用户名: 密码: 验证码:
过氧钒配合物与有机小分子相互作用的NMR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的三十多年里,双过氧钒化合物的合成及其与小分子相互作用一直是化学和生物科学研究的重点和热点之一。本文在合成并表征数种双过氧钒化合物的基础上,采用多核(~1H、~(13)C和~(51)V)、多维(~1H-~1H COSY和DOSY)和变温NMR等谱学手段,系统研究了相互作用前后体系中各物种的溶液结构,对一些实验现象进行了解释,探讨了相互作用的模式和规律。主要结果总结如下:
     1.为探讨有机配体中取代基团对反应平衡的影响,在模拟生理条件下研究了双过氧钒配合物[OV(O_2)_2(D_2O)]~-/[OV(O_2)_2(HOD)]~-(缩写为bpV)与N-取代皮考啉酰胺的相互作用。它们反应性从强到弱的顺序为:N-甲基-皮考啉酰胺≈N-(2-羟乙基)-皮考啉酰胺>N-乙基-皮考啉酰胺>N-丙基-皮考啉酰胺,这说明了皮考啉酰胺N上取代基通过电子效应影响反应。竞争配位导致一系列新的7配位的过氧钒物种生成。
     2.为探讨双过氧钒配合物上有机配体对反应平衡的影响,研究了双过氧钒配合物[OV(O_2)_2LL']~(n-)[LL'=草酸根、皮考啉酸根、2,2'-联吡啶和1,10-邻菲啰啉,配合物分别缩写为bpV(oxa),bpV(pic),bpV(bipy)和bpV(phen)]与N-甲基咪唑(N-Me-Im)的相互作用,结果表明N-Me-Imi与4种双过氧钒配合物的反应活性从强到弱的顺序为:bpV(oxa)>bpV(pic)>bpV(bipy)>bpV(phen),这说明金属离子中心的配体配位能力和空间位阻都对反应平衡产生较大的影响,同时竞争配位的结果导致新物种[OV(O_2)_2(N-Me-Imi)]~-的生成。
     3.为探讨咪唑环上取代基团对相互作用体系反应平衡的影响,研究了双过氧钒配合物NH_4[OV(O_2)_2(2-(2'-Py)-Imi)]·4H_2O(缩写为bpV(Imi-Py))和咪唑类配体(咪唑、2-甲基咪唑、4-甲基咪唑和组氨酸)的相互作用,其从强到弱的顺序为:咪唑>4-甲基咪唑>2-甲基咪唑>组氨酸。实验结果表明,咪唑环上取代基团空间位阻对反应平衡产生较大影响,同时竞争配位的结果导致新的6配位过氧物种[OV(O_2)_2L]~-(L为咪唑类配体)的生成,当配体为4-甲基咪唑和组氨酸时,生成的则是一对异构体。
     4.为探讨吡啶环上取代基团对反应平衡的影响,研究了双过氧钒配合物bpV与4-取代吡啶的相互作用,实验结果表明其反应性从强到弱的顺序为:吡啶>异烟酸根>异烟酸甲酰胺>异烟酸甲酯。吸电子的诱导作用和吸电子的共轭效应影响反应平衡。
     利用多种NMR谱学方法系统研究了双过氧钒化合物和有机配体的相互作用,建立了适合研究过氧钒化合物与有机小分子相互作用的谱学方法,特别是利用核磁共振中扩散排序(DOSY)技术,实现了混合物中各组分在样品管中的“虚”分离,它是一种非常有应用前景的研究混合物的谱学方法。
In the past three decades, the interactions between peroxovanadates and organic ligands have attracted great interest in both chemistry and biology. In this work, multinuclear NMR (~1H, ~(13)C and ~(51)V), multidimensional (DOSY and ~1H-~1H COSY), and variable temperature NMR were used to study the above interaction systems. Through the combination of these methods, structures of all species in interaction systems were obtained and a better understanding of the experimental phenomena was achieved. The possible interaction modes and mechanism of the interaction systems are discussed. The main conclusions are summarized as follows:
     1. To understand the substituting effects of organic ligands on the reaction equilibrium, the interactions between diperoxovanadate complex [OV(O_2)_2(D_2O)]~-/[OV(O_2)_2(HOD)]~-(abbr. bpV) and a series of N-substituted-picolinamide ligands in solution were explored for mimicking the physiological conditions. The order of reactive capability of the picolinamide-like ligands with bpV is as follows: N-methylpicolinamide≈N-(2-hydroxyethyl)-picolinamide > N-ethylpicolinamide > N-propylpicolinamide. The substituting group influences the reactivity by an electron effect. Competitive coordination interactions result in a series of new seven-coordinated peroxovanadate species.
