用户名: 密码: 验证码:
生物分子与有机化合物(或生物分子)之间的相互作用及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核(苷)酸、蛋白质是生命现象的物质基础,与生物的遗传变异、肿瘤的发生、病毒的感染、射线对机体的作用有着重要关系。因此,深入研究生物分子与小分子物质(或生物分子)的相互作用机理,建立对生物分子快速、简便的分析方法,对分子水平上阐明生命的奥秘等方面具有重要的意义,是当前生物分析化学研究的前沿和热点。
     本论文利用荧光技术、共振光散射技术、吸收光谱技术、圆二色光谱技术、透射电镜等技术研究了生物分子与有机化合物(或生物分子)之间相互作用机理,建立了对核(苷)酸简便、快速、准确、灵敏而选择性的分析方法。论文共分五个部分。
     论文的第一部分综述了核(苷)酸荧光探针研究进展和发展趋势,以及小分子物质与生物大分子相互作用的研究手段等,共引用文献142篇。
     在论文的第二部分,以桑色素-KI为荧光探针建立了灵敏的核酸分析方法。研究表明,在中性条件下,桑色素-KI能够选择性地识别双螺旋核酸中的鱼精子DNA,从而建立了选择性检测鱼精子DNA的荧光新方法。在最佳实验条件下,hsDNA和smDNA的线性范围分别为8.0×10~(-9)-2.0×10~(-5)g mL~(-1)和5.0×10~(-9)-1.0×10~(-5)g mL~(-1),它们的检出限分别达到了4.5ng mL~(-1)和3.5ng mL~(-1)。KI-morin与fsDNA相互作用机理研究表明:KI-桑色素与fsDNA主要以沟槽式结合,还存在分子间作用力。在低浓度下,KI对桑色素-fsDNA的荧光进一步增强主要源于更有利于发光结构的形成。
     论文的第三部分,用桑色素作为荧光探针,建立了灵敏而选择性测定鸟嘌呤的新方法。结果表明,在NaAc-HAc缓冲中,鸟嘌呤碱基加入到桑色素体系中,荧光强度显著增强且增强程度与鸟嘌呤碱基的浓度有良好的线性关系。该方法可用于鸟嘌呤的测定。在最佳实验条件下,鸟嘌呤的线性范围为2.0×1~(-8)-8.0×10~(-5)mol L~(-1),检出限为7.0×10~(-9)mol L~(-1),干扰实验结果表明其它碱基对鸟嘌呤的测定影响较小。机理研究认为,鸟嘌呤对桑色素的荧光增强作用源于氢键缔合物的形成,氢键作用增大了桑色素结构的共平面效应和刚性,减小了桑色素的能量耗散,导致其荧光寿命的增加和荧光强度的增强。
     论文的第四部分,利用荧光光谱和圆二色光谱对肾上腺素-氢氧化钠-2,3-二氨基萘体系的作用机理进行了研究。利用双倒数曲线法测定了β-CD_x对肾上腺素-氢氧化钠-2,3-二氨基萘体系和肾上腺素-氢氧化钠-丙酮-2,3-二氨基萘体系的包结常数和包结比。结果表明,在丙酮存在下,荧光产物与β-CD_x以1:1配合,包结常数平均为206L mol~(-1)。而无丙酮存在时,产物与β-CD_x存在多级包结。在β-CD_x低浓度区间形成的是1:1的包结物,其平衡常数为68L mol~(-1);随着β-CD_x浓度的继续增加,还会与一分子的β-CD_x进行包结,最终形成2:1的包结物,其平衡常数平均为1270 L mol~(-1)。圆二色光谱研究表明:肾上腺素-氢氧化钠-2,3-二氨基萘体系的反应产物以轴向包结的方式进入β-CD_x的空腔体系。在这个体系中,丙酮和β-CD_x存在协同增敏效应。有机溶剂的加入使得荧光产物的吲哚环裸露在空腔外,由于空间位阻效应,荧光产物与β-CD_x形成1:1(或者2:2)包结物。
     在论文第五部分的研究中,利用去溶剂化法合成了BSA纳米粒子。研究发现,该蛋白质纳米粒子在430nm处产生一个新的荧光发射峰,其源于纳米粒子中蛋白质分子的聚集;并且在表面活性剂CTMAB的存在下,核酸可以明显增强该蛋白质纳米粒子的荧光强度,从而建立了检测核酸的荧光新方法。利用圆二色光谱,共振光谱以及透射电镜技术研究了蛋白质纳米粒子、CTMAB和核酸之间的相互作用。研究认为,体系以核酸为模板,通过静电引力,阳离子表面活性剂在其表面上聚集,形成预胶束,并促使带负电荷的纳米粒子在预胶束上聚集,形成新的聚集体,从而导致体系的荧光增强。
     本论文主要特点:
     1.研究发现,荧光分析中常用的猝灭剂KI在低浓度下能够增强morin-hsDNA体系的荧光,桑色素-KI可以作为荧光探针能够选择性地识别双螺旋核酸中的鱼精子DNA,由此建立了选择性测定核酸的荧光光度法,并已用于合成样品的测定。机理研究认为,在桑色素-KI主要以沟槽作用方式与fsDNA结合,在低浓度下,KI对桑色素-fsDNA的荧光进一步增强主要源于更有利于发光结构的形成。
     2.研究发现,在弱酸条件下鸟嘌呤能明显增强桑色素的荧光强度,而DNA中其他三种正常碱基的干扰较小,据此建立了选择性测定鸟嘌呤的荧光光度法。本方法还具有操作简便、快速、线性范围宽、灵敏度高等特点。机理研究认为,鸟嘌呤和桑色素形成匹配的分子间三氢键,这增大了桑色素结构的共平面效应和刚性,减小了桑色素能量耗散作用,从而使得桑色素的荧光寿命和荧光强度增加,并已将该体系应用于鸟嘌呤的定量测定。
     3.利用圆二色光谱和荧光光谱技术研究了环糊精对肾上腺素-氢氧化钠-2,3-二氨基萘体系的包结行为,确定了体系的包结比和包结常数,提出了有机溶剂丙酮在体系中荧光增敏效应的原因以及对体系包结模式的影响。
     4.研究发现,蛋白质纳米粒子在430nm左右能发射新的荧光峰;在表面活性剂CTMAB的存在下,核酸能明显增强体系的荧光强度,从而建立了核酸新的荧光分析方法。机理研究表明,核酸与CTMAB为蛋白质纳米粒子提供了一个疏水的微环境,并促进了体系的进一步聚集,形成大的聚集体,从而导致体系的荧光增强。
