agilent7500ce inductively coupled plasma mass spectroscopy (ICP-MS). The results of the present study showed that concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Ba in wild mussels of Meiliang Bay were significantly higher than cultured mussel (P<0.05). Moreover, concentrations of Al, Mn, Ni, Cu, Zn, As, Cd, Ba and Pb of Meiliang Bay were significantly higher than wild mussels from Cibihu Lake (P<0.05). Additionally, concentrations of Cr, Fe, Mo and T1in cultured mussels were significantly lower than wild mussels from Cibihu Lake (P<0.05). However, concentrations of Cu, As and Pb in the former were significantly higher than the latter (P<0.05). The metal pollution index (MPI) of mussels in Nanquan Aquatic Base, Meiliang Bay, and Cibihu Lake were1.8,11.1and1.0, respectively. In addition, Al-Cd, Cr-Mo, Fe-Zn, Fe-Cd, Fe-Pb, and Zn-Pb in mussels of Nanquan Aquatic Base showed significantly positive correlation (P<0.05). Mn-Cu, Mn-Zn, Mn-Mo, Mn-Cd, Mn-Pb, Fe-Ni, Fe-Cu, Fe-Cd, Fe-Pb, Ni-Cu, Ni-Pb, Cu-Mo, Cu-Cd, Cu-Pb, Zn-Mo, Zn-Cd, Zn-Pb, Mo-Cd, Mo-Pb, and Cd-Pb in mussels of Meiliang Bay showed significantly positive correlation (P<0.05). And Cr-Fe, Cr-As, Mn-Bs, Fe-Mo, and Mo-Ba in mussels of Cibihu Lake showed significantly positive correlation (P<0.05). The study indicated that bioaccumulation of heavy metals in A. woodiana presented positive correlation with the pollution background of water-bodys. Individuals of A. woodiana with relatively low level background of heavy metals can be possibly obtained by culture of the mussels in clean water-body.
     2. Establishment of a population of "standardized A. woodiana":The present study investigates firstly the habitat condition, development mechanism, and growth characteristics of A. woodiana throughout whole life cycle from fertilized egg to mature adults. The results showed that glochidia belong to large size as the glochidia index (Gin) is0.077. The biological zero and the effective temperature sum were calculated to be8.89℃and86.39°C-d respectively during the period of their parasitic metamorphosis development in the gill filaments of yellow catfish (Pelteobagrus fulvidraco). During metamorphosis from glochidia to early free-living juveniles, the shell length increased significantly (P<0.01). The shape of0-day-old juveniles is similar as glochidia but with a strong foot which could drag the body to crawl all around. Until60-day-old the morphology of juveniles begin to be as same as adults. Moreover, the organs such as visceral mass, intestine, incurrent siphon, excurrent siphon, and gills have developed. The form of the juvenile at750-day-old resembles that of a fully grown adult and more than90%females are pregnant with glochidia. It is found that the growth of A. woodiana was allometric. The relationship between shell length and growth time for0-60-day juveniles was quadratic, L=0.383-0.031t+0.003t2(R2=0.953, P<0.01). For60-750-day-old individuals, the relationships of length, width, height and time were all inverses, L-67.071-3364/t (R2=0.924, P<0.01), W=25.875-1326/t (R2=0.779, P<0.01), and H=41.441-2092/t (R2=0.907,P<0.01), respectively. In addition, the general relationships of size (length-width, length-height, and width-height as well as length-width-height) were linear, L=8.168+2.208W (R2=0.921, P<0.01), L=1.557+1.571H(R2=0.973, P<0.01), W=0.641H-0.663(R2=0.920, P<0.01), and L=4.868+0.875W+0.929H (R2=0.950, P<0.01), respectively. A population of "standardized A. woodiana" with ca.12000individuals has been successfully established in the present study, and are believed water temperature, the rate of flowing water, and carrying capacity as the key factors that influence the survival rate of A. woodiana during the process of artificial propagation and culture of this mussel.
     3. The bioaccumulation dynamics of heavy metals in "standardized A. woodiana"at different stages of life cycle:The accumulation level and dynamics of heavy metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and T1) in "standardized A. woodiana" at different life stages (glochida, juveniles and gravid adults) were assessed by the Agilent7500ce ICP-MS. Furthermore, the profiles of heavy metals (Al, Ag, Co, Cu, Fe, Mn, Mo, Se, T1, and Zn) in the shell of an adult were studied by the JEOL JXA-8100electron probe microanalyzer (EPMA). The results showed most of heavy metals in glochidia were low, but Cr (0.5μg·g-1), Ni (0.9μg·g-1), and As (5.0μg·g-1) were significantly detected. Concentrations of Cr, Ni, As, Se, Cu, Zn, and Cd in juvenile (S1) with average shell length17.5mm and juvenile (S2) with average length35.8mm were much low and the ranges of concentrations were narrow (P>0.05), while the concentrations of Cr, Ni, As, Se, Cu, Zn, and Cd were significantly higher than gravid adults (P<0.05). The concentrations of Ni, Zn, As, Se, and Cd in gravid adults were significantly higher than both juvenile (S1) and juvenile (S2)(P<0.05). Noteworthily, the concentration of As was so high than exceed the limit of Maximum Levels of Contaminants in Foods (GB2762-2005) of China. As to shells, the metal concentrations of all samples were similar except the concentration of Al in juvenile (S1) was significantly higher than gravid adults (P<0.05). Moreover, the concentrations of heavy metals generally decreased in the order Fe> Mn> Al> Ag> Mo> Cu> Co> Se> T1> Cr-Ni-Zn-As-Cd. In addition, the concentration of Mn in nacreous layer were significantly higher than prismatic layer (in the umbo and ventral edge)(P<0.05), while the distribution of other metals were uniformity at different layers. The results suggested that although the accumulation levels of several heavy metals in gravid adults and glochida might keep little influence from the background of collection sites and maternal mussels, respectively, those levels in cultured juveniles were obviously low and the metal contamination in these mussels were very weak.
