用户名: 密码: 验证码:
基于不对称配体3,4-吡啶二羧酸的配位聚合物的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金属与不对称配体所形成的配合物以其多样的结构和广泛的用途愈来愈受到人们的重视。该类配合物在催化、发光等功能材料领域都有广泛的应用前景。本论文综述了3,4-吡啶二羧酸配位聚合物的研究进展,设计合成了一系列3,4-吡啶二羧酸与金属离子构筑的配位聚合物,并对其结构和性质进行了研究。本论文的主要研究内容如下:
     (1)合成了4种3,4-吡啶二羧酸配体与过渡金属构筑的配位聚合物:[Zn(PDB)(phen)] (1),[Co(PDB)(2,2′-bipy)]n (2),[Ag_2(PDB)] (3)和{[Mn_2(PDB)_2(2,2′-bpy)_2(H_2O)_2]·2H_2O} (4),通过X-射线单晶衍射技术测定了它们的晶体结构,进行了元素分析、红外光谱、热分析、荧光性质和磁学性质的研究。
     在配合物1-4中,3,4-吡啶二羧酸配体采用了多种配位方式,形成了不同结构类型的多维超分子拓扑结构。配合物1和2的结构比较相似,都具有二维层状结构,不同的是配合物2中的二维层状结构又通过2,2′-联吡啶间的π-π堆积作用形成三维超分子网络结构。配合物3是包含有一维单双核交替而成的银链的三维配合物,3,4-吡啶二羧酸以罕见的八齿配位模式与银离子配位。配合物4是由双核单元构成的二维层状配合物,然后又进一步通过分子间氢键连接成三维超分子网络结构。此外,荧光性质研究表明,配合物1、3、4在室温下都发光,但它们的发光机理不同。磁性研究表明配合物4中存在着弱的反铁磁作用。
     (2)合成了6种3,4-吡啶二羧酸配体与稀土金属构筑的配位聚合物:[Ln_2(PDB)_2(OH)_2(H_2O)_2]·H_2O [Ln = Eu (5), Tb(6)和Gd(7)], Ln(PDB)(OH)(H_2O)_2 [Ln = Eu (8), Tb(9)],[Sm_2(PDB)_3(phen)(H_2O)·H_2O]n (10),通过X-射线单晶衍射技术测定了它们的晶体结构,进行了元素分析、红外光谱、热分析、荧光性质和磁学性质的研究。
     配合物5,6,7同构,它们都是包含有一维Ln-O-Ln双重链的二维层状结构,然后又进一步通过氢键作用连接成三维超分子网络结构。配合物8,9同构,它们是由双核单元构筑的二维层状结构,然后又进一步通过π-π堆积和氢键作用连接成三维超分子网络结构。配合物10表现出有趣的一维纳米链结构,链与链之间又通过π-π堆积和氢键作用连接成三维超分子网络结构。此外,荧光性质研究表明,配合物5,8和6,9分别表现出Eu3+和Tb3+的特征荧光。磁性研究表明配合物5和6表现出不同的磁学行为,配合物5中存在着较强的顺磁耦合作用,配合物6中则存在着比较弱的铁磁耦合作用。
In recent years, the coordination compounds with asymmetric ligand have received more and more attention because of their various structures and extensive applications in the filed of functional materials such as catalysis, luminescence and etc. This paper summarizes the research advances of 3,4-pyridinedicarboxylate coordination polymers. A series of coordination polymers constructed by 3,4-pyridinedicarboxylate and metal ions have been synthesized, and their crystal structures and properties were determined. In this paper, the main results as follows:
     First, four coordination polymers constructed by 3,4-pyridinedicarboxylate ligand and transition metal ions: [Zn(PDB)(phen)] (1), [Co(PDB)(2,2′-bipy)]n (2), [Ag_2(PDB)] (3) and {[Mn_2(PDB)_2(2,2′-bpy)_2(H_2O)_2]·2H_2O} (4), have been hydrothermal synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, thermal analysis, and their fluorescent and magnetic properties were also studied. Additionally, fluorescent properties study indicates that complex 1, 3 and 4 show fluorescence, but the mechanisms of fluorescence are different. Magnetic properties study indicates that complex 4 shows weak anti-ferromagnetic interactions.