Nucleic acids(nucleoside)and proteins are the material base of all life.They relate to heredity,tumor,the effect of virus,and so on.So,it is very important for researchers to expound the secrets of life,to develop new functionalized medicine to treate many difficult diseases.What we should do is to further study the interaction mechanism between biomolecules and organic molecules(or biomolecules),to develop rapid and convince assay for biomolecules.This project is the forward position and hot point in biochemical and biophysical researches.
     This thesis studies the interaction mechanism between biomolecules and organic molecules(or biomolecules)using the techniques including fluorescence,absorption, RLS,CD and TEM.Some rapid,accurate assays with high sensitivity and selectivity are developed for nucleic acid and nucleoside.The main conclusions are listed as below:
     1.In the first section,we summarize recent developments of fluorescence probe for both nucleic acids and nucleoside,and comment on the experimental techniques to investigate the interaction between biomacromolecules and small molecules.142 references are cited here.
     2.In the second section,it is found that KI within a certain range of concentration can enhance the fluorescence intensity of morin-fsDNA system.Based on this phenomenon,a new and selective method for the determination of fsDNA is developed.Under the optimum conditions,the enhanced intensity of fluorescence is in proportion to the concentration of nucleic acids in the range of 8.0×10~(-9)-2.0×10~(-5)g mL~(-1)for hsDNA and 5.0×10~(-9)-1.0×10~(-5)g mL~(-1)for smDNA.Their detection limits are 4.5ng mL~(-1)and 3.5ng mL~(-1),respectively.The interaction mechanism of KI-morinhsDNA system is studied.It is considered that there is the groove binding mode between KI-morin and DNA;the fluorescence enhancement effect induced by KI is attributed to the formation of the more favorable structure for the luminescence.
     3.In the third section,it is found that guanine can enhance the fluorescence of morin.Based on this,a new method for the determination of guanine is proposed.In NaAc-HAc buffer,the fluorescence intensity of morin system can be greatly enhanced by guanine and the enhanced intensity is in proportion to the concentration of guanine in the range 2.0×10~(-8)-8.0×10~(-5)mol L~(-1),its detection limits is 7.0×10~(-9)mol L~(-1). Interference test shows that the other three bases in nucleic acids have little effects on the determination of guanine.And the mechanism study indicates that the fluorescence enhancement of morin is considered to originate from the formation of intermolecular multi-hydrogen bonds between guanine and morin,which can increase the co-planar effect and the structural rigidity of morin and reduce its energy consumption originated from molecular movement.Therefore,the fluorescence intensity and lifetime of morin can been enhanced.