     4. Heavy metal monitoring by transplantation of "standardized A. woodiana":The juvenile mussels of "standardized A. woodiana" from the same artificially propagated and cultured population were divided into three sister groups. Two of them were transplanted into Wulihu Bay of Taihu Lake (Wuxi city) and Donghu Lake (Wuhan City), respectively as the experimental group for assessing heavy metal pollution. Meanwhile, the remaining one was still kept in Nanquan Aquatic Base as the control group. All cages were maintained at a depth of50cm from the water surface. And the samples were recovered per3months to determine heavy metal contents. The results showed that concentrations of Mn, Mo, Ni, Zn, Pb, As, and Ba in control in Nanquan Aquatic Base for3months (CN3) were significantly higher than control for all sites from beginning (CAO)(P<0.05), while the concentration of Al in the former was significantly lower than the latter (P<0.05). The concentrations of Fe, Ni, Cr, Zn, As, Mo, Mn, Ba, T1, and Pb in mussels transplanted Wulihu Lake for3months (TW3) were significantly higher CNO (P<0.05). The concentrations of Mo and As in mussels transplanted Donghu Lake for3months (TD3) were significantly higher CNO (P<0.05), but concentrations of Cr, Al, T1, and Pb were significantly lower than the latter (P<0.05). Comparison different water-bodies, the highest concentration of Mn, Fe, Zn, Cd, Ba, and Pb presented in CN3, while the highest concentration of Al, Cr, Ni, Cu, As, Mo, and T1presented in TW3. The MPI of CN3, TW3, and TD3were8.6,14.1, and1.6, respectively. In addition, the concentrations of Fe in control in Nanquan Aquatic Base for6months (CN6) were significantly lower than CN3(P<0.05). The concentrations of Fe, Mo, Cr, Ni, As, Ba, T1, and Pb in mussels transplanted Wulihu Lake for6months (TW6) were significantly lower than TW3(P<0.05). The concentration of Mo in mussels transplanted Donghu Lake for6months (TD6) was significantly higher TD3(P<0.05), but concentrations of Fe and As were significantly lower than the latter (P<0.05). Comparison different water-bodies, the highest concentration of Cr, Mn, Fe, Zn, As, Mo, Cd, Ba, and Pb presented in CN6, while the highest concentration of Al presented in TD6. The MPI of CN6, TW6, and TD6were1.7,0.4, and0.3, respectively. The results suggested transplant "standardized A. woodiana" is useful in monitoring temporal and spatial trends of heavy metals in aquatic environments.
     The present study demonstrates objectively that bioaccumulation of heavy metals in A. woodiana correlated with the pollution background of water-bodys. A "standardized A. woodiana"with the same biological factors and exposure history of heave metals can be established based on mastering the habitat necessary, development mechanism, and growth characteristics throughout the whole life cycle. By the individuals of "standardized A. woodiana" at different stages of life cycle, the temporal variations of heavy metal bioaccumulation has been understood, which provide basic information for mussel-size selection for transplantation and interpretation of the results obtained during the research period. By means of transplantation monitoring of "standardized A. woodiana" to different nature water-bodies, the temporal and spatial dynamics have been clarified. All results of the present study provide new ideas for the current project of "Freshwater Mussel Watch" monitoring, and also provide the fundamental knowledges to perfect the aforementioned "standardized A. woodiana" population and extend its future applicaion.
引文
Afanasjev S A, Zdanowski B, Kraszewski A. Growth and population structure of the mussel Anondonta woodiana (Lea,1834) (Bivalvia, Unionidae) in the Heated Konin Lakes system [J]. Archives of Polish Fisheries,2001,9:123-131
    Al-Aasm I S, Clarke J D, Fryer B J. Stable isotopes and heavy metal distribution in Dreissena polymorpha (Zebra Mussels) from western basin of Lake Erie, Canada [J]. Environmental Geology, 1998,33:122-129
    Aldridge D C. The morphology, growth and reproduction of Unionidae (Bivalvia) in a Fenland waterway [J]. Journal of Molluscan Studies,1999,65:47-60
    Ali M, Taylor A. The effect of salinity and temperature on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival [J]. Mesopotamian Journal of Marine Science,2010,25 (1):11-30
    Andral B, Stanisiere J Y, Sauzade D, et al. Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging [J]. Marine Pollution Bulletin,2004,49:412-704
    Andral B, Thebault H, Boissery P. Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging [J]. Rapport de la Commission Internationale Pour la Mer Mediterranee, 2007,38:226
    Araujo R, Ramos M A. Description of the glochidium of Margaritifera auricularia (Spengler 1793) (Bivalvia, Unionoidea) [J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 1998,353 (1375):1553-1559
    Arey L B. The nutrition of glochidia during metamorphosis. A microscopical study of the sources and manner of utilization of the nutritive substances [J]. Journal of Morphology,1932a,53 (1):201-221
    Arey L B. The formation and structure of the glochidial cyst [J]. Biological Bulletin,1932b,62:212-221
    Arnot J A, Gobas F A P C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms [J]. Environmental Reviews,2006,14: 257-297
    Baines S B, Fisher N S, Kinney E L. Effects of temperature on uptake of aqueous metals by blue mussels Mytilus edulis from Arctic and temperate waters [J]. Marine Ecology-Progress Series,2006,308: 117-128
    Belitz H D, Grosch W, Schieberle P. Food chemistry [M]. Springer, Berlin Heidelberg New York,2009: 421-428
    Bellotto V R, Miekeley N. Trace metals in mussel shells and corresponding soft tissue samples:a validation experiment for the use of Perna perna shells in pollution monitoring. Analytical and Bioanalytical Chemistry,2007,389:769-776
    Benedicto J, Andral B, Martinez-Gomez C, et al. A large scale survey of trace metal levels in coastal waters of the Western Mediterranean basin using caged mussels (Mytilus galloprovincialis) [J]. Journal of Environmental Monitoring,2011,13:1495-1505
    Beran L. First record of Sinanodonta woodiana (Mollusca, Bivalvia) in the Czech Republic [J]. Acta Societatis Zoologicae Bohemoslovenicae Praha,1997,61 (1):1-2
    Bervoets L, Voets J, Chu S, et al. Comparison of accumulation of micropollutants between indigenous and ttransplanted zebra mussel(Dreissena polymorpha) [J]. Environmental Toxicology and Chemistry, 2004,23 (8):1973-1983
