用户名: 密码: 验证码:
脂肪细胞分化关键基因LXRα的生物信息学分析及表达规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪细胞分化实质是一系列基因时序表达的过程,这些基因主要有PPARr、LPL与HSL等。肝x受体α(LiverXrecePtors,LXRα)是脂类代谢过程中一种重要的核受体,研究发现LXRα在脂肪组织中高表达,并且LXRα激活后可增加一系列脂肪细胞标志基因如PPARr、LPL、瘦素等的表达。由此推断LXRα可能参与脂肪细胞的分化。细胞因子是影响脂肪细胞分化的重要因素,多项研究表明白细胞介素-6(IL-6)能够刺激脂肪分解和脂肪酸氧化,然而目前对于IL-6调控脂肪细胞分化的分子机制尚不清楚。
     本试验首先对GenBank已发表的猪LXR基因进行生物信息学分析,在此理论基础上,以猪为研究对象,利用半定量RT-PCR技术研究LXRα在其各组织中的表达规律;利用不同浓度IL-6处理SD大白鼠,分别提取其脂肪组织的RNA和蛋白,通过RT-PCR和Western blotting技术检测脂肪细胞分化相关基因PPARr、LXRα、LPL与HSL的表达变化情况;最后分析IL-6调控脂肪细胞分化的可能机制,为进一步应用IL-6调控动物体脂沉积,控制人类肥胖及其相关疾病的研究提供新的靶点和理论依据。
     研究结果如下:
     1、用GenBank已发表猪的LXRα基因的进行蛋白质结构分析,得出猪LXRα基因编码454个氨基酸蛋白,推测分子量约502910.00 Da。并且LXRα的蛋白质二级结构为混合型,其蛋白包括2个低组分复杂性区域、1个锌指结构ZnF-C4和1个核受体超家族配体结合区(LBD)。系统发育分析发现猪的LXRα与鼠有比较近的亲缘关系。
     2、以猪为研究对象,摸索出扩增猪LXRα基因的最佳条件。在退火温度为48.9℃与镁离子浓度为2mmol/L的条件下,猪LXRα基因的扩增效率最高。
     3、以猪为研究对象,运用RT-PCR技术研究LXRα基因在其8个不同组织(内脏脂肪、心脏、脾脏、肝脏、肺脏、皮下脂肪、肌肉、肾脏)中的表达情况。结果表明:LXRα的表达具有组织特异性。LXRα在猪的肝脏、皮下脂肪、内脏脂肪组织中高表达,在肾脏中中等表达,而在脾脏、肺脏、肌肉、心脏中表达很少,几乎没有。并且LXRα肝脏中的表达与其他组织相比差异显著(P<0.5)。说明LXRα基因脂质代谢中发挥着重要的作用。
     4、以SD大白鼠为研究对象,用不同浓度(0、0.1ug/ml、0.4ug/ml)的IL-6处理48h后,与对照组相比,PPARr、LXRα和LPL基因的转录水平显著下调,同时PPARr的蛋白水平也明显下调。然而对HSL的mRNA表达影响很小。
     综上所述:IL-6抑制脂肪细胞分化相关基因PPARr、LXRα和LPL的表达,可能作为IL-6调控脂肪细胞分化的新的机制或机理。
Adipocytes differentiation is a expression process of somemarker genes really. The series of genes include PPARγ, HSL andLPL. Liver X receptorα(LXRα) gene is a member of the nuclearreceptor supper family, which play a dominant role in lipidmetabolism. LXRαis highly expressed in adipocyte. And it canenhance the expression of adipocyte specific genes. For examplePPARr, LPL and leptin. Therefore, we infer LXRαmay haveparticipated during adipocytes differentiation. Eytokines areimportant factors affecting adipocytes differentiation. Someresearches indicated IL-6 can stimulate lipolysis and fatty acidoxidation. While at present,the molecular mechanism is remainsunclear for IL-6 regulating of adipocyte differentiation.
     In this study,at first, we analyzed the the pig LXRαbybioinformatics methods which has been published on gene bank. Then healthy pigs were used as experimental animal. The mRNAdistribution profile of the porcine LXRαgene in eight tissues (heart,liver, subcutaneous adipose, kidney, visceral adipose, spleen, lung,Muscle) from the pig sample were examined by RT-PCR. Then the SDrats were incubated with different IL-6 concentrations for varioustimes Afterthat, RNA and protein were extracted from adiposetissue. Further, gene expression of PPARr, LXRα, LPL snd HSL weredetermined with RT-PCR and Western blot to resolve the possiblemechanisms of IL-6 regulating of adipocyte differentiation. It willprovide available information for control of human obesity and thetherapy of metabolic diseases.