     4.In the fourth section,we study the interaction mechanism of Epinephrine-NaOH-Actone-DAN-β-CD_x system using the techniques including fluorescence, absorption,and CD.The constant and stoichiometric ratios in the system are calculated based on the "double reciprocal method".Results show that in the presence of acetone,the system forms 1:1 inclusion complex,the inclusion constant is 206L.mol~(-1);whereas in the absence of acetone,it forms 1:1 inclusion complex in low concentration ofβ-CD_x,the inclusion constant is 68 L mol~(-1),then forms 2:1 inclusion complex with the increase ofβ-CDx concentration,the inclusion constant K_2 is 1270 L mol~(-1).The CD spectra indicate that theβ-CDx include the guest with axial type in epinephrine-NaOH-DAN-β-CDx system.A large cooperative effect ofβ-CDx and low acetone concentration together produces a much larger enhancement.The addition of acetone makes the indole ring group of fluorescent condensate expose outside of the cavity ofβ-CDx,resulting in the formation of 1:1(or 2:2)inclusion complex because of stereo-hindrance effect.
     5.In the fifth section,it is found that BSA nanoparticles synthesized by a desolvation technique can emit the fluorescence peak at 430nm,which is considered to be the fluorescence peak of BSA aggregate;its intensity is greatly enhanced by nucleic acid in the presence of CTMAB.Based on this,a new method for the determination of nucleic acid is proposed.The interaction mechanism of this system is studied.It is considered that the nucleic acid acts as the template in the system,the positive charged CTMAB will assemble on the nucleic acid to form.positive charged pre-micelle.Hence to promote the assembly of negative charged BSA anoparticles on the pre-micelle and form large aggregate of nucleic-CTMAB- BSA nanoparticles.So the fluorescence intensity is greatly enhanced.
     The chief characteristics of this thesis are as follows:
     1.It is found that KI commonly used as fluorescent quenching agent can enhance the fluorescence intensity of morin-fish sperm DNA(fsDNA)system,so KI-morin can selectively recognize fsDNA in double-strand nucleic acids.Based on this,a new sensitive and selective method of determination of fsDNA is developed.The fluorescence enhancement effect induced by KI is considered to originate from the formation of the more favorable structure for the luminescence.
     2.We find that guanine can enhance the fluorescence of morin.Based on this,a new method for the determination of guanine is proposed.The method is simple, rapid,sensitive and selective.The mechanism study indicates that the fluorescence enhancement of morin is considered to originate from the formation of intermolecular multi-hydrogen bonds between guanine and morin.
     3.We study the interaction mechanism of Epinephrine-NaOH-Actone-DAN -β-CD_x using the techniques including fluorescence,absorption,and CD.The inclusion constant and stoichiometric ratios in the system are calculated based on the "double reciprocal method".In addition,the action of acetone in both the fluorescence enhancement and the inclusion of this system are proposed.
     4.It is found that the BSA nanoparticles can emit new fluorescence peak at 430nm,which is considered to be the fluorescence peak of BSA aggregate,its intensity is greatly enhanced by nucleic acids in the presence of CTMAB.Based on this,a new method for the determination of nucleic acid is proposed.The fluorescence enhancement of the system is considered to originate from both the formation of large BSA aggregate and the hydrophobic microenvironment provided by nucleic acid and CTMAB for BSA nanoparticles.
引文
[1]卢继新,李惠芬,蔡乐,李娟,张贵珠.药物小分子与生物大分子相互作用的研究方法进展[J].分析科学学报,2007,23(5):601-606.
    [2]李志良,毕琼斯,李俊忠,林辉祥,愈汝勤.新型钯抗癌配合物初步筛选与作用机制的荧光法研究[J].化学学报,1997,55(8):766-772.
    [3]D.Maciejewska,I.Szpakowska,I.Wolska,M.Niemyjska,M.Mascini,M.Maj-Zurawska.DNA-based electrochemical biosensors for monitoring of bis-indoles as potential antitumoral agents,chemistry,X-ray crystallography.Bioelectrochemistry,69(1):1-9.