    Bervoets L, Voets J, Smolders R, et al. Metal accumulation and condition of transplanted zebra mussel (Dreissena polymorpha) in metal polluted rivers [J]. Aquatic Ecosystem Health & Management,2005, 8 (4):451-460
    Bian X, Liu H, Gan J, et al. HCH and DDT residues in bivalves Anodonta woodiana from the Taihu Lake, China [J]. Archives of Environmental Contamination and Toxicology,2009,56:67-76
    Bogan A E. Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater [J]. Hydrobiologia, 2008,595:139-147
    Bourgoin B P. Mytilus edulis shell as a bioindicator of lead pollution:considerations on bioavailability and variability [J]. Marine Ecology-Progress Series,1990,61 (3):253-262
    Bryan G W, Langston W J, Hummerstone L G, et al. A guide to the assessment of heavy metal contamination using biological indicators [J]. Journal of the Marine Biological Association of the United Kingdom,1985,4:92
    Campbell P G C. Interactions between trace metals and organisms:a critique of the free-ion activity model [C]. In:Tessier A, Turner D R (Ed), Metal speciation and bioavailability in aquatic systems. John Wiley, Chichester,1995,45-102
    Camusso M, Balestrini R, Binelli A. Use of mussel(Dreissena polymorpha) to assess trace metal contamination in the largest Italian subalpine lakes [J]. Chemosphere,2001,44:263-270
    Carver C E A, Mallet A L. Assessing the carrying capacity of a coastal inlet in terms of mussel culture [J]. Aquaculture,1990,88:39-53
    Cheng S. Heavy metal pollution in China:origin, pattern and control [J]. Environmental Science and Pollution Research,2003,10 (3):192-198
    Christian A D, Smith B N, Berg D J, et al. Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca:Unionidae) in 2 small Ohio streams [J]. Journal of the North American Benthological Society,2004,23:101-113
    Claisse D. Chemical contamination of French coasts:the results of a ten years mussel watch [J]. Marine Pollution Bulletin,1989,20:523-528
    Commission of the European Communities. Commission Regulation (EC) No 466/2001. Setting maximum levels for certain contaminants in foodstuffs [S].2001
    Cope W G, Bringolf R B, Buchwalter D B, et al. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants [J]. Journal of the North American Benthological Society,2008,27:451-462
    Cravo A, Bebianno M J, Foster P. Partitioning of trace metals between soft tissues and shells of Patella aspera [J]. Environment International,2004,30:87-98
    Dame R F, Prins T C. Bivalve carrying capacity in coastal ecosystems [J]. Aquatic Ecology,1997,31(4): 409-421
    Davis G M, Fuller S L H. Genetic relationships among recent Unionacea (Bivalvia) of North America [J]. Malacologia,1981,20 (2):217-253
    Douda K, Vrtilek M, Slavik O, et al. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe [J]. Biological Invasions,2012,14:127-137
    Dudgeo D, Morton B. Site selection and attachment duration of Anodonta woodiana (Bivalvia Unionacea) glochidia on fish hosts [J]. Journal of Zoology,1984,204:355-362
    Dudgeon D, Morton B. The population dynamics and sexual strategy of Anodonta woodiana (Bivalvia: Unionacea) in Plover Cove Reservoir, Hong Kong [J]. Journal of Zoology,1983,201:161-183
    Eisler R. Compendium of trace metals and marine biota, Volume 1:Plants and Invertebrates [M]. UK, Elsevier,2010
    Falfushynskaa H I, Gnatyshynaa L L, Farkasb A, et al. Vulnerability of biomarkers in the indigenous mollusk Anodonta cygnea to spontaneous pollution in a transition country. Chemosphere,2010,81: 1342-1351
    FAO. Compilation of legal limits for hazardous substances in fish and fishery products [S].1983
    Ferrington J W, Goldberg E D, Risebrough R W, et al. U. S. Mussel Watch 1976-1978. An overview of the trace metal, DDT, PCB, hydrocarbon and artificial radionuclide data [J]. Environmental Science & Technology,1983,17:490-496
    Fisher G R, Dimock R V. Morphological and molecular changes during metamorphosis in Utterbackia imbecillis (Bivalvia:Unionidae) [J]. Journal of Molluscan Studies,2002a,68:159-164
    Fisher G R, Dimock R V. Ultrastructure of the mushroom body:Digestion during metamorphosis of Utterbackia imbecillis (Bivalvia:Unionidae) [J]. Invertebrate Biology,2002b,121:126-135
    Geret F, Jouan A, Turpin V, et al. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks:the oyster (Crassostrea gigas) and the mussel(Mytilus edulis) [J]. Aquatic Living Resources,2002,15:61-66
    Goldberg E D. The Mussel Watch-a first step in global marine monitoring [J]. Marine Pollution Bulletin,1975,6:111
    Guidi P, Frenzilli G, Benedetti M, et al. Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin [J]. Aquatic Toxicology,2010,100:75-83
    Haag W R, Staton J L. Variation in fecundity and other reproductive traits in freshwater mussels [J]. Freshwater Biology,2003,48:2118-2130
    Haag W R, Warren Jr M L. Mantle displays of freshwater mussels elicit attacks from fish [J]. Freshwater Biology,1999,42:35-40
    Harper E M, Taylor J D, Crame J A. The Evolutionary Biology of the Bivalvia [M]. Geological Society, London, Special Publications,2000
    Hassel J H V, Farris J L. A review of the use of unionid mussels as biological indicators of ecosystem health [C]. In:Farris J L, Hassel J H V (Ed), Freshwater Bivalve Ecotoxicology. CRC Press, Boca Raton, Florida, and SETAC Press, Pensacola, Florida,2007,19-49
    Henley W F. Evaluation of diet, gametogenesis, and hermaphroditism in freshwater mussels (Bivalvia: Unionidae) [D]. USA:Virginia Polytechnic Institute and State University,2002
    Hoggarth M A, Gaunt A S. Mechanics of glochidia attachment (Mollusca:Bivalvia:Unionidae) [J]. Journal of Morphology,1988,198:71-78
    Howard A D. A second case of metamorphosis without parasitism in the Unionidae [J]. Science,1914, 40:353-355
    Ikemoto T. Possible existence of a common temperature and a common duration of development among members of a taxonomic group of arthropods that underwent speciational adaptation to temperature [J]. Applied Entomology and Zoology,2003,38 (4):487-492
    Jacob D E, Soldati A L, Wirth R, et al. Nanostructure, composition and mechanisms of bivalve shell growth [J]. Geochimica et Cosmochimica Acta,2008,72:5401-5415
    Jernelov A. The international mussel watch:a global assessment of environmental levels of chemical contaminants [J]. Science of Total Environment,1996,188 suppl:s37-44