     In complexes 1-4, 3,4-pyridinedicarboxylate ligand adopts different coordination modes, which results in the former of various high dimensional supramolecular topological structures. The structures of complex 1 and 2 are similar, they both display two-dimensional layer structure. What different is that the two-dimensional layers are further connected byπ-πpacking interactions between 2,2′-bipy to form three-dimensional supramolecular network in complex 2. Complex 3 is a three-dimensional coordinated framework, which contains a mono- and dinuclear mixed one-dimensional polymeric chain. Complex 4 exhibits two-dimensional layer structure, which is further connected by hydrogen interactions to form three-dimensional supramolecular network.
     Second, six coordination polymers constructed by 3,4-pyridinedicarboxylate ligand and rare metal ions: [Ln2(PDB)2(OH)2(H2O)2]·H2O [Ln = Eu (5), Tb(6), Gd(7)], Ln(PDB)(OH) (H2O)2 [Ln = Eu (8), Tb(9)], [Sm2(PDB)3(phen)(H2O)·H2O]n (10) have been hydrothermal synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, thermal analysis, and their fluorescent and magnetic properties were also studied.
     Complexes 5, 6 and 7 are isostructural and exhibit the same two-dimensional topological network constructed by PDC-connected Ln-O-Ln double chains, which is further connected by hydrogen bonding interactions to form three-dimensional supramolecular network. Complexes 8 and 9 are isostructural and show the same two-dimensional layer structure, which is further connected by hydrogen bonding andπ-πpacking interactions to form three-dimensional supramolecular network. Complex 10 exhibit interesting one-dimensional nano-chain strcture, which is further connected by hydrogen bonding andπ-πpacking interactions to form three-dimensional supramolecular network. Additionally, fluorescent properties study indicates that complex 5, 8 and 6, 9 show characteristic transitions of Eu~(3+) and Tb~(3+), respectively. Magnetic properties study indicates that complex 5, 6 show different magnetic properties. Complex 5 show strong paramagnetic coupling interactions, while complex 6 show weak ferromagnetic coupling interactions.
引文
[1] 洪茂椿,陈荣,梁文平.21 世纪的无机化学[M].北京:科学出版社,2005:285.
    [2] Alekesy V, Peter I R, Alexander V N, et al. Nanopore structure and sorption properties of Cu-BTC Metal-Organic Framework [J]. Nano Letters, 2003, 3(6): 713-718.
    [3] 张琳萍,侯红卫,樊耀亭,等.配位聚合物[J].无机化学学报, 2000, 16(1): 1-12.
    [4] 杜淼,卜显和.阴离子在构筑配位聚合物网络结构中的作用[J].无机化学学报, 2003, 19(1): 1-6.
    [5] Rita S, Kwan M K, Youn S S. New heterometallic coordination polymers self-assembled from copper(II) nitrate and (Diamine)PtII(pyridinecarboxylates)2 [J]. Inorg. Chem., 2003, 42: 821-826.
    [6] Xiong R G, Wilson S R, Lin W B. Bis(isonicotinato)(II): A rare, netural three-dimensional iron coordination polymer [J]. J. Chem. Soc., Dalton Trans., 1998: 4089-4090.
    [7] Pan L, Woodlock E B, Wang X T. A new porous three-dimensional lanthanide coordinati on polymer [J]. Inorg. Chem., 2000, 39: 4174-4178.
    [8] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283: 1148-1150.
    [9] Tong M L, Chen X M, Ye B H, et al. Self-assembled three-dimensional coordination polymers with unusual ligand-unsupported Ag-Ag bonds: syntheses, structures and luminescent properties [J]. Angew. Chem. Int. Ed., 1998, 38(16): 2237-2240.
    [10] Li Y G, Hao Na, Wang E B, et al. A novel three-dimensional metal-organic framework constructed from two-dimensional interpenetrating layers based on tr inuclear cobalt clusters: [Co3(btec)(C2O4)(H2O)2]n [J]. Eur. J. Inorg. Chem., 2003: 2567-2571.