    [4]S.Udenfriend,P.Zaltzman.Fluorescence characteristic of purines,pyrimidines and their derivatives:measurement of guanine in nucleic acid hydrolyzates[J].Anal.Biochem,1962,3(1):49-59.
    [5]C.Z.Huang,Y.F.Li,S.Y.Tong.Spectrofluorimetry of Nucleic Acids on the Their Ternary Complexes of Aluminum(Ⅲ)/8-Hydroxyquinoline[J].Anal.Lett,1997,30(7):1305-1309.
    [6]M.J.Waring.Complex formation between ethidium bromide and nucleic acids.J.Mol.Biol.,1965,13(1):269-282.
    [7]J.B.Lepcq,C.Paoletti.A fluorescent complex between ethidium bromide and nucleic acids:physical-chemical characterization.J.Mol.Biol.,I967,27(1):87-106.
    [8]J.B.Lepcq,C.Paoletti.A new fluorometric method for RNA and DNA determination[J].Anal.Biochem.,1966,17(1):100-106.
    [9]K.G.Strothkamp,R.E.Arothkamp.Fluorescence measurements of ethidium binding to DNA.J.Chem.Edu.,1994,71(1):77-79.
    [10]J.Markovits,B.P.Roques,J.B.Lepecq.Ethidium dimer:A new reagent for the fluorimetric determination of nucleic acids[J].Anal.Biochem.,1979,94(2):259-264.
    [11]A.Blake,A.R.Peacocke.The interaction of aminoacrinidines with nucleic acids[J].Biopolymers,1968,6:1225-1253.
    [12]慈云祥,常文保,李元宗,吕年青.分析化学前沿[M].科学出版社,1991,31-46.
    [13]I Hilwing,A.Gropp.Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome[J].Exp.Cell.Res.,1972,75(1):122-126.
    [14]H.M.Zhang,X.Q.Guo,Y.B.Zhao,D.Y.Wang,J.G.Xu.Study on the dimer-monomer equilibrium of a fluorescent dye and its application in nucleic acids determination[J].Anal.Chim.Acta,1998,361(1-2):9-17.
    [15]P.L.Southwick,L.A.Ernst,E.W.Tauriello,S.R.Parker,R.B.Mujumdar,S.R.Mujumdar,H.E.A.Clever,A.S.Waggoner.Cyanine Dye Labeling Reagents-Carboxymethylindocyanine Succinimidyl Esters[J].Cytometry,1990,11(3):418-422.
    [16]郭良洽,叶芳贵,林旭聪,谢增鸿.甲苯胺蓝荧光猝灭法测定核酸[J].光谱学与光谱分析,2006,26(1):121-124.
    [17]陈秀英,彭孝军.DNA分子荧光探针[J].染料与染色,2004,41(6):315-320.
    [18]卞伟,魏玉霞,卫艳丽,董川.四溴荧光素与DNA作用的研究[J].光谱学与光谱分析,2006,26(1):125-129.
    [19]V.L.Singer,L.J.Jones,S.T.Yue,R.P.Haugland.Characterization of PicoGreen Reagent and Development of a Fluorescence-Based Solution Assay for Double-Stranded DNA Quantitation[J].Anal.Biochem.,1997,249:228-238.
    [20]倪永年,杜姗.核黄素与脱氧核糖核酸相互作用的电化学和光谱法研究[J].分析化学研究简报,2006,34(5):659-662.
    [21]A.Blasko,K.A.Browne,T.C.Bruice.Microgonotropens and Their Interactions with DNA V.Structural Characterization of the 1:1 complex of d(CGCAAATTT-GCG)_2 and Tren-Microgonotropen-b by 2D NMR Spectroscopy and Restrained Molecular Modeling.J.Am.Chem.Soc.,1994,116:3726-3737.
    [22]Q.Z.Zhu,F.Li,X.Q.Guo,J.G.Xu,W.Y.Li.Application of a novel fluorescence probe in the determination of nucleic acids[J].Analyst,1997,122(9):937-940.
    [23]胡敏,杨欣,晋卫军,曹杜祥,沈国励,俞汝勤.荧光光谱法研究抗癌新药吡柔比星与DNA的相互作用[J].药学学报,1999,34(8):608-612.
    [24]W.Y.Li,J.G.Xu,X.Q.Guo,Q.Z.Zhu,Y.B.Zhao.Study on the interaction between rivanol and DNA and its application to DNA assay[J].Spectrochim.Acta.A,1997,53(5):781-787.