     2. To understand the effects of organic ligands of the diperoxovanadate complexes on the reaction equilibrium, the interactions between a series of diperoxovanadate complexes [OV(O_2)_2LL']~(n-) (LL' = oxalate, picolinate, 2,2'-bipyridine and 1,10-phenanthroline, the corresponding peroxovanadate species abbreviate bpV(oxa), bpV(pic), bpV(bipy)) and 1-methylimidazole (N-Me-Imi) in solution were explored for mimicking the physiological conditions. The experimental results indicated the activity order of these complexes with 1-methylimidazole as follows: bpV(oxa) > bpV(pic) > bpV(bipy) > bpV(phen). Both the coordinating capability and the steric effect of the organic ligands affect the reaction equilibrium. At the same time, a new six-coordinated peroxovanadate species [OV(O_2)_2(N-Me-Imi)]~- is formed due to the competitive coordination.
     3. To understand the substituting effects of imidazole ring on the reaction equilibrium, the interactions between diperoxovanadate complex NH_4[OV(O_2)_2(2-(2'-Py)-Imi)] 2222 4H_2O (abbr. bpV(Imi-Py)) and a series of imidazole-like ligands (imidazole, 2-methyl-imidazole, 4-methyl-imidazole, and histidine) in solution were explored for mimicking the physiological conditions. The experimental results indicated that the activities of bpV(Imi-Py) and organic ligands as follows: imidazole≈4-methyl-imidazole > 2-methyl-imidazole > histidine. The steric effect of the organic ligands affects the reaction equilibrium. At the same time, new six-coordinated peroxovanadate species [OV(O_2)_2L]~- were formed due to the competitive coordination between 2-(2'-Py)-Imi and the imidazole-like ligands. When the ligand was 4-methyl-imidazole or histidine, a pair of isomers was formed.
     4. To understand the substitutinged effects of pyridine ring on the reaction equilibrium, the interactions between diperoxovanadate complex bpV and 4-substituted pyridine for mimicking the physiological conditions. The experimental results indicated that the activities of bpV and organic ligands as follows: pyridine > isonicotinate > N-methyl isonicotinamide > methyl isonicotinate. Both the electron-withdrawing induction effect and electron-withdrawing conjugated effects of the organic ligands affect the reaction equilibrium.
     NMR were used to study the interactions between diperoxovanadates and small organic molecules. A spectroscopic method was established to explore this type of interactions. It is worth mentioning that DOSY can be used to analyze the chemical structures and components of mixtures without chemical separation. This makes it important for the investigation of complicated mixtures avoiding time-consuming separation and purification that may destroy the inspected system.
引文
[1] L. C. Jr. Cantley, M. D. Resh, G Guidotti. Vanadate inhibits red-cell (Na~+, K~+) ATPase from cytoplasmic side [J]. Nature, 1978,272(5653): 552-554.
    