     The main results were as follows:
     1. Protein structure analysis suggested that that the relativemolecular weight of LXRαreceptor is 502910.00 D, coding 454Amino Acids, LXRαprotein is mainly consists of three functionaldomains: a Ligand-binding Domain, a DNA-binding Domain, and aZinc fingerr C4 region. phylogenetic result showed that the LXRαgenes in Mammalia clade were very conserved.
     2. When the annealing temperature is 48.9℃and MgCl2concentration is 2mmol/L, the pig LXRαgene was amplificatedefficiently.
     3. The mRNA distribution profile of the porcine LXRαgene in eighttissues (heart, liver, subcutaneous adipose, kidney, visceral adipose,spleen, lung, Muscle) from the pig sample were examined by RT-PCR.The results showed that the LXRαgene was expressed specificity.The porcine LXRαgene highly expressed in liver, visceral adiposetissue, subcutaneous adipose tissue and kidney. While remarkablelower in heart, lung, spleen and muscle. The highest of LXRαexpression levels were found in liver tissue. The results suggestedthat LXRαhas a close correlation with lipid metabolism.
     4. Then the SD rats were incubated with different IL-6concentrations (0, 0.1ug/ml, 0.4ug/ml) for 48h. The result of RT-PCRshow that IL-6 significantly inhibits the mRNA expression ofadipogenic marker genes PPARr, LXRαand LPL. But HSL mRNAlevels were not changed. The effect of IL-6 on expresion of PPARγwas detected by Western blot. All these test support the downregulation of protein expression for PPARγby IL-6.
     These results showed that different concentrations of IL-6 couldinhibit adipocyte differentiation by regulating the expressions ofLXRα, LPL and PPARγ.
引文
【1】A. M. Rodriguez, C. Elabd, F. Delteil, et al. Adipocyte differentiation of multipotent cellsestablished from human adipose tissue[J]. Biochemical and biophysical research communications,2004, 315(2): 255-263.
    【2】P. Seale, S. Kajimura, W. Yang, et al. Transcriptional control of brown fat determination byPRDM16[J]. Cell metabolism, 2007, 6(1): 38-54.
    【3】P. Seale, B. Bjork, W. Yang, PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature,2008, 454(7207): 961-967.
    【4】E.D. Rosen, C.J. Walkey, P. Puigserver, et al. Trannscriptional regulation of adipogenesis[J].Genes Dev,2000, 14: 1293-1307.
    【5】S. C. Hung, C. F. Chang, H. L. Ma, et al. Gene expression profiles of early adipogenesis in humanmesenchymal stem cells[J]. Gene, 2004, 340(1): 141-150.
    【6】H. Wang. R. Scott. Inhibition of distinct steps in the adipocyte differentiation pathway in 3T3 Tmesenchymal stem cells by dimethyl sulphoxide (DMSO)[J]. Cell proliferation, 1993, 26(1):55-66.
    【7】H. Sugihara, N. Yonemitsu, S. Miyabara, et al. Primary cultures of unilocular fat cells:characteristics of growth in vitro and changes in differentiation properties[J]. Differentiation, 1986,31(1): 42-49.
    【8】J. Prins. S. O'Rahilly. Regulation of adipose cell number in man[J]. Clinical science (London,England: 1979), 1997, 92(1): 3-11.
    【9】J. L. Kirkland. D. E. Dobson. Preadipocyte function and aging: links between age-relatedchanges in cell dynamics and altered fat tissue function[J]. Journal of the American GeriatricsSociety, 1997, 45(8): 959-967.
    【10】王刚,曾勇庆,武英,等.猪肌肉组织LPL基因表达的发育性变化及其与肌内脂肪沉积关系的研究[J].畜牧兽医学报, 2007, 38(3): 253-257.
    【11】Y. Wang, L. Zhao, C. Smas, et al. Pref-1 interacts with fibronectin to inhibit adipocytedifferentiation[J]. Science's STKE, 2010, 30(14): 3480-3492.