    [25]M.A.Martín,B.B.Castillo,J.C.Menéndez.Spectrofluorimetric study of.benzo[a]quinolizidines as potential fluorescent probes for DNA[J].Anal.Lett.,1991,24(8):1503-1515.
    [26]Q.Y.Chen,D.H.Li,Y.Zhao,H.H.Yang,Q.Z.Zhu,J.G.Xu.Interaction of a novel red-region fluorescent probe,Nile blue,with DNA and its application to nucleic acids assay[J].Analyst,1999,124(6):901-906.
    [27]Y.Ohba,M.Kai,H.Nohta,Y.Ohkura.Alkoxyphenylglyoxals as Fluorogenic Reagents Selective for Guanine and Its Nucleosides and Nucleotides in Liquid-Chromatography[J].Anal.Claim.Acta,1994,287(3):215-221.
    [28]P.Hurskainenp.Nucleic acid labelling employing lanthanide chelate.J.Alloy.Compd.,1995,225(1-2):489-491.
    [29]K.Hashino,K.Ikawa,M.Ito,C.Hosoya,T.Nishioka,M.Makiuchi,K.Matsumoto.Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay[J].Anal.Biochem.,2007.364(1):89-91.
    [30]T.Nishioka,J.L.Yuan,K.Matsumoto.Fluorescent Lanthanide Labels with Time-Resolved Fluorometry in DNA Analysis,BioMEMS and Biomedical Nanotechnology,2007(Ⅱ):437-446.
    [31]慈云祥,常保文,帖建科.化学发光在脱氧核糖核酸探针杂交技术中的应用[J].分析化学,1992,20(9):1100-1106.
    [32]杨景和,童裳伦,揭念琴,龚红宇,高祖泉.铽离子与RNA的荧光反应及RNA 测定的研究,生物化学杂志,1996,12(2):143-146.
    [33]杨景和,朱贵云.稀土元素的共发光效应[J].山东大学学报,1986,21(4):133-139
    [34]L.Li,J.H.Yang,X.Wu,C.X.Sun,G.J.Zhou.Fluorimetric determination of nucleic acid using the enhancement of terbium-gadolinium-nucleicacid-cetylpyridine bromide system[J].Talanta,2003,59(1):81-87.
    [35]黄承志,李克安,童沈阳.氯化钠介质中小牛胸腺DNA对铈(Ⅲ)的荧光猝灭机理研究[J].分析化学,1997,25(7):768-772.
    [36]X.Wu,S.N.Sun,J.H.Yang.A Fluoremetric method for the determination of nucleic acids with Ce(Ⅳ)and sodium triphosphate[J].Luminescence,2005,20(1):40-41.
    [37]M.Komiyama,N.Takeda,H.Shigekawa,Hydrolysis of DNA.and RNA by lanth-anide ions mechanistic studies leading to new applications[J].Chem.Comm.,1999,45:1443-1445.
    [38]X.J.Liu,Y.Z.Li,Y.X.Ci.Time-resolved fluorescence studies of the interaction of the Eu~(3+)complexes of tetracycline analogues with DNA[J].Anal.Chim.Acta,1997,345(1-3):213-217.
    [39]Y.X.Ci,Y.Z.Li,X.J.Liu.Selective Determination of DNA by Its Enhancement Effect on the Fluorescence of the Eu-Tetracycline Complex[J].Anal.Chem.,1995,67(11):1785-1788.
    [40]Y.B.Zhao,D.Y.Wang,X.Q.Guo,J.G.Xu,Determination of DNA and RNA by their quenching effect on the fluorescence of the Tb~(3+)-Tiron complex[J].Anal.Chim.Acta,1997,353:329-335.
    [41]R.T.Liu,J.H.Yang,X.Wu,Study of the interaction between nucleic acid and oxytetracycline-Eu~(3+)and its analytical application.J.Lumin.,2002,96:201-209.
    [42]L.Mastruzzo,A.Woisard,D.D.F.Ma,E.Rizzarelli,A.Favre,T.L.Doan.Targeted photochemical modification of HIV-derived oligoribonucleotides by antisense oligodeoxynucleotides linked to porphyrins[J].Photochem.Photobiol.,1994,60:316-322.