    [11] 李彬,孙跃飞,苟少华,等.间苯二甲酸连接的氢键导致的二维锌配位聚合物的合成及晶体结构[J].无机化学学报, 2001, 17(6): 917-920.
    [12] Su W P, Hong M C, Miyazawa M, et al. A Semiconducting Lamella Polymer [{Ag(C5H4NS)}n] with a Graphite-Like Array of Silver(I) Ions and Its Analogue with a Layered Structure [J]. Angew. Chem. Int. Ed., 2000, 39(16): 2911-2914.
    [13] Lin W B, Evans O R, Xiong R G, et al. Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium [J]. J. Am. Chem. Soc., 1998, 120: 13272-13273.
    [14] Achim M, Eike B, Hartmut B. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angew. Chem. Int. Ed., 2002, 41(7): 1162-1167.
    [15] Nathalie L, JéROME M, Gilbert H. Synthesis, molecular structure and chemical properties of a new tungstosilicate with an open Wells–Dawson structure, α-[Si2W18O66]16– [J]. Chem. Commun., 2003, 18: 2360-2361.
    [16] Prior T J, Bradsham D, Teat S J, et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets [J]. Chem. Commun., 2003, 4: 500-501.
    [17] Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands [J]. Coord. Chem. Rev., 2005, 249: 545-565.
    [18] Zheng S M, Tong M L, Chem X M. Sliver(I)–hexamthylenetetramine molecular architectures: from self-assembly to designed assembly [J]. Coord. Chem. Rev., 2003, 246: 185-202.
    [19] Lucia C, Glanfranco C, Davide M P. Polycatenation, polythreading and polyknnoting in coordination network chemistry [J]. Coord. Chem. Rev., 2003, 246: 247-289.
    [20] Kepert C J, Prior T J, Rosseinsky M J. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality [J]. J. Am. Chem. Soc., 2000, 122(21): 5158-5168.
    [21] Stuart R B, Bernard F H, Richard R. Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv =.apprx.3/4C2H2Cl4. cntdot.3/4CH3OH or .apprx. 3/2CHCl3. cntdot.1/3CH3OH) [J]. J. Am. Chem. Soc., 1995, 117(19): 5385-5386.
    [22] Lu J Y, Lawandy M A, Li J. A new type of two-dimensional metal coordination systems:hydrothermal synthesis and properties of the first oxalate-bpy mixed-ligand framework [M(ox)(bpy)]∞ (M = Fe(II), Co(II), Ni(II), Zn(II); ox = C2O42-;bpy = 4,4′-bipyridine) [J]. Inorg. Chem., 1999, 38: 2695-2704.
    [23] Abourahma H, Bodwell G J, Lu J J, et al. Coordination polymers from calixarene-like [Cu2(dicarboxylate)2]4 building blocks: structural diversity via atropisomerism [J]. Cryst. Growth Des., 2003, 3(4): 513-519.
    [24] Gardner G B, Venkataraman D, Moore J S, et al. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2 [J]. J. Am. Chem. Soc., 1995, 374(112): 1546-1554.
    [25] Dong B X, Peng J, Chen Y C, et al. A novel wavelike chain constructed from Wells–Dawson type polyoxoanions and mixed-ligand decorated transition metal complex cations [Ni(phen)(bbi)2]2+ [J]. J. Mol. Struct., 2008, 875: 75-79.
    [26] Kumar K N, Venkatachalam G, Ramesh R, et al. Half-sandwich para-cymene ruthenium(II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties [J]. Polyhedron, 2008, 27(1): 157-166.
    [27] Liu J Q, Wang Y Y, Ma L F, et al. An unusual 3D three-fold parallel interpenetrating network self-assembled from the grid-containing 2D layer motifs [J]. Inorg. Chem. Comm., 2007, 10(9): 979-982.