    [2] G. R. Dubyak, A. J. Kleinzeller. The insulin-mimetic effects of vanadate in isolated rat adipocytes.Dissociation from effects of vanadate as a (Na~+-K~+) ATPase inhibitor [J]. J. Biol. Chem., 1980,255(11): 5306-5312.
    
    [3] K. H. Thompson, J. H. McNeill, C. Orvig. Vanadium compounds as insulin mimics [J]. Chem. Rev.,1999, 99(9): 2561-2571.
    
    [4] B. I. Posner, R. Faure, J. W. Burgess, A. P. Bevan. Peroxovanadium compounds: A new class of potentphosphotyrosine phosphatase inhibitors which are insulin mimetics [J] J. Biol. Chem., 1994, 269(6):4596-4604.
    
    [5] D. C. Crans, J. J. Smee, E. Gaidamauskas, L. Q. Yang. The chemistry and biochemistry of vanadiumand the biological activities exerted by vanadium compounds [J]. Chem. Rev., 2004,104(2): 849-902.
    
    [6] D. C. Crans, H. Chen, O. P. Anderson, M. M. Miller. Vanadium(Ⅴ)-protein model studies: solid-stateand solution structure [J]. J. Am. Chem. Soc, 1993,115(15):6769-6776.
    
    [7] J. H. Hwang, R. K. Larson, M. M. Abu-Omar. Kinetics and Mechanistic Studies of AnticarcinogenicBisperoxovanadium(Ⅴ) Compounds: Ligand Substitution Reactions at Physiological pH andRelevance to DNA Interactions [J]. Inorg. Chem. 2003,42, 7967-7977.
    
    [8] M. Sam, J. H. Hwang, G Chanfreau, M. M. Abu-Omar. Hydroxyl Radical is the Active Species inPhotochemical DNA Strand Scission by bis(peroxo)vanadium(Ⅴ) Phenanthroline [J]. Inorg. Chem.2004, 43, 8447-8455.
    
    [9] L. Pettersson, I. Andersson, A. Gorzsas. Speciation in peroxovanadate systems [J]. Coord. Chem. Rev.,2003,237(1-2): 77-87.
    
    [10] O. Bortolini, M. Carraro, V. Conte, S. Moro. Histidine-containing bisperoxovanadium (Ⅴ) compounds:Insight into the solution structure by an ESI-MS and V51-NMR comparative study [J]. Eur. J. Inorg.Chem., 1999,9:1489-1495.
    
    [11] V. Conte, O. Bortolini, M. Carraro, S. Moro. Models for the active site of vanadiumde- pendent haloperoxidases: insight into the solution structure of peroxovanadium compounds [J]. J. Inorg. Biochem., 2000, 80(1-2): 41-49.
    
    [12]曾碧榕,于贤勇,蔡淑惠,陈忠,万惠霖.NMR研究草酸双过氧钒酸合物与精氨酸的相互作用 [J].化学学报,2004,62(4):230-235.
    
    [13]周兴旺,叶剑良,陈忠,陈志伟,黄培强.含有机配体的活性双过氧钒配合物与组氨酸相互作 用的研究[J].化学学报,2002,60(5):835-840.
    
    [14]周兴旺,陈忠,陈西清,叶剑良,黄培强,吴钦义.过氧钒配合物对酪氨酸磷酸酶的抑制作用[J]. 生物化学与生物物理学报,2000,32(2):133-138.
    
    [15] X. Y. Yu, S. H. Cai, X. Xu, Z. Chen. NMR and theoretical study on the coordination and solution??strutures of the interaction between diperoxvanadate complexes and histidine-like ligands [J]. Inorg.Chem., 2005,44,6755-6762.
    
    [16] X. Y. Yu, S. H. Cai, Z. Chen. Spectroscopic studies on the interactions between a bioactive di-peroxovanadate complex and pyridine [J]. Spectrochim. Acta A, 2004,60,391-396.
    
    [17] V. Conte, F. D. Furia, G. Licini. Liquid oxidation reaction by peroxides in the presence of vanadiumcomplexes [J]. Appl. Cat. A: Gene, 1997,157(1-2): 335-361.
    