    Jirka K J, Neves R J. Reproductive biology of four species of freshwater mussel (Mollusca:Unionidae) in the New River, Virginia and West Virginia [J]. Journal of Freshwater Ecology,1992,7(1):35-44
    Jones J W, Mair R A, Neves R J. Factors affecting survival and growth of juvenile freshwater mussels cultured in recirculating aquaculture systems [J]. North American Journal of Aquaculture,2005,67: 210-220
    Kosel V. The first record of Anodonta woodiana (Mollusca, Bivalvia) in Slovakia [J]. Acta Zoological Universitatis Comenianae, Bratislava,1995,39:3-7
    Kovitvadhi S, Kovitvadhi U, Sawangwong P, et al. Morphological development of the juvenile through to the adult in the freshwater pearl mussel, Hyriopsis (Limnoscapha) myersiana, under artificial culture [J]. Invertebrate Reproduction and Development [J],2007,50(4):207-218
    Kovitvadhi S, Kovitvadhi U, Sawangwong P, et al. Morphometric relationship of weight and size of cultured freshwater pearl mussel, Hyriopsis (Limnoscapha) myersiana, under laboratory conditions and earthen pond phases [J]. Aquaculture International,2009,17:57-67
    Kovitvadhi S, Kovitvadhi U, Sawangwong P, et al. Optimization of diet and culture environment for larvae and juvenile freshwater pearl mussels, Hyriopsis (Limnoscapha) myersiana Lea,1856 [J]. Invertebrate Reproduction and Development,2006,49:61-70
    Kovitvadhi U, Chatchavalvanich K, Noparatnaraporn N, et al. Scanning electron microscopy of glochidia and juveniles of the freshwater mussel, Hyriopsis myersiana [J]. Invertebrate Reproduction and Development,2001,40:143-151
    Krolak E, Zdanowski B. The bioaccumulation of heavy metals by the mussels Anodonta woodiana (Lea, 1834) and Dreissena polymorpha (Pall.) in the heated Konin lakes [J]. Archives of Polish Fisheries, 2001,9:229-237
    Kurnia A Ⅰ, Purwanto E, Mahajoeno E. Exposure copper heavy metal (Cu) on freshwater mussel (Anodonta woodiana) and its relation to Cu and protein content in the body shell [J]. Nusantara Bioscience,2010,2:48-53
    Lamaia C, Kruatrachuea M, Pokethitiyooka P, et al. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) kutzing:A laboratory study [J]. Science Asia,2005,31:121-127
    Lau S, Mohamed M, Tan C Y A, et al. Accumulation of heavy metals in freshwater mollusks [J]. The Science of the Total Environment,1998,214:113-121
    Lefevre G, Curtis W C. Metaporphosis without parasitism in the Unionidae [J]. Science,1911,33: 863-865
    Liberty A J. An Evaluation of the survival and growth of juvenile and adult freshwater mussels at the Aquatic Wildlife Conservation Center (AWCC), Marion, Virginia [D]. USA:Virginia Polytechnic Institute and State University,2004
    Lima P, Kovitvadhi U, Kovitvadhi S, et al. In vitro culture of glochidia from the freshwater mussel Anodonta cygnea [J]. Invertebrate Biology,2006,125 (1):34-44
    Lingard S M, Evans R D, Bourgoin B P. Method for the estimation of organic-bound and crystal-bound metal concentrations in bivalves shells [J]. Bulletin of Environmental Contamination and Toxicology, 1992,48:179-184
    Liu A J, Kong F X, Sun X L, et al. Toxicity assessment of contaminated sediments after dredging [J[. Bulletin of Environmental Contamination and Toxicology,2006.77:905-911
    Liu H, Yang J, Gan J. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu lake, China [J]. Archives of Environmental Contamination and Toxicology,2010,59:593-601
    Liu J, Gu B, Bian J, et al. Antitumor activities of liposome-incorporated aqueous extracts of Anodonta woodiana (Lea,1834) [J]. European Food Research and Technology,2008,227:919-924
    Lu G H, Ji Y, Zhang H Z, et al. Active biomonitoring of complex pollution in Taihu Lake with Carassius auratus [J]. Chemosphere,2010,79:588-594
    Lukashev D V. Accumulation of heavy metals by Anodonta anatina (L.) in the place of household sewage release in the river ecosystem [J]. Hydrobiological Journal,2010,46:67-77
    Luoma S, Rainbow P. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept [J]. Environmental Science & Technology,2005,39 (7):1921-1931
    Luschuetzky E F. Bioaccumulation of heavy metals in the zebra mussel Dreissena polymorpha in the rivers Danube and Drau and its role as a bioindicator organism [J]. Umweltwissenschaften und Schadstoff-Forschung,2005,17 (2):68-76
    Manly R, George W O. The occurrence of some heavy metals in populations of the freshwater mussel Anodonta anatine (L.) from the river Thames [J]. Environmental Pollution,1977,14:139-154
    Marigomez I, Soto M, Cajaraville M P, et al. Cellular and subcellular distribution of metals in mollusks [J]. Microscopy Research and Technique,2002,56:358-392
    Markich S J, Jeffree R A. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves-an explanation of how water hardness reduces metal toxicity [J]. Aquatic Toxicology,1994,29:257-290
    Martinsa I, Cosson R P, Riou V, et al. Relationship between metal levels in the vent mussel Bathymodiolus azoricus and local microhabitat chemical characteristics of Eiffel Tower (Lucky Strike) [J]. Deep Sea Research Part I:Oceanographic Research Papers,2011,58 (3):306-315
    Mersch J, Pihan J C. Simultaneous assessment of environmental impact on condition and trace metal availability in zebra mussels Dreissena polymorpha transplanted into the Wiltz River, Luxembourg. Comparison with the aquatic moss [J]. Archives of Environmental Contamination and Toxicology, 1993,25:353-364
    Mertz W. The essential trace elements [J]. Science,1981,213:1332-1338
    Metcalfe-Smith J L, Green R H, Grapentine L C. Influence of biological factors on concentrations of metals in the tissues of freshwater mussels (Elliptio complanata and Lampsilis radiata radiata) from the St. Lawrence River [J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53:205-219
    Miadokova E, Vlckova V, Podstavkova S, et al. Unicellular green alga Chlamydomonas reinhardtii as an activation system for 2-aminofluorene [J]. Environmental and Molecular Mutagenesis,1998,31(4): 383-389
    Monirith I, Ueno D, Takahashi S, et al. Asia-Pacific mussel watch:monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries [J]. Marine Pollution Bulletin,2003,46:281-300
    Naimo T J. A review of the effects of heavy metals on freshwater mussels [J]. Ecotoxicology,1995,4: 341-362
    Nedeau E J, Smith A K, Stone J, et al. Freshwater Mussels of the Pacific Northwest (second edition) [M]. The Xerces Society in Portland, Oregon,2009