    [43]L.G.Marzilli,D.L.Banville,G.Zon,W.D.Wilson,Pronounced H-1 and P-31NMR spectral changes on meso-tetrakis(N-methylpyridinium-4-yl)porphyrin binding to poly[d(G-C)].poly[d(G-C)]and to 3-tetradecaoligodeoxyribo-nucleotides:evidence for symmetric,selective binding to 5'CG3' sequences.J.Am.Chem.Soc.,1986,108:4188-4192
    [44]G.V.Wheeler,L.Chinsky,P.Miskovsky,P.Y.Turpin,The interaction of copper tetrakis(4-N-methylpyridyl)porphyrin with polynucleotides studied by ultraviolet resonance Raman spectroscopy.J.Biomol.Struct.Dyn.,1995,13(2):399-412.
    [45]张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展[J].高等学校化学学报,1999,20(8):1210-1217.
    [46]S.Satyanarayana,J.C.Dabrowiak,J.B.Chaires.Tris(phenanthroline)ruthenium(Ⅱ)Enantiomer Interactions with DNA:Mode and Specificity of Binding,1993,32(10):2573-2584.
    [47]L.Otero,P.Smircich,M.Vieites,M.Ciganda,P.C.Severino,H.Terenzi,H.Cerecetto,D.Gambino,B.Garat.DNA conformational changes and cleavage by ruthenium(Ⅱ)nitrofurylsemicarbazone complexes.J.Inorg.Biochem.,2007,101(1):74-79.
    [48]杨光,吴建中,王雷,曾添贤,计亮年.钌多吡啶配合物的合成及与DNA 作用研究[J].中山大学学报,1997,36(1):45-49.
    [49]刘长林,徐辉碧.特异识别和切割DNA的过渡金属配合物[J].化学通报,1995,8:26-31.
    [50]K.Barton,J.J.Dannenberg,A.L.Raphael.Enantiomeric selectivity in binding tris(phenanthroline)zinc(Ⅱ)to DNA.J.Am.Chem.Soc.,1952,104(18):4967-4969.
    [51]J.K.Barton,A.T.Danishefsky,J.M.Goldberg.Tris(phenanthroline)ruthenium (Ⅱ):Stereoselectivity in Binding to DNA.J.Am.Chem.Soc.,1984,106(7):2172-2176.
    [52]A.M.Pyle,J.P.Rebumann,R.Meshoyrer,C.V.Kumar,N.J.Turro,J.K.Barton.Mixed-ligand complexes of ruthenium(Ⅱ):factors governing binding to DNA.J.Am.Chem.Soc.,1989,111(8):3051-3058.
    [53]计亮年,张黔玲,刘劲刚.生物医学中DNA的结构、构象、作用机制及其生物功能的研究进展[J].中国科学B辑,2001,31(3):193-204.
    [54]林旭聪,谢增鸿,郭良洽,陈国南.核酸-桑色素-铝(Ⅲ)三元荧光体系的研究 [J].光谱学与光谱分析,2004,124(10):1230-1234.
    [55]朱展才,汪静,朱红斌.铌-桑色素荧光探针猝灭法测定核酸[J].分析化学,2002,30(11):1319-1321.
    [56]王兴民,宋玉民,滕秀兰,耿志远,杨培菊,杨美玲.桑色素合镧(Ⅲ)与核酸作用的荧光光谱及其分析应用[J].光谱学与光谱分析,2004,24(3):339-341.
    [57]J.Zhou,G.Q.Gong,Y.N.Zhang,J.Q.Qu,L.F.Wang,J.W.Xu.Quercetin-La(Ⅲ)complex for the fluorimetric determination of nucleic acids[J].Analytica Chimica Acta,1999,381(1):17-22.
    [58]C.G.Lin,J.H.Yang,G.L.Zhang,X.Wu,R.J.Han,X.H.Cao,Z.Q.Gao.Study of the reaction between nucleic acids and the trihydroxyanthroquinone-Al complex and its analytical application[J].Anal.Chim.Acta,1999,392(2-3):291-297.
    [59]J.H.Yang,C.G.Lin,G.L.Zhang,Z.Q.Gao,X.Wu,X.R.Huang.Study on a fluorescence enhanced system of 1,2,4-trihydroxyanthroquinone-Be~(2+)-DNA[J].Spectrochim.Acta.A,1998,54(12):2019-2024.
    [60]何华,王羚郦,刘旭辉,焦庆才,Chuong Pham-Huy,王广基.环丙沙星-铽络合物的荧光特性及其应用研究[J].光谱学与光谱分析,2006,26(8):1516-1519.