    【12】S. E. Ross, R. L. Erickson, I. Gerin, et al. Microarray analyses during adipogenesis: understandingthe effects of Wnt signaling on adipogenesis and the roles of liver X receptorαin adipocytemetabolism[J]. Molecular and cellular biology, 2002, 22(16): 5989-5999.
    【13】Y. Barak, M. C. Nelson, E. S. Ong, et al. PPAR [gamma] is required for placental, cardiac, andadipose tissue development[J]. Molecular cell, 1999, 4(4): 585-595.
    【14】H. Takahashi, K. Kato, K. Miyake, et al. Adeno-associated virus vector-mediated anti-angiogenicgene therapy for collagen-induced arthritis in mice[J]. Clinical and experimental rheumatology,2005, 23(4): 455-461.
    【15】Z. Wu, Y. Xie, R. F. Morrison, et al. PPARgamma induces the insulin-dependent glucosetransporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts intoadipocytes[J]. Journal of Clinical Investigation, 1998, 101(1): 22-32.
    【16】O. Ziouzenkova, G. Orasanu, G. Sukhova, et al. Asymmetric cleavage ofβ-carotene yields atranscriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptorresponses[J]. Molecular Endocrinology, 2007, 21(1): 77-88.
    【17】P. A. Grimaldi. The roles of PPARs in adipocyte differentiation[J]. Progress in lipid research, 2001,40(4): 269-281.
    【18】X. Li, H. Y. Huang, J. G. Chen, et al. Lactacystin inhibits 3T3-L1 adipocyte differentiationthrough induction of CHOP-10 expression[J]. Biochemical and biophysical researchcommunications, 2006, 350(1): 1-6.
    【19】N. D. Wang, M. J. Finegold, A. Bradley, et al. Impaired energy homeostasis in C/EBP alphaknockout mice[J]. Science, 1995, 269(5227): 1108-1112.
    【20】S. O. Freytag, D. L. Paielli, and J. D. Gilbert. Ectopic expression of the CCAAT/enhancer-bindingprotein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells[J]. Genes &development, 1994, 8(14): 1654-1663.
    【21】M. I. Lefterova, Y. Zhang, D. J. Steger, et al. PPARγand C/EBP factors orchestrate adipocytebiology via adjacent binding on a genome-wide scale[J]. Genes & development, 2008, 22(21):2941-2952.
    【22】V. A. Payne, A. Wo-Shing, C. E. Lowe, et al. C/EBP transcription factors regulate SREBP1c geneexpression during adipogenesis[J]. The Biochemical journal, 2009, 425(1): 215-223.
    【23】J. B. Kim, H. M. Wright, M. Wright, et al. ADD1/SREBP1 activates PPARγthrough theproduction of endogenous ligand[J]. Proceedings of the National Academy of Sciences, 1998,95(8): 4333-4337.
    【24】D. Li, S. Yea, S. Li, et al. Krüppel-like factor-6 promotes preadipocyte differentiation throughhistone deacetylase 3-dependent repression of DLK1[J]. Journal of Biological Chemistry, 2005,280(29): 26941-26952.
    【25】高晓娟,吉红,常志光,等. PGC-1和SREBP-1c在猪脂肪细胞分化过程中的相互作用[J].中国生物化学与分子生物学报, 2011, 6: 533-539.
    【26】E. D. Rosen. O. A. MacDougald. Adipocyte differentiation from the inside out[J]. NatureReviews Molecular Cell Biology, 2006, 7(12): 885-896.
    【27】L. Fajas, K. Schoonjans, L. Gelman, et al. Regulation of peroxisome proliferator-activated receptorγexpression by adipocyte differentiation and determination factor 1/sterol regulatory elementbinding protein 1: implications for adipocyte differentiation and metabolism[J]. Molecular andcellular biology, 1999, 19(8): 5495-5503.
    【28】K. Birsoy, Z. Chen, and J. Friedman. Transcriptional regulation of adipogenesis by KLF4[J]. Cellmetabolism, 2008, 7(4): 339-347.
    【29】Y. Oishi, I. Manabe, K. Tobe, et al. Krüppel-like transcription factor KLF5 is a key regulator ofadipocyte differentiation[J]. Cell metabolism, 2005, 1(1): 27-39.
    【30】T. Mori, H. Sakaue, H. Iguchi, et al. Role of Krüppel-like factor 15 (KLF15) in transcriptionalregulation of adipogenesis[J]. Journal of Biological Chemistry, 2005, 280(13): 12867-12875.