    [28] Thierry L, Caroline M D, Hervé M, et al. Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalene dicarboxylate (ndc), Al(OH)(ndc)·H2O [J]. C. R. Chimie, 2005, 8: 765-772.
    [29] Silva C R D, Wang R Y, Zheng Z P. Highly luminescent Eu(III) complexes with 2,4,6-tri(2-pyridyl)-1,3,5-triazine ligand: Synthesis, structural characterization, and photoluminescence studies [J]. Polyhedron, 2006, 25(17): 3449-3455.
    [30] Lin J G, Wen L L, Zang S Q, et al. A novel 2D herringbone-like zinc coordinationpolymer built from helical motif: Hydrothermal synthesis, structure and properties [J]. Inorg. Chem. Comm., 2007, 10(1): 74-76.
    [31] Kannappan R, Tanase S, Mutikainen I, et al. Low-spin iron(III) Schiff-base complexes with symmetric hexadentate ligands: Synthesis, crystal structure, spectroscopic and magnetic properties [J]. Polyhedron, 2006, 25(7): 1646-1654.
    [32] Du M, Cai H, Zhao X J. Novel CuII, CoII and PbII supramolecular networks of pyridine- 2,6-dicarboxylate (pydc) in cooperation with a bent dipyridyl spacer via coordinative, hydrogen-bonding and aromatic stacking interactions [J]. Inorg. Chim. Acta., 2006, 359: 673-679.
    [33] Shi Q Q, Zhang S, Wang Q, et al. Synthesis and crystal structure of metal-organic frameworks [Ln2(pydc-3,5)3(H2O)9]n·3nH2O (Ln = Sm, Eu, Gd, Dy; pydc-3,5 = pyridine-3,5- dicarboxylate) along with the photoluminescent property of its europium one [J]. J. Mol. Struct., 2007, 837: 185-189.
    [34] Cao R, Sun D F, Liang Y C, et al. Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by 1,2,4,5-Benzenetetracar boxylic Acid [J]. Inorg. Chem., 2002, 41: 2087-2094.
    [35] Luo J H, Hong M C, Wang R H, et al. A Novel Bilayer Cobalt(II)-Organic Framework with Nanoscale Channels Accommodating Large Organic Molecules [J]. Inorg. Chem., 2003, 42: 4486-4488.
    [36] Kim J, Chen B, Reineke T M, et al. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures [J]. J. Am. Chem. Soc., 2001, 123: 8239-8247.
    [37] Psillakis E, Jeffery J C, Mccleverty J A, et al. A dinuclear double-helical complex of potassium ions with a compartmental bridging ligand containing two terdentate N-donor fragments [J]. Chem. Comm., 1997: 479-480.
    [38] Chen W, Yue Q, Chen C, et al. Assembly of a manganese(II) pyridine-3,4-dicarboxylate polymeric network based on infinite Mn–O–C chains [J]. J. Chem. Soc., Dalton Trans., 2003: 28-30.
    [39] Wang X L, Qin C, Wang E B, et al. Syntheses, Structures, and Photoluminescence of aNovel Class of d10 Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures [J]. Inorg. Chem., 2004, 43: 1850-1856.
    [40] Tong M L, Kitagawa S, Chang H C, et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains [J]. Chem. Comm., 2004: 418-419.
    [41] Tong M L, Wang J, Hu S, et al. A new (3,4)-connected three-dimensional anionic porous coordination net templated by Me4N+ cations [J]. Inorg. Chem. Comm., 2005, 8: 48-51.
    [42] Elas E S, Daniel V, Ricardo B, et al. Solid State Coordination Chemistry of Pyridinedicarboxylic Acid Isomers. Copper(II) Disodium Bis(pyridine-2,3-dicarboxylate) Octahydrate and Copper(II) Pyridine-3,4-dicarboxylate 3.5 Hydrate [J]. Aust. J. Chem., 1999, 52: 205-212.
    [43] Xia S Q, Hu S M, Dai J C, et al. Two 2D, 3D cadmium-pyridinedicarboxylate polymers: structures and photoluminescent properties [J]. Inorg. Chem. Comm., 2004, 7: 51-53.