    [61]韩云晓,吴霞,杨景和,刘淑芳.铝-氟罗沙星的荧光特性及其分析应用[J].国际网上化学学报(Chemical Journal on Internet),2004,6(9):068054pc.
    [62]L.L.Shen,L.A.Mitscher,P.N.Sharma.Mechanismof inhibition of DNA gyrase by quinolone antibacterial:A cooperative drug-DNA binding model[J].Biochem.,1989,28(9):3886-3894.
    [63]L.L.Shen,G.A.Pernet.Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid:the target of the drugs is DNA[J].Proc.Natl.Acad.Sci.USA,1985,82(2):307-311.
    [64]刘光东,宋功武,蔡朝霞.光谱法研究依诺沙星与铁(Ⅲ)及其DNA的相互作用[J].分析测试学报,2004,23(5):21-24.
    [65]黄承志,李原芳,李克安,童沈阳.稀土-8-羟基喹啉-核酸体系的荧光特性[J].中国稀土学报,1998,16(1):84-87.
    [66]林旭聪,谢增鸿,郭良洽,林坚,陈国南.铟(Ⅲ)-8-羟基喹啉-核酸三元荧光体系的研究与应用[J].光谱实验室,2003,20(6):810-814.
    [67]W.Y.Li,X.Q.Guo,J.G.XU,Q.Z.Zhu,Y.B.Zhao.Determination of DNA using sodium 9,10-anthraquinone-2-sulfonate as an in situ photo-chemical fluorescence probe[J].Anal.Chim.Acta,1997,340(1-3):291-296.
    [68]I.Weeks,G.Svehla.Chemiluminescence Immunoassay wilson and wilson's comprehensive analytical chemistry vol.29[M].Amsterdam:Elsevier,1992,13.
    [69]H.Y.Han,X.Y.Li,Z.K.He.Development of a directchemiluminescence method for the determination of nucleic acids based upon their reaction with cerium(Ⅳ)in the presence of rutheniumtrisdipyridine[J].Anal.Sci.,1999,15(9):885-888.
    [70]S.Girotti,E.Ferri,S.Ghini,M.Musiani,M.L.Zerbini,D.Gibellini,G.Gentilomi.Direct quantitative chemiluminescent assays for the detection of viral DNA[J].Anal.Chim.Acta,1991,255(2):387-394.
    [71]C.J.Murphy.Optical sensing with quantum dots[J].Anal.Chem.,2002,74:520A-526A.
    [72]巩雄,郭永,杨宏秀,陈文驹.纳米材料及其光学特性[J].化学通报,1998,3(1):19-21.
    [73]V.P.Menon,C.R.Martin.Fabrication and evaluation of nanoelectrode ensembles[J].Anal.Chem.,1995,67(13):1920-1928.
    [74]L.B.Rangs.New developments in particle-based immunoassays:introduction[J].Pure Appl.Chem.,1996,68(10):1873-1879.
    [75]C.D.Geddes,A.Parfenov,I.Gryczynski,J.R.Lakowicz.Luminescent Blinking from Silver Nanostructures.J.Phys.Chem.B,2003,107:9989-9993.
    [76]S.J.Lai,X.J.Chang,L.Tian,S.Wang,Y.Y.Bai,Y.H.Zhai.Fluorometric determination of DNA using nano-SiO2 particles as an effective dispersant and stabilizer for acridine orange[J].Microchim Acta,2007,156,225-230.
    [77]N.K.Kochetkov,V.W.Shibaw,A.A.Kost.New reaction of adenine and cytosine derivatives, potentially useful for nucleic acids modification[J]. Tetrahedron Lett., 1971,22:1993-1996.
     [78] J. R. Barrio, J. A. Secrist 3rd, N. J. Leonard. Fluorescent adenosine and cytidine derivatives[J]. Biochem. Biophys. Res. Commun., 1972,46(2):597-604.
    [79] G. Avigad, S. Damle. Fluorometric assay of adenine and its derivatives[J]. Anal. Biochem., 1972, 50(1):321-323.
    [80] H. Yuki, C. Sempuku, M. Parkand, K. Takiura. Fluorometric determination of adenine and its derivatives by reaction with glyoxal hydrate trimer[J]. Anal. Biochem., 1972,46(1): 123-128.
    [81] M. Kai, Y. Ohkura, S. Yonekura, M. Iwasaki. Selective determination of guanine and its nucleosides and nucleotides by reaction with phenylglyoxal as a fluorogenic reagent[J]. Anal. Chim. Acta, 1988,207:243-249.