    Neves R J, Bogan A E, Williams J D, et al. Status of aquatic mollusks in the southeastern United States: A downward spiral of diversity [C]. In:Benz G W, Collins D E (Ed), Aquatic Fauna in Peril:The Southeastern Perspective. Special Publication 1. Southeast Aquatic Research Institute, Decatur, GA, USA,1997:43-85
    Newman M C. Fundamentals of ecotoxicology [M]. Florida, CRC Press,2009
    Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals [J]. Environmental Science & Technology,2004,38 (23):6177-6192
    Ntakirutimana T, Deng Q, Yang H. Assessment of trace and major elements in Donghu lake Hubei province, China [J]. Research Journal of Applied Science,2008,3(5):382-386
    Nystrom J, Lindh U, Duncab E, et al. A study of M. margaritifera shells from the River Paulistromsan [J]. Nuclear Instruments and Methods in Physics Research B,1995,104:612-618
    O'Connor T P. National distribution of chemical concentrations in mussels and oysters in the USA [J]. Marine Environmental Research,2002,53:117-143
    Oehlmann J, Schulte-Oehlmann U. Molluscs as bioindicators [C]. In:Markert B A, Breure A M, Zechmeister H G (Ed), Bioindicators & Biomonitors:Principles, Concepts and Applications. Elsevier, 2003,577-636
    Orren M J, Eagle G A, Hennig H F-K O, et al. Variations in trace metal content of the mussel Chormytilus meridionalis (Kr.) with season and sex [J]. Marine Pollution Bulletin,1980,11:253-257
    Pernice M, Boucher J, Boucher-Rodoni R. Comparative bioaccumulation of trace elements between Nautilus pompilius and Nautilus macromphalus (Cephalopoda:Nautiloidea) from Vanuatu and New Caledonia [J]. Ecotoxicology and Environmental Safety,2009,72:365-371
    Phibbs J, Wiramanaden C E, Hauck D, et al. Selenium uptake and speciation in wild and caged fish downstream of a metal mining and milling discharge [J]. Ecotoxicology and Environmental Safety, 2011a,74:1139-1150
    Phibbs J, Franz E, Hauck D, et al. Evaluating the trophic transfer of selenium in aquatic ecosystems using caged fish, X-ray absorption spectroscopy and stable isotope analysis [J]. Ecotoxicology and Environmental Safety,2011b,74:1855-1863
    Plekhanov S E, Chemeris Yu K. Early toxic effects of zinc, cobalt, and cadmium on hotosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39 [J]. Biology Bulletin,2003,30 (5): 506-511
    Pourang N, Richardson C A, Mortazavi M S. Heavy metal concentrations in the soft tissues of swan mussel(Anodonta cygnea) and surficial sediments from Anzali wetland, Iran [J]. Environmental Monitoring and Assessment,2010,163:195-213
    Pynnonen K. Accumulation of 45Ca in the freshwater Unionids Anodonta anatina and Unio turnidus, as influenced by water hardness, protons, and aluminum [J]. Journal of Experimental Zoology,1991,260: 18-27
    Qiao M, Wang C, Huang S, et al. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China [J]. Environment International, 2006,32:28-33
    Rainbow P S, Wang W X. Comparative assimilation of Cd, Cr, Se, and Zn by the barnacle Elminius modestus from phytoplankton and zooplankton diets. Marine Ecology-Progress Series,2001,218: 239-248
    Rainbow P S. Trace metal concentrations in aquatic invertebrates:why and so what? [J]. Environmental Pollution,2002,120:497-507
    Ravera O, Cenci R, Beone G M, et al. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment [J]. Journal of Limnology,2003a,62:61-70
    Ravera O, Trincherini P R, Beone G M, et al. The trend from 1934 to 2001 of metal concentrations in bivalve shells(Unio pictorum) from two small lakes:Lake Levico and Lake Caldonazzo (Trento Province, Northern Italy) [J]. Journal of Limnology,2005,64:113-118
    Roncevic S, Svedruzic L P, Smetisko J, et al. ICP-AES analysis of metal content in shell of mussel Mytilus galloprovincialis from Croatian coastal waters [J]. International Journal of Environmental Analytical Chemistry,2010,90 (8):620-632
    Salazar M H, Salazar S M. Using caged bivalves to characterize exposure and effects associated with pulp and paper mill effluents [J]. Water Science and Technology,1997,35:213-220
    Savari A, Lockwood A P M, Sheader M. Effects of season and size (age) on heavy metal concentrations of the common cockle (Cerastoderma edule (L.)) from Southampton water [J]. Journal of Molluscan Studies,1991,57:45-57
    Scanes P R, Roach A C. Determining natural'background'concentrations of trace metals in oysters from New South Wales, Australia [J]. Environmental Pollution,1999,105:437-446
    Schwartz M L, Dimock R V. Ultrastructural evidence for nutritional exchange between brooding unionid mussels and their glochidia larvae [J]. Invertebrate Biology,2001,120:227-236
    Sericano J L, Wade T L, Jackson T J, et al. Trace organic contamination in the Americas:An overview of the US National Status & Trends and the International'Mussel Watch'programmes [J]. Marine Pollution Bulletin,1995,31:214-225
    SFEI.1996 annual report:San Francisco estuary regional monitoring program for trace substances [R]. San Francisco Estuary Institute, Richmond, CA,1997
    Siegele R, Orlic I, Cohen D D, et al. Manganese profiles in freshwater mussel shells [J]. Nuclear Instruments and Methods in Physics Research B,2001,181:593-597
    Silverman H, Kays W T, Dietz T H. Maternal calcium contribution to glochidial shells in freshwater mussels (Eulamellibranchia:Unionidae) [J]. The Journal of Experimental Zoology,1987,242: 137-146
    Skinner A, Young M, Hastie L. Ecology of the freshwater pearl mussel [M]. Peterborough:Conserving Natura 2000 Rivers Ecology Series No.2 English Nature,2003
    Sladecek V. Rotifers as indicators of water quality [J]. Hydrobiologia,1983,100:169-201
    Soroka M, Zdanowski B. Morphological and genetic variability of the population of Anondonta woodiana (Lea,1834) occurring in the Heated konin lakes system [J]. Archives of Polish Fisheries, 2001,9:239-252
    Sousa R, Gutierrez J L, Aldridge D C. Non-indigenous invasive bivalves as ecosystem engineers [J]. Biological Invasions,2009,11:2367-2385
    Steinert S A, Pickwell G V. Expression of heat shock proteins and metallothionein in mussels exposed to heat stress and metal ion challenge [J]. Marine Environmental Research,1988,24:211-214
    Storelli M M, Barone G, Storelli A, et al. Trace metals in tissues of Mugilids (Mugil auratus, Mugil capito, and Mugil labrosus) from the Mediterranean Sea [J]. Bulletin of Environmental Contamination and Toxicology,2006,77:43-50
    Tanabe S. Asia-pacific mussel watch progress report [R]. Marine Pollution Bulletin,2000a,40(8):651.