    [18]陶春元,赵新萍,王传旺.过氧钒有机配合物及其在有机合成中的应用[J].化学试剂,2005, 27(12),726-728.
    
    [19] R. Shukla, V. Barre, S. Padhye. Synthesis structural properties and insulin-enhancing potential of bis(quercetinato)oxovanadium(IV) conjugate [J]. Bioorg. Med. Chem. Lett., 2004,14(19): 4961-4965.
    
    [20] D. Rehder. Bioinorganic chemistry of vanadium [J]. Angew. Chem. Int. Ed. Engl., 1991, 30(2): 148-167.
    
    [21]于贤勇.厦门大学博士学位论文[D].2004.
    
    [22] A. Dessi, G Micea, D. Sanna. EPR investigation of the oxovanadium(Ⅳ) complexes formed by the tripeptide glutathione and some related ligands in aqueous solution [J]. J. Inorg. Biochem., 1993, 52(4): 275-286.
    
    [23] D. W. Boyd, K. Kustin. Vanadium: a versatile biochemical effector with an elusive biological function [J]. Adv. Inorg. Biochem., 1984,6: 311-315.
    
    [24]杨晓改,杨晓达,王夔.钒化合物生物效应的化学基础和药用前景—金属药物研究的化学问题[J]. 化学进展,2002,14(4):279-286.
    
    [25]周兴旺.厦门大学博士学位论文[D].2000.
    
    [26] O. W. Howarth. Vanadium-51 NMR [J]. Prog. NMR Spect., 1990,22(5): 453-485.
    
    [27] M. M. Caldeira, M. L. Ramos, N. C. Oliveira. Complexes of vanadium(Ⅴ) with alpha-hydroxycarboxylic acids studied by proton, carbon-13, and vanadium-51 nuclear magnetic resonancespectroscopy [J]. Can. J. Chem., 1987,65(10): 2434-2440.
    
    [28] C. E. Heyliger, A. G. Tahiliani, J. H. Mcneill. Effect of vanadate on elevated blood glucose anddepressed cardiac performance of diabetic rats [J]. Science, 1985,227(4693): 1474-477.
    
    [29] J. A. Manthey, L. P. Hager. Characterization of the oxidized states of bromoperoxidase [J]. J. Biol.Chem., 1985,260(17): 9654-9659
    
    [30] M. P. Roach, Y. P. Chen, S. A. Woodin, D. E. Lincoln, C. R. Lovell, J. H. Dawson. Notomastus lobatuschloroperoxidase and amphitrite ornata dehaloperoxidase both contain histidine as their proximalheme iron ligand [J]. Biochemistry, 1997, 36(8): 2197-2202.
    
    [31] D. C. Crans, S. E. Hernung, E. Larsen. NMR, CD and MCD studies of vanadate nucleoside complexes[J]. Acta Chem. Scand., 1991, 45(5): 456-462.
    
    [32] K. Werdan, G. Bauriedel, B. Fischer, W. Krawietz, E. Erdmann, W. Schmitz, H. Scholz. Stimulatory(insulin-mimetic) and inhibitory (ouabain-like) action of vanadate on potassium uptake and cellularsodium and potassium in heart cells in culture [J]. Biochem. Biophys. Acta, 1982,687(1): 79-93
    
    [33] C. Westenfelder, R. K. Hamburger, M. E. Garcia. Effect of vanadate on renal tubular function in rats[J]. Am. J. Physiol, 1981,240(6): 522-529
    
    [34] H. Sakurai, M. Nishida, M. Koyama, J. Takada. Occurrence of vanadium ion in serum albumins [J].Biochem. Biophys. Acta, 1987,924(3): 562-563.
    
    [35] H. J. Thompson, N. D. Chasteen, L. D. Meeker. Dietary vanadyl(IV) sulfate inhibits chemically-induced mammary carcinogenesis [J]. Carcinogenesis, 1984,5: 849-851
    
    [36] G J. Naylor, F. M. Corrigan, A. H. Smith, P. Connelly, N. I. Ward. Further studies of vanadium indepressive psychosis [J]. Br. J. Psychiatry, 1987,150: 656-661.
    