    [44] Qin C, Wang X L, Li Y G, et al. Three-dimensional mesomeric networks assembled from helix-linked sheets: syntheses, structures, and magnetisms [J]. J. Chem. Soc., Dalton Trans., 2005: 2609-2614.
    [45] Zhou Y F, Yue C Y, Yuan D Q, et al. Nickel-Organic Coordination Layers with Different Directional Cavities [J]. Eur. J. Inorg. Chem., 2006: 4852-4856.
    [46] Wang X L, Qin C, Wang E B. Poly[[(1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ3- pyridine-3,4-dicarboxylato-κ5N:O,O′:O′′,O′′′] [J]. Acta Cryst. 2005, E61: m1234-m1236.
    [47] Wang X L, Qin C, Wang E B, et al. Designed double layer assembly: a three- dimensional open framework with two types of cavities by connection of infinite two-dimensional bilayer [J]. Chem. Comm., 2004: 378-379.
    [48] Zhang Q Z, Lu C Z, Xia C K. A polymeric Mn complex with mixed pridine-3,4- dicarboxylate/4,4′-bipyridine ligands: Mn2(C7H3NO4)2(C10H8N2)2]·2nH2O [J]. Inorg. Chem. Comm., 2005, 8: 304-306.
    [49] Qin C, Wang X L, Wang E B, et al. Layered zinc (II) and cadmium (II) dicarboxylates with aromatic chelate ligand-syntheses, crystal structures and luminescent properties [J]. Jol. Mol. Struct., 2005, 738: 91-98.
    [50] Tong M L, Wang J, Hu S. Synthesis, structures and magnetic properties of two 3D 3,4- pyridinedicarboxylate bridged manganese(II) coordination polymers incorporating 1D helical Mn(carboxylate)2 chain or Mn3(OH)2 chain [J]. J. Sol. State. Chem., 2005, 178: 1518-1525.
    [51] Wang X L, Qin C, Wang E B, et al. Synthesis, structure and luminescent properties of two three-dimensional d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with new network topologies [J]. J. Mol. Struct., 2006, 796: 172-178.
    [52] Kang Y, Zhang J, Qin Y Y, et al. Synthesis and Crystal Structure of [Zn(HPDB)2 (H2O)2]n·2nDMSO·2nH2O (H2PDB = Pyridine-3,4-dicarboxylic Acid) [J]. Chinese J. Struct. Chem., 2006, 25(3):374-377.
    [53] Zhu X D, Li X J, Liu Q Y, et al. Two luminescent frameworks constructed from lead(II) salts with carboxylate ligands containing dinuclear lead(II) units [J]. J. Sol. State. Chem., 2007, 180: 2386-2392.
    [54] Zheng Y Z, Tong M L, Chen X M. Synthesis, Structure and Photoluminescent Studies of Two Novel Layered Uranium Coordination Polymers Constructed from UO(OH) Polyhedra and Pyridinedicarboxylates [J]. Eur. J. Inorg. Chem., 2005: 4109-4117.
    [55] Han Z B, Cheng X N, Li X F, et al. Hydrothermal Syntheses and Structural Studies of Lanthanide Coordination Polymers Involving In-Situ Decarboxylation and their Luminescence Properties [J]. Z. Anorg. Allg. Chem., 2005, 631: 937-942.
    [56] Han Z B, He Y K. catena-Poly[bis[diaquaisonicotinatogadolinium(III)] bis(μ3-3,4-pyri- dinedicarboxylato)] [J]. Acta Cryst., 2006, E62: m2374-m2376.
    [57] Wang F, He Y K, Ma Y, et al. catena-Poly[bis[diaquaisonicotinatosamarium(III)] bis(μ3-3,4-pyri- dinedicarboxylato)] [J]. Acta Cryst., 2006, E62: m2505-m2506.
    [58] Qin C, Wang X L, Wang E B, et al. Synthesis, structures and thermal properties of three new two-dimensional coordination networks assembled salts and carboxylate ligand [J]. Inorg. Chim. Acta., 2006, 359: 417-423.