    Tanabe S, Prudente M S, Kan-atireklap S, et al. Mussel watch:marine pollution monitoring of butyltin and organochlorines in coastal waters of Thailand, Philippines and India [J]. Ocean & Coastal Management,2000b,43(8-9):819-839
    Tanabe S, Subramanian A. Bioindicators of POPs:monitoring in developing countries [M]. Kyoto University Press, Kyoto,2006
    Thebault H, Baena A M R, Andral B, et al.137Cs baseline levels in the Mediterranean and Black Sea:A cross-basin survey of the CIESM Mediterranean Mussel Watch programme [J]. Marine Pollution Bulletin,2008,57:801-806
    Thorsen W A, Gregory C W, Shea D. Toxicokinetics of environmental contaminants in freshwater bivalves [C]. In:Farris J L, Van Hassel J H (Ed), Freshwater Bivalve Ecotoxicology. CRC Press, Boca Raton, Florida, and SETAC Press, Pensacola, Florida,2007:19-49
    Treasurer J W, Hastie L C, Hunter D, et al. Effects of (Margaritifera margaritifera) glochidal infection on performance of tank-reared Atlantic salmon (Salmo salar) [J]. Aquaculture,2006,256:74-79
    Uno S, Shiraishi H, Hatakeyama S, et al. Accumulative characteristics of pesticide residues in organs of Bivalves (Anodonta woodiana and Corbicula leana) under natural conditions [J]. Archives of Environmental Contamination and Toxicology,2001,40:35-47
    Uthaiwan K, Noparatnarapom N, Machado J. Culture of glochidia of the freshwater pearl mussel Hyriopsis myersiana (Lea,1856) in artificial media [J]. Aquaculture,2001,195:61-69
    Van Hassel J H, Farris J L. A review of the use of unionid mussels as biological indicators of ecosystem health [C]. In:Farris J L, Hassel J H Van (Ed), Freshwater Bivalve Ecotoxicology. CRC Press, Boca Raton, Florida, and SETAC Press, Pensacola, Florida,2007:19-49
    Viarengo A, Canesi L. Mussels as biological indicators of pollution [J]. Aquaculture,1991,94:225-243
    Wagner A, Boman J. Biomonitoring of trace elements in Vietnamese freshwater mussels [J]. Spectrochimica Acta Part B,2004,59:1125-1132
    Wang C, Lu G, Wang P, et al. Assessment of environmental pollution of Taihu Lake by combining active biomonitoring and integrated biomarker response [J]. Environmental Science & Technology, 2011,45:3746-3752
    Wang N, Christopher G, Christopher D I, et al. Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadium, and zinc in water [J]. Environmental Toxicology and Chemistry,2010,29 (2):2053-2063
    Wang N, Ingersoll G C, Greer I E, et al. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae) [J]. Environmental Toxicology and Chemistry,2007,26(10):2048-2056
    Wang N, Ingersoll G C, Hardesty D K, et al. Evaluation of acute copper toxicity to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) in natural and reconstituted waters [J]. Environmental Toxicology and Chemistry,2009,28(11):2367-2377
    Wang W X, Fisher N S. Assimilation efficiencies of chemical contaminants in aquatic invertebrates:a synthesis [J]. Environmental Toxicology and Chemistry,1999a,18:2034-2045
    Wang W X, Fisher N S. Assimilation of trace elements and carbon by the mussel Mytilus edulis:Effects of food composition [J]. Limnology and Oceanography,1996,41 (2):197-207
    Wang W X, Fisher N S. Delineating metal accumulation pathways for marine invertebrates [J]. Science of the Total Environment,1999b,237/238:459-472
    Wang W X, Rainbow P S. Comparative approaches to understand metal bioaccumulation in aquatic animals [J]. Comparative Biochemistry and Physiology Part C,2008,148:315-323