    [37] J. Gil, M. Miralpeix, J. Carreras, R. Bartrons. Insulin-like effects of vanadate on glucokinase activityand fructose 2,6-bisphosphate levels in the liver of diabetic rats [J]. J. Biol. Chem., 1988, 263(4):1868-1871.
    
    [38] O. Blondel, J. Simon, B. Chevalier, B. Portha. Impaired insulin action but normal insulin receptoractivity in diabetic rat liver: effect of vanadate [J]. Am. J. Physiol., 1990,258(3): 459-467.
    
    [39] M. Bendayan, D. Gingras. Effect of vanadate administration on blood glucose and insulin levels aswell as on the exocrine pancreatic function in streptozotocin-diabetic rats [J]. Diabetologia, 1989,32(8): 561-567.
    
    [40]杨频,韩广业.金属钒化合物作为胰岛素模拟物的研究进展[J].化学通报,2001,9:553-558.
    
    [41] I. P. Clement. Lessons from basic research in selenium and cancer prevention [J]. J. Nutr., 1998, 128:1845-1854.
    
    [42] K. H. Thompson, M. Battell, J. H. McNeill. Vanadium in the environment. Part 2. Health effects [M].Ann. Arbor., 1998,1:21-57.
    
    [43] A. S. Tracey, M. J. Gresser. Interaction of Vanadate with phenol and tyrosine: implications for theeffects of vanadate on systems regulated by tyrosine phosphorylation [J]. Proc. Natl. Acad. Soc, 1986,83(3): 609-613.
    
    [44] M. J. Gresser, A. S. Tracey. Vanadium(V) oxyanions: the esterification of ethanol with vanadate [J]. J.Am. Chem. Soc, 1985,107(14): 4215-4220.
    
    [45] A. S. Tracey, H. Li, M. J. Gresser. Interactions of vanadate with mono- and dicarboxylic acids [J].Inorg. Chem., 1990, 29(12): 2267-2271.
    
    [46] D. C. Crans, S. M. Schelble, L. A. Theisen. Substituent effects in organic vanadate esters inimidazole-buffered aqueous solutions [J] J. Org. Chem., 1991, 56(3): 1266-1274.
    
    [47] B. Galeffi, A. S. Tracey. Vanadium-51 NMR investigation of the interactions of vanadate withhydroxypyridines and pyridinecarboxylates in aqueous solution [J]. Inorg. Chem., 1989, 28(9):1726-1734.
    
    [48] S. J. Angus-Dunne, P. C. Paul, A. S. Tracey. A V-51 NMR investigation of the interactions of aqueousvanadate with hydroxylamine [J]. Can. J. Chem., 1997, 75(7): 1002-1010.
    
    [49] K. Kustin, S. T. Liu, C. Nicolini. Interaction of catechol and catechol derivatives with dioxovanadium(Ⅴ): Ⅰ. kinetics of complex formation in acidic media [J]. J. Am. Chem. Soc, 1974, 96(24):??7410-7415.
    
    [50] A. Butler, S. M. Parsons, S. Yamagata, R. I. Delarosa. Reactivation of vanadate-inhibited enzymeswith desferrioxamine-B,A vanadium(V) chelator [J]. Inorg. Chim. Acta, 1989,163(1): 1-3.
    
    [51] C. F. G C. Geraldes, M. M. C. A. Castro. Interaction of vanadate with monosaccharides andnucleosides A multinuclear NMR study [J]. J. Inorg. Biochem., 1989,35(2): 79-93.
    
    [52] J. Richter, D. Rehder, L. Wyns, A. Haikal. The coordination of 5'-derivatives of adenosine to vanadate[J]. Inorg. Chim. Acta, 1995,238(1-2): 155-158.
    