    【31】Y. Kawamura, Y. Tanaka, R. Kawamori, et al. Overexpression of kruppel-like factor 7 regulatesadipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulinsecretion in pancreaticβ-cell line[J]. Molecular Endocrinology, 2006, 20(4): 844-856.
    【32】N. Sue, B. H. A. Jack, S. A. Eaton, et al. Targeted disruption of the basic Krüppel-like factor gene(Klf3) reveals a role in adipogenesis[J]. Molecular and cellular biology, 2008, 28(12): 3967-3978.
    【33】M. Wang, J. J. Wang, J. Li, et al. Pigment epithelium-derived factor suppresses adipogenesis viainhibition of the MAPK/ERK pathway in 3T3-L1 preadipocytes[J]. American Journal ofPhysiology-Endocrinology And Metabolism, 2009, 297(6): E1378-E1387.
    【34】S .Kajimura, P. Seale, T Tomaru, et al. Regulation of the brown and white fat gene programsthrough a prdm16/ctbp transcriptional complex. Genes Dev 2008, 22(10): 1397-409.
    【35】Y. Wang, L. Zhao, C. Smas, et al. Pref-1 interacts with fibronectin to inhibit adipocyte differenti-ation[J]. Science's STKE, 2010, 30(14): 3480-3492
    【36】Q. C. Liao, Y. L. Li, Y. F. Qin, et al. Inhibition of adipocyte differentiation by phytoestrogengenistein through a potential downregulation of extracellular signal‐regulated kinases 1/2activity[J]. Journal of cellular biochemistry, 2008, 104(5): 1853-1864.
    【37】M. Zhang, K. Ikeda, J. W. Xu, et al. Genistein suppresses adipogenesis of 3T3‐L1 cells viamultiple signal pathways[J]. Phytotherapy Research, 2009, 23(5): 713-718.
    【38】M. Aouadi, K. Laurent, M. Prot, et al. Inhibition of p38MAPK increases adipogenesis fromembryonic to adult stages[J]. Diabetes, 2006, 55(2): 281-289.
    【39】C. Morel, C. L. Standen, D. Y. Jung, et al. Requirement of JIP1-mediated c-Jun N-TerminalKinase activation for obesity-induced insulin resistance[J]. Molecular and cellular biology, 2010,30(19): 4616-4625.
    【40】S. Tominaga, T. Yamaguchi, S. I. Takahashi, et al. Negative regulation of adipogenesis fromhuman mesenchymal stem cells by Jun N-terminal kinase[J]. Biochemical and biophysicalresearch communications, 2005, 326(2): 499-504.
    【41】S. E. Ross, N. Hemati, K. A. Longo, et al. Inhibition of adipogenesis by Wnt signaling[J].Science's STKE, 2000, 289(5481): 950-953.
    【42】F. Van Tienen, H. Laeremans, C. Van Der Kallen, et al. Wnt5b stimulates adipogenesis byactivating PPARγ, and inhibiting theβ-catenin dependent Wnt signaling pathway together withWnt5a [J]. Biochemical and biophysical research communications, 2009, 387(1): 207-211.
    【43】M. Nishizuka, A. Koyanagi, S. Osada, et al. Wnt4 and Wnt5a promote adipocyte differentiation[J].FEBS letters, 2008, 582(21): 3201-3205.
    【44】J. A. Villena, B. Viollet, F. Andreelli, et al. Induced adiposity and adipocyte hypertrophy in micelacking the AMP-activated protein kinase-α2 subunit[J]. Diabetes, 2004, 53(9): 2242-2249.
    【45】Daval, F. Foufelle, and P. Ferré. Functions of AMP‐activated protein kinase in adipose tissue[J].The Journal of physiology, 2006, 574(1): 55-62.
    【46】R. Apfel, D. Benbrook, E. Lernhardt, et al. A novel orphan receptor specific for a subset ofthyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormonereceptor subfamily [J]. Mol Cell Biol, 1994, 14(10): 7025-7035.
    【47】Song C, Kokontis J M, Hiipakka R A, et al. Ubiquitous receptor: a receptor that modulates geneactivation by retinoic acid and thyroid hormone receptors [J]. Proc Natl Acad Sci USA., 1994, 91(23): 10809-10813.