    Wang W X. Metal bioaccumulation in bivalve mollusks:recent progress [C]. In:Villalba A, Reguera B, Romalde J L, Beiras R (Ed), Molluscan Shellfish Safety. Intergovernmental Oceanographic Commission of UNESCO and Conselleria de Pesca e Asuntos Maritimos da Xunta de Galicia. Santiago de Compostela, Spain,2003,503-520
    Watters G T. A brief look at freshwater mussel (Unionacea) biology [C]. In:Farris J L, Hassel J H V (Ed), Freshwater Bivalve Ecotoxicology. Florida, the Society of Environmental Toxicology and Chemistry press,2007,51-64
    Watters G T. A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea,1834) (Bivalvia:Unionidae) [J]. Veliger,1997,40:152-156
    Weiss IM, Tuross N, Addadi L, et al. Mollusc larval shell formation:amorphous calcium carbonate is a precursor phase for aragonite [J]. Journal of Experimental Zoology,2002,293:478-491
    Wenchuan Q, Dickman M, Sumin W. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China [J]. Hydrobiologia,2001,450:83-89
    Widdows J, Donkin P. Mussels and environmental contaminants:bioaccumulation and physiological aspects [C]. In:Gosling E (Ed), The Mussel Mytilus:Ecology, Physiology, Genetics and Culture. Elsevier Science Publishers, Amsterdam,1992,383-424
    Williams J D, Warren M L, Cummings K S, et al. Conservation Status of freshwater mussels of the United States and Canada [J]. Fisheries,1993,18 (9):6-22
    Xia T, Liu X. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions [J]. Frontiers of Environmental Sciences & Engineering in China.2011,5 (2):236-242
    Yang J, Harino H, Liu H, et al. Monitoring the organotin contamination in the Taihu Lake of China by Bivalve mussel Anodonta woodiana [J]. Bulletin of Environmental Contamination and Toxicology, 2008,81:164-168
    Yeager M M, Cherry D S, Neves R J. Feeding and burrowing behaviors of juvenile rainbow mussels, Villosa iris (Bivalvia:Unionidae) [J]. Journal of the North American Benthological Society,1994,13: 217-222
    Zhu S, Zang X. Heavy metal pollution along the Yangtze River stretches of urban area in major cities [J]. Yangtze River,2002, supplement:58-62
    白志毅,李家乐,汪桂玲.三角帆蚌产珠性能与生长性状和插片部位的关系[J].中国水产科学,2008,15(3):493-499
    边学森,刘洪波,甘居利,等.太湖背角无齿蚌中多氯联苯的残留[J].农业环境科学学报,2008,27(2):767-772
    蔡英亚.贝类学概论[M].上海,上海科学技术出版社,1995
    曹哲明,杨健.背角无齿蚌不同组织的基因组DNA甲基化分析[J].生态环境学报,2009,18(6):2011-2016
    曾丽璇.河蚬对水环境中重金属污染的监测研究[D].广州,中山大学,2004.
    常亚青.贝类增养殖学[M].北京:中国农业出版社,2007
    陈竞春,石安静.椭圆背角无齿蚌卵子发生的研究[J].四川大学学报(自然科学版),2002,39(3):546-551
    陈竟春,石安静.椭圆背角无齿蚌受精细胞学观察[J].水产学报,1998,21(1):78-80
    陈友明,李家乐,白志毅.三角帆蚌人工繁育工艺的改良及效果[J].渔业现代化,2007,34(5):26-28
    邓道贵,谈奇坤.褶纹冠蚌精子发生的研究[J].水生生物学报,2000,24(1): 63-66
    丁涛,李林,彭亮,等.背角无齿蚌摄食率及对水中叶绿素a清除能力的研究[J].水生生物学报,2010,34(4):779-786
    董绪燕,孙智达,戚向阳,等.武汉淡水鱼中重金属含量分析及安全性初步研究[J].卫生研究,2006,35(6):719-721
    傅国伟.中国水土重金属污染的防治对策[J].中国环境科学,2012,32(2):373-376
    甘西,高健.佛耳丽蚌的年龄与生长[J].水产学报,1991,15(4):344-347
    戈志强,陆丽萍,左开俊.背角无齿蚌和三角帆蚌的rDNA基因ITS1及ITS2序列的初步研究[J].水产学杂志,2010,23(2):1-5
    龚世园,刘军,张训蒲,等.绢丝丽蚌年龄与生长的研究[J].水生生物学报,2003,27(5):521-526
    龚世园,朱义,张训蒲,等.绢丝丽蚌的配子发生[J].水产学报,1998,22(1):81-84
    顾岗,陆根法.太湖五里湖水环境综合整治的设想[J].湖泊科学,2004,16(1):56-60
    郭延平,谈奇坤,陈士超.三角帆蚌精子的形态及超微结构[J].动物学杂志,2002,37(2):10-13
    国家技术监督局.GB 8978-1996.污水综合排放标准[S].北京:中国环境科学出版社,1998
    华丹,闻海波,徐钢春,等.投喂圆背角无齿蚌对中华绒螯蟹生长及肌肉、肝脏中氨基酸的影响[J].大连水产学院学报,2006,21(1):83-86
    贾晓平.南海海洋渔业可持续发展研究[M].北京:科学出版社,2003
    江苏省吴县多种经营管理局水产站.三角帆蚌人工简易繁殖法[J].水产科技情报,1974,1:14-16
    姜伟立,吴海锁,边博.五里湖水环境治理经验对“十二五”治理的启示[J].环境科技,2011,24(2):62-65
    敬小军,闵宽洪,姜海洲,等.背角无齿蚌净化精养池塘水质试验[J].南方农业学报,2011,42(4):450-452