    [53] D. Rehder. Interaction of vanadate (H_2VO_4~-) with dipeptides investigated by vanadium-51 NMRspectroscopy [J]. Inorg. Chem., 1988,27(23): 4312-4316.
    
    [54] D. Rehder, H. Hoist, W. Priebsch. Vanadate-dependent bromo/iodoperoxidase from ascophyllumnodosum also contains unspecific low-affinity binding-sites for vanadate(V)-A V-51 NMRinvestigation, including the model peptides phe-glu and gly-tyr [J]. J. Inorg. Biochem., 1991, 41(3):171-185.
    
    [55] A. S. Tracey, J. S. Jaswal. Reactions of peroxovanadates with amino-acids and related-compounds inaqueous-solution [J]. Inorg. Chem., 1993,32(20): 4235-4243
    
    [56] I. Andersson, S. Angus-Dunne, O. Howarth, L. Pettersson. Speciation in vanadium bioinorganicsystems 6. Speciation study of aqueous peroxovanadates, including complexes with imidazole [J]. J.Inorg. Biochem., 2000,80(1-2): 51-58.
    
    [57] H. Schmidt, I. Andersson, D. Rehder, L. Pettersson. A potentiometric and V-51 NMR study of theaqueous H~+/H_2VO_4~-/H_2O_2/L-alpha-alanyl-L-histidine system [J]. Chem. Eur. J., 2001,7(1): 251-257.
    
    [58] A. Gorzsas, I. Andersson, H. Schmidt, D. Rehder, L. Pettersson. Speciation in vanadium bioinorganicsystems. Part 9 - A speciation study of the aqueous H~+/H_2VO_4~-/H_2O_2/ L-alpha-alanyl-L-serine system[J]. Dalton Trans., 2003,1161-1167.
    
    [59] I. Andersson, A. Gorzsas, L. Pettersson. Speciation in the aqueous H+/H_2O_2/picolinate system relevantto diabetes research [J]. Dalton Trans., 2004,421-428.
    
    [60] A. Gorzsas, I. Andersson, L. Pettersson. Speciation in the aqueous H+/H_2VO_4~-/H_2O_2/ L-(+)-lactatesystem [J]. Dalton Trans., 2003,2503-2511.
    
    [61] O. Bortolini, V. Conte, F. Di Furia, S. Moro. Direct evidence of solvent-peroxovanadium clusters byelectrospray ionization mass spectrometry [J]. Eur. J. Inorg. Chem., 1998, 8:1193-1197.
    
    [62]杨频,韩广业,金祥林,陈志荣.异丙氧基-异羟肟酸-氧钒(Ⅴ)配合物的合成、晶体结构和量 子化学研究[J].化学学报,2002,60(6):1072-1077.
    
    [63] K. H. Thompson, C. Orvig. Boon and bance of metal ions in medicine [J]. Science, 2003, 300:936-939.
    
    [64] A. Butler, J. V. Walker. Marine Haloperoxidases [J]. Chem. Rev., 1993,93:1937-1944.
    
    [65] D. C. Crans. Chemistry and insulin-like properties of vanadium (Ⅳ) and vanadium (Ⅴ) compounds [J].J Inorg Biochem, 2000, 80(1-2): 123-131.
    
    [66] S. H. Cai, X. Y. Yu, Z. Chen. Multinuclear NMR spectroscopic and theoretical study on the??interactions between diperoxovanadate complex and picoline-like ligands [J]. Spectrochim. Acta Part A, 2006,65:616-621.
    
    [67] X. Y. Yu, S. H. Cai, Z. Chen. Investigation on the complex of diperoxovanadate with 2-(2' -pyridyl)-imidazole [J]. Inorg. Biochem., 2005,99:1945-1951.
    
    [68]于贤勇,蔡淑惠,陈忠,黄培强.草酸双过氧钒配合物与有机配体相互作用得NMR和ESI-MS 研究[J].化学学报,2003,61(7):994-999.
    