    [59] Song Y S, Yan B, Chen Z X. The first lanthanide carboxylate complex constructed from hydroxyl bridging bimetallic units: Hydrothermal synthesis, crystal structure and luminescent properties [J]. Inorg. Chim. Acta., 2007, 360: 3431-3435.
    [60] 杨燕,曾明华,蒙法艳,等.之字链聚合物[Zn(o-bda)(phen)(H2O)]n·nH2O的结构[J].无机化学学报, 2007, 23(1): 137-140.
    [61] 陈虎,许兴友,高健,等.高氯酸化三邻菲啰啉合锌(II) 的合成及晶体结构 [J].化学试剂, 2006, 28(8): 478-480.
    [62] 孙亚光,魏德洲,高恩君,等.邻苯二甲酸根桥连Zn(II) 超分子配合物的合成、表征和晶体结构 [J].2004, 化学试剂, 62(14): 1362-1366.
    [63] 李晓湘,晁自胜,蒋文军,等.[Co(C10H8N2)2CO3]NO3·5H2O的合成及其结构确定 [J]. 湖南科技大学学报, 2007, 2: 98-101.
    [64] Zhang S H, Jiang Y M, Zhang G Y, et al. Sythesis and Crystal Structure of [Co(bpy)2 (Ac)]·Ac·5H2O [J].广西师范大学学报, 2004, 22(4): 53-56.
    [65] Wu Q R, Chen X L, Hu H M, et al. Assembly of a novel Ag(I) supramolecular architecture constructed from flexible ligand containing asymmetrical tricarboxylate [J]. Inorg. Chem. Comm., 2008, 11: 28-32.
    [66] Sun Y X, Wang Z, Zhang H H, et al. Self-assembly of three novel mixed-ligand coordination polymers: Formation of 2-D grids, 1-D chains and ladders and crystal band structure [J]. Inorg. Chim. Acta., 2007, 360: 2565-2572.
    [67] 郑雪琳,翁家宝,胡炳环.一维链状聚-L-苯丙氨酸合银(I)单晶及纳米晶体的合成与表征 [J]. 无机化学学报, 2006, 12: 2147-2151.
    [68] Marco B, Lucia C, Gianfranco C, et al. Structural studies of molecular-based nanoporous materials. Novel networks of silver(I) cations assembled with the polydentate N-donor bases hexamethylenetetramine and 1,3,5-triazine [J]. J. Mater. Chem., 1997, 7: 1271-1276.
    [69] Wu W P, Wang Y Y, Wang C J, et al. Structural characterization and luminescence behavior of a 2D silver (I) coordination polymer assembled from pyridine-2,6-dicarboxylic acid N-oxide [J] Inorg. Chim. Acta., 2006, 9: 645-648.
    [70] Fu Z Y, Hu S M, Dai J C, et al. Three Novel Polymeric Frameworks Assembled from CdII, CoII, and MnII with the Mixed Organic Ligands 3,4-Pyridinedicarboxylate, 1,3-Bis (4-pyridyl)propane, or 1,2-Bis(4-pyridyl)ethane [J]. Eur. J. Inorg. Chem., 2003: 2670-2677.
    [71] 郭桂全,边贺东,于青,等.[Mn(bipy)3]·(ClO4)2·1.875H2O的合成、晶体结构及表征 [J].广西师范大学学报, 2005, 23(3): 52-55.
    [72] 任颜卫,李捃,吴爱芝,等.混合价四核锰配合物[Mn4O2(ClCH2COO)7(bipy)2]·H2O的合成、晶体结构及性质研究 [J].化学学报, 2005, 63(10): 919-923.
    [73] 王宗明,何欣翔,孙殿卿.实用红外光谱学 [M].北京, 石油工业出版社, 1978, 213.
    [74] 张琢,潘文丽.配合物Eu (Sal)2(phen)2(NO3)的合成及荧光性能的研究 [J].精细与专用化学品, 2007, 15: 15-17.