    康十秀,沈显生,吴自勤,等.金鱼藻微量重金属SR-XRF分析用于淮河中部重金属污染监测[J].核技术,2003,26(2):109-113
    孔向军,朱雷阳,殷莉.圆背角无齿蚌繁养殖技术[J].科学养鱼,2004,3:19-20
    李家乐,王建军, 汪桂玲, 等.我国五大淡水湖三角帆蚌群体mtDNA CO I基因片段变异分析[J].水生生物学报,2008,32(5):779-782
    李威,杨健, 陈修报,等.背角无齿蚌组织中的元素分布研究[J].农业环境科学学报,2010,29(3):597-603
    李西雷,汪桂玲,李家乐,等.三角帆蚌GPX基因cDNA全序列的克隆及其编码蛋白的结构分析[J].遗传,2010,32(4):360-368
    李长松,房斌,王慧,等.贝类养殖容量研究进展[J].上海水产大学学报,2007,16(5):478-482
    厉以强.生物监测的意义、现状及展望[J].环境导报,1996,2:26-27
    励建荣,李学鹏,王丽,等.贝类对重金属的吸收转运与累积规律研究进展[J].水产科学,2007,26(1):51-55
    刘洪波,杨健,甘居利.太湖五里湖水域背角无齿蚌中汞的残留[J].农业环境科学学报,2009a,28(2):411-415
    刘洪波,尤洋,戈贤平,等.池塘养殖及野外移殖三角帆蚌重金属积累的差异[J].生态与农村环境学报,2009b,25(2):107-112
    刘慧.抗氧化防御系统作为水环境重金属污染生物标志物的研究[D].南京大学,2004
    刘士力,李家乐,张根芳,等.背角无齿蚌稚蚌形态发育与生长特性[J].上海海洋大学学报,2009a,18(3):269-274
    刘十力,李家乐,张根芳,等.三角帆蚌稚蚌形态发育与生长特性[J].水产学报,2009b,33(4):604-609
    刘月英.中国经济动物志-淡水软体动物[M].科学出版社,北京,1979:104-117
    卢振彬,杜琦,蔡清海,等.福建罗源湾贝类的养殖容量[J].中国水产科学,2004,11(2):104-110
    孟伟.中国流域水污染综合防治战略[J].中国环境科学,2007,27(5):712-716
    彭建华,陈文祥,栾建国,等.温度、pH对二种淡水贝类滤水率的影响[J].动物学杂志,2004,39(6):2-6
    皮工建.三角帆蚌人工繁殖技术[J].内陆水产,2007,4:33-34
    沈亦龙,何品品,邵立明.太湖五里湖底泥污染特征研究[J].长江流域资源与环境,2004,13(6):584-588
    沈韫芬,龚循矩,顾曼如.用PFU原生动物群落进行生物监测的研究[J].水生生物学报,1985,9(4):299-308
    石安静.背角无齿蚌生殖细胞及钩介幼虫的扫描电镜观察[J].动物学杂志,1995,30(1):10-13
    舒凤月,吴小平.钩介幼虫壳表面结构的扫描电镜观察[J].生命科学研究,2005,9(1):73-76
    苏彦平,杨健,刘洪波.太湖南泉水域水体及水华蓝藻中常量元素Ca、Na、 Mg、 K和Al的特征和变化[J].农业环境科学学报,2011,30(3):539-547
    孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002,24-34
    涂杰峰,罗钦,伍云卿,等.福建水产饲料重金属污染研究[J].中国农学通报,2011,27(29):76-79
    王备新,杨莲芳.大型底栖无脊椎动物水质快速生物评价的研究进展[J].南京农业大学学报,2001,24(4):107-111
    王大鹏,何安尤,曹占旺,等.北海营盘新马氏珠母贝养殖区养殖容量的研究[J].南方农业学报,2011,42(12):1555-1559
    王宏,白志毅,李家乐,等.三角帆蚌胚胎在外鳃育儿囊内形态变化初步研究[J].上海水产大学学报,2007,16(3):219-223
    王玉凤,魏青山.刻裂丽蚌的繁殖生物学[J].华中农业大学学报,1994,13(2):170-174
    魏青山,傅彩红,王玉凤,等.珠蚌科六种蚌的钩介幼虫形态比较研究[J].水生生物学报,1994,18(4):303-307
    魏青山,傅彩红,吴素宁.双峰无齿蚌Anodonta bigibba (Heude)非寄生变态发育的研究[J].湖泊科学,1993,5(4):345-350
    魏泰莉,杨婉玲,赖子尼,等.珠江口水域鱼虾类重金属残留的调查[J].中国水产科学,2002,9(2):172-176
    闻海波,徐钢春,华丹.圆背角无齿蚌寄生变态发育的初步观察[J].上海水产大学学报,2006,15(2):252-256
    徐继刚,王雷,肖海洋,等.我国水环境重金属污染现状及检测技术进展[J].环境科学导刊,2010,29(5):104-108
    许木启,王子键.利用浮游动物群落结构与功能特征监测乐安江-都阳湖口重金属污染[J].应用与环境生物学报,1996,2(2):169-174
    许木启.京密运河-北京排污河浮游动物群落变化与水质关系的研究[J].环境科学学报,1993,13(3):347-353
    杨健,曲疆奇,刘洪波.野生及养殖背角无齿蚌中重金属的生物积累特征[J].生态环境学报,2010,19(3):570-575
    杨健,王慧,朱宏宇,等.背角无齿蚌(Anodonta woodiana)在五里湖中的重金属富集[J].长江流域资源与环境,2005,14(3):362-366
    杨学芬,龚世园,张训蒲,等.绢丝丽蚌寄生变态发育的研究[J].应用生态学报,2000,11(1):131-134
    杨学芬,龚世园,张训蒲,等.绢丝丽蚌胚胎发育的研究[J].水生生物学报,1999,23(4):359-362
    于宗赫,陈康,杨红生,等.海州湾前三岛海域栉孔扇贝(Chlamys farreri)生长特征与养殖容量的评估[J].海洋与湖沼,2010,41(4):563-570
    余颖,洪一江,邱齐骏,等.池蝶蚌胚胎发育与繁殖季节性腺的观察[J].动物学杂志,2008,43(3):102-107
    张德生,黄平,潘宏彬.背角无齿蚌人工繁殖技术初探[J].水产养殖,1994,1:8-9
    张根芳,许式见,方爱萍.背瘤丽蚌胚胎发育的初步研究[J].动物学杂志,2009,44(4):96-101
    张根芳,许式见,方爱萍.背瘤丽蚌稚蚌的生长与发育[J].动物学杂志,2010,45(5):105-110
    张敏,蔡庆华,唐涛,等.洱海流域湖泊大型底栖动物群落结构及空间分布[J].生态学杂志,2011,30(8):1696-1702
    赵颖,陈修报,杨健,等.利用ND1、ITS1序列研究三种背角无齿蚌(Anodonta woodiana)分类学问题[J].海洋与湖沼,2011,42(4):619-624
    浙江省质量技术监督局.DB33/T 402.1-2003.河蚌育珠技术规范[S].浙江,2003
    郑光明,魏青山.武昌南湖圆背角无齿蚌食性与生长的研究[J].华中农业大学学报,1999,18(1):62-67
    中华人民共和国环境保护部.2010年中国环境状况公报[R].北京,中华人民共和国环境保护部,2011.
    中华人民共和国农业部.无公害食品—水产品中有毒有害物质限量(NY 5073-2006)[S].北京,2006
    中华人民共和国卫生部.食品中污染物限量(GB 2762-2005)[S].北京,2005
    周怀东,彭文启,等.水污染与水环境修复[M].北京:化学工业出版社,2005
    周永明.人工繁殖褶纹冠蚌的方法[J].淡水渔业,1981,5:29-31
    朱喜,张扬文.五里湖水污染治理现状及继续治理对策[J].水资源保护,2009,25(1):86-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700