    【48】S. M. Ulven, K. T. Dalen, J. . Gustafsson, et al. LXR is crucial in lipid metabolism[J].Prostaglandins, leukotrienes and essential fatty acids, 2005, 73(1): 59-63.
    【49】P. J. Willy, K. Umesono, E. S. Ong, et al. LXR, a nuclear receptor that defines a distinct retinoidresponse pathway[J]. Genes & development, 1995, 9(9): 1033-1045.
    【50】J. J. Repa. D. J. Mangelsdorf. The role of orphan nuclear receptors in the regulation ofcholesterol homeostasis[J]. Annual review of cell and developmental biology, 2000, 16(1):459-481.
    【51】M. Chen, M. N. Bradley, S. W. Beaven, et al. Phosphorylation of the liver X receptors[J]. FEBSletters, 2006, 580(20): 4835-4841.
    【52】G. Wójcicka, A. Jamroz-Wi niewska, K. Horoszewicz, et al. Liver X receptors (LXRs). Part I:Structure, function, regulation of activity, and role in lipid metabolism[J]. Journal cover, 2007, 61:736-759.
    【53】J. M. Lehmann, S. A. Kliewer, L. B. Moore, et al. Activation of the nuclear receptor LXR byoxysterols defines a new hormone response pathway[J]. Journal of Biological Chemistry, 1997,272(6): 3137-3140.
    【54】N. Mitro, P. A. Mak, L. Vargas, et al. The nuclear receptor LXR is a glucose sensor[J]. Nature,2006, 445(7124): 219-223.
    【55】E. H. Anthonisen, L. Berven, S. Holm, et al. Nuclear receptor liver X receptor isO-GlcNAc-modified in response to glucose[J]. Journal of Biological Chemistry, 2010, 285(3):1607-1615.
    【56】L. L. Vedin, S. A. Lewandowski, P. Parini, et al. The oxysterol receptor LXR inhibits proliferationof human breast cancer cells[J]. Carcinogenesis, 2009, 30(4): 575-579.
    【57】J. L. Collins, A. M. Fivush, M. A. Watson, et al. Identification of a nonsteroidal liver X receptoragonist through parallel array synthesis of tertiary amines[J]. Journal of medicinal chemistry, 2002,45(10): 1963-1966.
    【58】Q. Shang, L. Pan, M. Saumoy, et al. An overlapping binding site in the CYP7A1 promoter allowsactivation of FXR to override the stimulation by LXRα[J]. American Journal ofPhysiology-Gastrointestinal and Liver Physiology, 2007, 293(4): G817-G823.
    【59】P. A. Edwards, H. R. Kast, and A. M. Anisfeld. BAREing it all: the adoption of LXR and FXR andtheir roles in lipid homeostasis[J]. Journal of lipid research, 2002, 43(1): 2-12.
    【60】J. H. Lee, S. M. Park, O. S. Kim, et al. Differential SUMOylation of LXR [alpha] and LXR [beta]Mediates Transrepression of STAT1 Inflammatory Signaling in IFN-[gamma]-Stimulated BrainAstrocytes[J]. Molecular cell, 2009, 35(6): 806-817.
    【61】JJ Repa, KE Berge, and C. Pomajzl. Regulation of ATP-binding eassette sterol transportersABCG5 and ABCG8 by the Liver X Receptorsαandβ[J]. Journal of Biological Chemistry, 2002,227(21): 18793-18800.
    【62】L. Yu, J. York, K. von Bergmann, et al. Stimulation of cholesterol excretion by the liver Xreceptor agonist requires ATP-binding cassette transporters G5 and G8[J]. Journal of BiologicalChemistry, 2003, 278(18): 15565-15570.
    【63】K. W. Christopherson Ii. A. Landay. Editorial: Liver X receptor a (LXRa) as a therapeutic targetin chronic lymphocytic leukemia (CLL)[J]. Journal of leukocyte biology, 2009, 86(5): 1019-1021.
    【64】M. Hou, M. Xia, H. Zhu, et al. Lysophosphatidylcholine promotes cholesterol efflux from mousemacrophage foam cells via PPARγLXRα‐ABCA1‐dependent pathway associated with apoE[J].Cell biochemistry and function, 2007, 25(1): 33-44.
    【65】Y. Zhang, J. J. Repa, K. Gauthier, et al. Regulation of lipoprotein lipase by the oxysterol receptors,LXRa and LXRa[J]. Journal of Biological Chemistry, 2001, 276(46): 43018-43024.