    [75] 杨红,韩新利,张智慧,等.丙二酸根-1,10-邻菲罗啉合镍(Ⅱ)配合物的合成、晶体结构及光谱性质 [J].无机化学学报, 2007, 23(3): 513-516.
    [76] 韩峭峰,郝志峰,余坚,等. 双核铜配合物[Cu2(pida)2(2, 2′-bipy)2]的合成、表征及其结构 [J].光谱实验室, 2007, 24(3): 285-288.
    [77] 李夏,李文君,杨永丽.镧(Ⅲ)2-邻氯苯氧乙酸配合物的合成及性质 [J].光谱学与光谱分析, 1999, 19(3): 450-452.
    [78] Wei C, Wang J Y, Chen C, et al. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates [J]. Inorg. Chem., 2003, 42: 944-946.
    [79] Han L, Yuan D Q, Xu Y Q, et al. A luminescent polymeric silver(I) coordination tubular helicate [J]. Inorg. Chem. Comm., 2005, 8: 529-532.
    [80] Yang L, Bian F, Yan P, et al. Structure and magnetic properties of a one-dimensional chain complex {[Mn2(TPA)2(o-phth)](ClO4)2}n [J]. Inorg. Chem. Comm., 2003, 6: 1188 -1191.
    [81] Marvadeen A S W, Roxan U R J, Tanneika N D, et al. Lanthanide(III) coordination polymers from the exo-coordination of Na+: Syntheses, structures, luminescence, and decay dynamics [J]. Inorg. Chim. Acta., 2007, 360: 3727-3732.
    [82] Hu M, Wang Q L, Xu G F, et al. First examples of ternary lanthanide 2,2′-bipyridine-3,3′-dicarboxylate coordination polymers with zigzag chains structures assembled from lanthanide ions, 2,2′-bipyridine-3,3′-dicarboxylate and 1,10-phenanthroline [J]. Inorg. Chim. Acta., 2007, 360: 1684-1690.
    [83] Wang F Q, Zheng X J, Wan Y H, et al. Architecture of zero-, one-, two- and three-dimensional structures based on metal ions and pyrazine-2,6-dicarboxylic acid [J]. Polyhedron, 2008, 27: 717-726.
    [84] Zhang C Z, Mao H Y, Wang Y L, et al. Syntheses of two new hybrid metal-organic polymers using flexible aliphatic dicarboxylates and pyrazine: Crystal structures and magneticstudies [J]. J. Phys. Chem. Solids., 2007, 68: 236-242.
    [85] Zhang G Q, Wang Q, Qian Y, et al. Synthesis, characterization and photoluminescence properties of two new europium(III) coordination polymers with 3D open framework [J]. J. Mol. Struct., 2006, 796: 187-194.
    [86] Zhu Y J, Chen J X, Zhang W H, et al. Syntheses, crystal structures and luminescent properties of two novel lanthanide/4-pya complexes: [Ln(4-pya)3(H2O)2]2 (Ln = Eu, La; 4-pya = trans-4-pyridylacrylate) [J]. J. Organomet. Chem., 2005, 690: 3479-3487.
    [87] Thomas S. The Hydrogen Bond in the Solid State [J]. Chem. Int. Ed., 2002, 41: 48-76.
    [88] Ahmed D, Ludwik A, Guido M. Hybrid density functionals and ab initio studies of 2-pyridone–H2O and 2-pyridone–(H2O)2 [J]. Chem. Phys. Lett., 2000, 324: 127-136.
    [89] Victoria A R, Margaret C E, Michael D W. Layered Materials by Molecular Design: Structural Enforcement by Hydrogen Bonding in Guanidinium Alkane- and Arenesulfonates [J]. J. Am. Chem.Soc., 1994, 116: 1941-1952.
    [90] Fernando G T, Steven J G, Shyamaprosad G, et al. Molecular recognition in the solid state: controlled assembly of hydrogen-bonded molecular sheets [J]. J. Am. Chem.Soc., 1991, 113: 9265-9269.
    [91] 王少亭,杨永丽,朱惠菊,等.稀土、2,2′-联吡啶、邻氨基苯基苯甲酸配合物的合成、光谱表征及荧光性质 [J].光谱学与光谱分析, 2006, 26(5): 933-935.