    [69] T. Huang, X. Y. Yu, S. H. Cai. Invastigation on the interactions between diperoxovanadate andsubstituted phenanthroline [J]. Spectrochim. Acta A, 2006,64:255-263.
    
    [70] S. H. Cai, X. Y. Yu, Z. Chen, H. L. Wan. Synthesis and spectroscopic characterizations of aninsulinomimetic peroxovanadate complex in aqueous solution [J]. Chin. J. Chem., 2003, 21(7):746-750.
    
    [71] N. S. Campbell, A. C. Dengel, W. P. Griffith. Studies on transition metal peroxo complexes-X. Thenature of peroxovanadates in aqueous solution [J]. Polyhedron, 1989, 8:1379-1386.
    
    [72] J. P. Stamps, B. Ottink, J. M. Visser, J. P. M. van Duynhoven, R. Hulst. Difftrain. A novel approach toatrue spectroscopic single-scan diffusion measurement [J]. J. Magn. Reson., 2001,151(1): 28-31.
    
    [73] Z. Fang, X. Y. Yu, Z. Chen, L. S. Liu, S. Xiong. Characterizations of some iV-substituted-salicylhydrazide in mixtures by NMR diffusion ordered spectroscopy [J]. Chin. J. Struct. Chem , 2003, 22:287-292.
    
    [74]吴文士,刘士雄,黄婷婷,篮心仁.N-已酰皮考林酰肼合镍配合物的合成和晶体结构[J].化学 学报,2003,61:1014-1019.
    
    [75] M. Buhl, M. Parrinello. Medium effects on V-51 NMR chemical shifts: A density functional study [J]. Chem. Eur. J, 2001,7(20): 4487-4494.
    
    [76]王乃兴.核磁共振谱学-在有机化学中的应用[M].北京:化学工业出版社,2006.
    
    [77]柯恩烽,陈忠,叶剑良,肖芬.混合物溶液结构的二维扩散排序核磁共振谱[J].厦门大学学报, 1999,38(3):366-370.
    
    [78] X. W. Zhou, J. L. Ye, Z. Chen, Z. W. Chen, L. J. Yu, P. Q. Huang, Q. Y. Wu. Spectroscopiccharacterization and properties of some bioactive peroxovanadium complexes in aqueous solution [J].Chin. J. Struct. Chem., 2000,19(5): 343-351.
    
    [79] D. C. Crans, A. D. Keramidas, H. Hoover-Litty, O .P. Anderson, M. M. Miller, L. M. Lemoine, S.Pleasic-Williams, M. Vandenberg, A. J. Rossomando, L. J. Sweet. Synthesis, structure, and biologicalactivity of a new insulinomImietic peroxovanadium compound: Bisperoxovanadium Imidazolemonoanion [J]. J. Am. Chem. Soc, 1997,119 (23): 5447-5448.
    
    [80] J. S. Jaswal, A. S. Tracey. Reactions of monoperoxovanadate and diperoxovanadates with peptidescontaining functionalized side-chains [J]. J. Am. Chem. Soc, 1993,115(13): 5600-5607.
    
    [81] B. Chiswell, F. Lions, B. S. Morris. Bidentate chelate compounds Ⅲ metal complexes of somepyridyl-imidazole derivative[J]. Inorg. Che., 1963, 3(1): 110-114.
    
    [82] M. D. Pelta, H. Barjat, G A. Morris, A. L. Davis, S. J. Hammond. Pulse sequences for high-resolution diffusion-ordered spectroscopy (HR-DOSY) [J]. Magn. Reson. Chem., 1998,36(10), 706-714.
    
    [83] A. T. Harrison, O. W. Howarth. High-field vanadium-51 and oxygen-17 nuclear magnetic resonance study of peroxovanadates(Ⅴ) [J]. J. Chem. Soc. Dalton Trans., 1985,1173-1177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700