    【66】A. Grefhorst. E. J. Parks. Reduced insulin-mediated inhibition of VLDL secretion uponpharmacological activation of the liver X receptor in mice[J]. Journal of lipid research, 2009, 50(7):1374-1383.
    【67】S. Talukdar. F. B. Hillgartner. The mechanism mediating the activation of acetyl-coenzyme Acarboxylase gene transcription by the liver X receptor agonist T0-901317[J]. Journal of lipidresearch, 2006, 47(11): 2451-2461.
    【68】K. Chu, M. Miyazaki, W. C. Man, et al. Stearoyl-coenzyme A desaturase 1 deficiency protectsagainst hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced byliver X receptor activation[J]. Molecular and cellular biology, 2006, 26(18): 6786-6798.
    【69】J. Y. Cha. J. J. Repa. The liver X receptor (LXR) and hepatic lipogenesis[J]. Journal ofBiological Chemistry, 2007, 282(1): 743-751.
    【70】王强,江渝.肝X受体的研究进展.生理科学进展[J].生理科学进展, 2009, 40(2): 147-150.
    【71】Y. Liu, C. Yan, Y. Wang, et al. Liver X receptor agonist T0901317 inhibition of glucocorticoidreceptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome indb/db mice[J]. Endocrinology, 2006, 147(11): 5061-5068.
    【72】T. M. Stulnig, K. R. Steffensen, H. Gao, et al. Novel roles of liver X receptors exposed by geneexpression profiling in liver and adipose tissue[J]. Molecular pharmacology, 2002, 62(6):1299-1305.
    【73】V. Wallenius, K. Wallenius, B. Ahrén, et al. Interleukin-6-deficient mice develop mature-onsetobesity[J]. Nature medicine, 2002, 8(1): 75-79.
    【74】G. Frühbeck, J. Gómez-Ambrosi, F. J. Muruzábal, et al. The adipocyte: a model for integration ofendocrine and metabolic signaling in energy metabolism regulation[J]. American Journal ofPhysiology-Endocrinology And Metabolism, 2001, 280(6): E827-E847.
    【75】E. E. Kershaw. J. S. Flier. Adipose tissue as an endocrine organ[J]. Journal of ClinicalEndocrinology & Metabolism, 2004, 89(6): 2548-2556.
    【76】V. Mohamed-Ali, S. Goodrick, A. Rawesh, et al. Subcutaneous adipose tissue releasesinterleukin-6, but not tumor necrosis factor, in vivo[J]. Journal of Clinical Endocrinology &Metabolism, 1997, 82(12): 4196-4200.
    【77】J. P. Bastard, C. Jardel, E. Bruckert, et al. Elevated levels of interleukin 6 are reduced in serum andsubcutaneous adipose tissue of obese women after weight loss[J]. Journal of ClinicalEndocrinology & Metabolism, 2000, 85(9): 3338-3342.
    【78】E. S. Ford. Body mass index, diabetes, and C-reactive protein among US adults[J]. Diabetes care,1999, 22(12): 1971-1977.
    【79】J. P. Bastard, C. Jardel, J. Delattre, et al. Evidence for a link between adipose tissue interleukin-6content and serum C-reactive protein concentrations in obese subjects[J]. Circulation, 1999, 99(16):2219-2222.
    【80】U. Das. Is obesity an inflammatory condition?[J]. Nutrition, 2001, 17(11): 953-966.
    【81】K. E. Wellen. G. S. Hotamisligil. Inflammation, stress, and diabetes[J]. J Clin Invest, 2005,115(5): 1111-1119.
    【82】R. A. DeFronzo, R. C. Bonadonna, and E. Ferrannini. Pathogenesis of NIDDM: a balancedoverview[J]. Diabetes care, 1992, 15(3): 318-368.
    【83】H. Yki-J rvinen. Role of insulin resistance in the pathogenesis of NIDDM[J]. Diabetologia, 1995,38(12): 1378-1388.
    【84】A. Marette. Mediators of cytokine-induced insulin resistance in obesity and other inflammatorysettings[J]. Current Opinion in Clinical Nutrition & Metabolic Care, 2002, 5(4): 377-383.
    【85】J. C. Pickup, G. D. Chusney, S. M. Thomas, et al. Plasma interleukin-6, tumour necrosis factor
    [alpha] and blood cytokine production in type 2 diabetes[J]. Life sciences, 2000, 67(3): 291-300.