    [92] Rajeev K, Udai P S. Molecular structure, photophysical and thermal properties of samarium (III) complexes [J]. J. Mol. Struct., 2008, 875: 427-434.
    [93] Ferraro J R, Walker W R. Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds [J]. Inorg. Chem., 1965, 4: 1382-1386.
    [94] 杨永丽,邓玉恒,聂峰梅,等.稀土与桂皮酸、2,2’-联吡啶三元配合物合成、表征及荧光性质 [J].光谱学与光谱分析, 2006, 26(4): 663-665.
    [95] Steven W M, Simon P, Zoe P. Assembly of Hydrophobic Shells around Lanthanides [J]. Chem. Eur. J., 2002, 8: 5761-5771.
    [96] Christine T, Jo?lle A, Heinz G, et al. A solid-state study of eight-coordinate lanthanide(III) complexes (Ln = Eu, Gd, Tb, Dy) with 1-hydroxy-2-pyridinone [J]. Dalton Trans., 2003: 1738-1745.
    [97] Violetta P, Paul N W B, Jean M L, et al. Synthesis and Luminescence Properties of New Dinuclear Complexes of Lanthanide(III) Ions [J]. Eur. J. Inorg. Chem., 2004: 2379-2384.
    [98] Katerina A T, Viasoula B, Catherine P, et al., Dinuclear lanthanide(III) complexes from the use of di-2-pyridyl ketone: Preparation, structural characterization and spectroscopic studies [J]. Polyhedron, 2006, 25: 2869-2879.
    [99] Bian Z Q, Wang K Z, Jin L P. Syntheses, spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(III) ternary complexes with dibenzoylmethane [J]. Polyhedron, 2002, 21: 313-319.
    [100] Channa R D S, Jenine R M, Alice D, et al. Adducts of lanthanide b-diketonates with 2,4,6-tri(2-pyridyl)-1,3,5-triazine: Synthesis, structural characterization, and photolumine- scence studies [J]. Polyhedron, 2007, 26: 1229-1238.
    [101] Magennis S W, Craig J, Gardner A, et al. Crown ether lanthanide complexes as building ternary complexes [J]. Polyhedron, 2003, 22: 745-754.
    [102] Andrew F K, David F, Frederick S R. Comparison of 7FJ←5D0 emission spectra for Eu(III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry [J]. Chem. Phys. Lett., 1993, 95: 507-512.
    [103] Wang Y T, Zhang L P, Fan Y T, et al. Hydrothermal syntheses, structures and properties of earth coordination polymers with (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid [J]. Inorg. Chim. Acta., 2007, 360: 2958-2966.
    [104] 李建宇,曾红,于群,等.1,3-二苯基-4-酰基-5-吡唑酮Eu(Ⅲ) 配合物的荧光性质 [J].光谱学与光谱分析, 2001, 21(2): 208-211.
    [105] 袁继新,胡茂林,程亚倩,等.铕(Ⅲ) 与1, 2, 4, 5-苯四甲酸及1,10-邻菲咯啉混配 配合物的合成和荧光性质研究 [J].稀土, 2000, 21(5): 8-12.
    [106] Costes J P, Nicodème F. Unequivocal Synthetic Pathway to Heterodinuclear (4f,4f ) Complexes: Magnetic Study of Relevant (LnIII, GdIII) and (GdIII, LnIII) Complexes [J]. Chem. Eur. J., 2002, 8: 3442-3447.
    [107] Benelli C, Gatteschi D. Magnetism of Lanthanides in Molecular Materials with Transition-Metal Ions and Organic Radicals [J]. Chem. Rev., 2002, 102: 2369-2388.
    [108] Zhang Z H, Song Y, Okamura T A, et al. Syntheses, Structures, Near-Infrared and Visible Luminescence, and Magnetic Properties of Lanthanide-Organic Frameworks with an Imidazole-Containing Flexible Ligand [J]. Inorg. Chem., 2006, 45: 2896-2902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700