    【86】A. D. Pradhan, J. A. E. Manson, N. Rifai, et al. C-reactive protein, interleukin 6, and risk ofdeveloping type 2 diabetes mellitus[J]. JAMA: the journal of the American Medical Association,2001, 286(3): 327-334.
    【87】G. van Hall, A. Steensberg, M. Sacchetti, et al. Interleukin-6 stimulates lipolysis and fat oxidationin humans[J]. Journal of Clinical Endocrinology & Metabolism, 2003, 88(7): 3005-3010.
    【88】G. P th, S. R. Bornstein, M. Gurniak, et al. Human breast adipocytes express interleukin-6 (IL-6)and its receptor system: increased IL-6 production byβ-adrenergic activation and effects of IL-6on adipocyte function[J]. Journal of Clinical Endocrinology & Metabolism, 2001, 86(5):2281-2288.
    【89】V. Rotter, I. Nagaev, and U. Smith. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells frominsulin-resistant subjects[J]. Journal of Biological Chemistry, 2003, 278(46): 45777-45584.
    【90】M. E. Trujillo, S. Sullivan, I. Harten, et al. Interleukin-6 regulates human adipose tissue lipidmetabolism and leptin production in vitro[J]. Journal of Clinical Endocrinology & Metabolism,2004, 89(11): 5577-5582.
    【91】A. M. W. Petersen. B. K. Pedersen. The anti-inflammatory effect of exercise[J]. Journal ofapplied physiology, 2005, 98(4): 1154-1162.
    【92】R. Schindler, J. Mancilla, S. Endres, et al. Correlations and interactions in the production ofinterleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells:IL-6 suppresses IL-1 and TNF[J]. Blood, 1990, 75(1): 40-47.
    【93】H. Tilg, E. Trehu, M. B. Atkins, et al. Interleukin-6 (IL-6) as an anti-inflammatory cytokine:induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55[J].Blood, 1994, 83(1): 113-118.
    【94】J. J. Senn, P. J. Klover, I. A. Nowak, et al. Suppressor of cytokine signaling-3 (SOCS-3), apotential mediator of interleukin-6-dependent insulin resistance in hepatocytes[J]. Journal ofBiological Chemistry, 2003, 278(16): 13740-13746.
    【95】A. Steensberg, G. Van Hall, T. Osada, et al. Production of interleukin-6 in contracting humanskeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J]. TheJournal of physiology, 2000, 529(1): 237-242.
    【96] D. Lyngs , L. Simonsen, and J. Bülow. Metabolic effects of interleukin‐6 in human splanchnicand adipose tissue[J]. The Journal of physiology, 2002, 543(1): 379-386.
    【97】E. Petersen, A. Carey, M. Sacchetti, et al. Acute IL-6 treatment increases fatty acid turnover inelderly humans in vivo and in tissue culture in vitro[J]. American Journal ofPhysiology-Endocrinology And Metabolism, 2005, 288(1): E155-E162.
    【98】J. F ldt, I. Wernstedt, S. M. Fitzgerald, et al. Reduced exercise endurance ininterleukin-6-deficient mice[J]. Endocrinology, 2004, 145(6): 2680-2686.
    【99】杨永青.杨公社.白细胞介素-6对猪脂肪细胞脂肪分解的影响[J].畜牧兽医学报, 2009,40(8): 1131-1138.
    【91】M. Fasshauer, J. Klein, U. Lossner, et al. Interleukin (IL)-6 mRNA expression is stimulated byinsulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1adipocytes[J]. Hormone and metabolic research, 2003, 35(3): 147-152.
    【92】M. Y. Wang, Y. Lee, and R. H. Unger. Novel form of lipolysis induced by leptin[J]. Journal ofBiological Chemistry, 1999, 274(25): 17541-17544.
    【93】赵飞,张燕,王贵菊,等.血清瘦素,肿瘤坏死因子-α, IL-6在高脂诱导肥胖大鼠胰岛素抵抗中的作用[J].山东大学学报:医学版, 2006, 44(008): 815-818.
    【94】石敏,代芳,王长江,等.吡格列酮和白细胞介素-6对3T3-L1脂肪细胞Visfatin mRNA表达的影响[J].安徽医科大学学报, 2008, 43(1): 50-54.
    【95】C. Lagathu, J. P. Bastard, M. Auclair, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone[J]. Biochemicaland biophysical research communications, 2003, 311(2): 372-379.
    【96】M. Fasshauer, J. Klein, S. Kralisch, et al. Monocyte chemoattractant protein 1 expression isstimulated by growth hormone and interleukin-6 in 3T3-L1 adipocytes[J]. Biochemical andbiophysical research communications, 2004, 317(2): 598-604.
    【97】陈雨,郑少雄,郝杰,等.白细胞介素-6在2型糖尿病大鼠胰岛素抵抗中的作用[J].中国临床医学, 2011, 18(001): 32-34.
    【98】李衍达,孙之荣.生物信息学基因和蛋白质分析的实用指南.北京:清华大学出版社, 2000.
    【99】D. Karolchik, R. Baertsch, M. Diekhans, et al. The UCSC genome browser database[J]. Nucleicacids research, 2003, 31(1): 51-54.
    【100】D. Karolchik, A. S. Hinrichs, T. S. Furey, et al. The UCSC Table Browser data retrieval tool[J].Nucleic acids research, 2004, 32(suppl 1): D493-D496.
    【101】S. Rajasekaran, V. Thapar, H. Dave, et al. Randomized and parallel algorithms for distance matrixcalculations in multiple sequence alignment[J]. Journal of clinical monitoring and computing, 2005,19(4): 351-359.
    【102】J. D. Thompson, T. J. Gibson, F. Plewniak, et al. The CLUSTAL_X windows interface: flexiblestrategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic acidsresearch, 1997, 25(24): 4876-4882.
    【103】J. D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple sequencealignment programs[J]. Nucleic acids research, 1999, 27(13): 2682-2690.
    【104】E. Gasteiger, A. Gattiker, C. Hoogland, et al. Expasy: the proteomics server for in-depth proteinknowledge and analysis[J]. Nucleic acids research, 2003, 31(13): 3784-3788.
    【105】C. Geourjon. G. Deleage. SOPMA: significant improvements in protein secondary structureprediction by consensus prediction from multiple alignments[J]. Computer applications in thebiosciences: CABIOS, 1995, 11(6): 681-684.
    【106】Y. Chen, P. Yu, J. Luo, et al. Secreted protein prediction system combining CJ-SPHMM, TMHMM,and PSORT[J]. Mammalian genome, 2003, 14(12): 859-865.
    【107】H. Viklund. A. Elofsson. Bestα‐helical transmembrane protein topology predictions areachieved using hidden Markov models and evolutionary information[J]. Protein Science, 2004,13(7): 1908-1917.
    【108】于波,吴静,张晓燕,等.肝X受体介导肾小球系膜细胞胆固醇外流[J].北京大学学报:医学版, 2006, 38(003): 244-248.
    【109】陈杰,马向华,田振华,等.白细胞介素6对人原代脂肪细胞增殖分化的影响[J].医学研究生学报, 2009, 22(003): 228-230.
    【110】A. S. Greenberg, R. P. Nordan, J. McIntosh, et al. Interleukin 6 reduces lipoprotein lipase activity inadipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancercachexia[J]. Cancer research, 1992, 52(15): 4113-4116
    【111】M. S. Kim, T. R. Sweeney, J. K. Shigenaga, et al. Tumor necrosis factor and interleukin 1 decreaseRXRα, PPARα, PPARγLXRα, and the coactivators SRC-1, PGC-and PGC-1βin liver cells[J].Metabolism, 2007, 56(2): 267-279.
    【112】B. A. Laffitte, S. B. Joseph, R. Walczak, et al. Autoregulation of the human liver X receptorαpromoter[J]. Molecular and Cellular Biology, 2001, 21(22): 7558-7568.
    【113】S. T. Ding, R. McNeel, and H. Mersmann. Expression of porcine adipocyte transcripts: tissuedistribution and differentiation in vitro and in vivo[J]. Comparative Biochemistry and PhysiologyPart B: Biochemistry and Molecular Biology, 1999, 123(3): 307-318.
    【114】M. J. Watt,A. L. Carey,E.Wolsk-Petersen,et.al. Hormone-sensitive lipase is reduced in theadipose tissue of patients with type 2 diabetes mellitus:influence of IL-6 infusion[J]. Diabetologia,2005, 48(1) :105-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700