     [82] S. Yonekura, M Iwasaki, M. Kai, Y. Ohkura. High-performance liquid chromatography of guanine and its nucleosides and nucleotides by pre-column fluorescence derivatization with phenylglyoxal reagent. J. Chromatogr., 1993,641:235-239.
    [83] S. Yonekura, M. Iwasaki, M. Kai, Y. Ohkura. Determination of guanine and its nucleosides and nucleotides in human erythrocytes by high-performance liquid chromatography with postcolumn fluorescence derivatization using phenylglyoxal reagent. J. Chromatogr. B, 1994,654(1):19-24.
    [84] C. Formoso. Fluorescence of nucleic acid-terbium (III) complexes [J]. Biochem. Biophys. Res. Comm., 1973,53(4): 1084-1087.
    [85] D. P. Ringer, S. Burchett, D. E. Kizer. Use of Terbium (III) Fluorescence Enhancement to Selectively Monitor DNA and RNA Guanine Residues and Their Alteration by Chemical Modification [J]. Biochem, 1978,17:4818-4825.
    [86] M. D. Topal, J. R. Fresco. Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids[J]. Biochemistry, 1980,19(24):5531-5539.
    [87] J. H. Yang, Z. Q. Gao, H. B. Zou, N. Q. Jie, W. D. Zhao, Y. Q. Zhang. Study of Fluorescence System of Gmanylic Acid-Tb~3 and the Determination of Gmanylic Acid[J].Anal.Lett.,1992,25(5):865-881.
    [88]J.M.Wolfson,D.R.Kearns.Europium as a fluorescent probe of transfer RNA structure[J].Biochemistry,1975,14(7):1436-1444.
    [89]P.J.Morley,R.B.Martin,S.Boatman.Characterization of excitation spectra for Tb~(3+)luminescence from nucleic acids:Calcium binding environs in icosahedral viruses[J].Biochem.Biophys.Res.Commun.,1981,101(4):1123-1130.
    [90]W.D.Horrocks Jr,J.M.Tingey.Time-resolved europium(Ⅲ)luminescence excitation spectroscopy:characterization of calcium-binding sites of calmodulin[J].Biochem.,1988,27(1):413-419.
    [91]S.L.Klakamp,W.D.Horrocks Jr.Lanthanide ion luminescence as a probe of DNA structure.1.Guanine-containing oligomers and nucleotides.J.Inorg.Biochem.,1992,46(3):175-192.
    [92]Y.X.Ci,Y.Z.Li,W.B.Chang.Fluorescence reaction of terbium(Ⅲ)with nucleic acids in the presence of phenanthroline[J].Anal.Chim.Acta,1991,248(2):589-594.
    [93]P.K.-L.Fu,C.Turro.Energy Transfer from Nucleic Acids to Tb(Ⅲ):Selective Emission Enhancement by Single DNA Mismatches.J.Am.Chem.Soc.,1999,121(1):1-7.
    [94]Y.X.Ci,Y.Z.Li,W.B.Chang.Fluorescence enhancement of terbium(Ⅲ)by nucleotides and polyhomonucleotides in the presence of phenanthroline.Fresenius J.Anal.Chem.,1992,342(1-2):91-94.
    [95]L.Li,J.H Yang,X.Wu,C.X.Sun,Y.Liu,S.F.Liu,B.Y.Su.The fluorescence enhancement effect of Tb-Gd-adenosine triphosphate-phen system and its analytical application[J].Talanta,2005,65(1):201-205.
    [96]Z.S.Zhao,J.H.Yang,X.Wu,B.Y.Su,C.X.Sun,S.F.Liu.The fluorescence enhancement effect of the Tb-Gd-guanosine-5'-triphosphate-phen system and its analytical application[J].Anal.Bioanal.Chem.,2004,380(1):104-107.
    [97]A.Chatterjee,A.Priyam,S.C.Bhattacharya,A.Saha.pH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides:A fluorimetric study.J.Lumin.,2007,126(2):764-770
    [98]杨丽菊,彭图治.特定序列脱氧核糖核酸电化学生物传感器进展[J].分析化学,2001,29(3):355-360.
    [99]C.Pombo,G.Prieto,J.M.del Rio,F.Sarmiento,M.N.Jones,Conformational transition of insulin induced by n-alkyltrimethylammonium bromides in aqueous solution.Int.J.Biol.Macromol.,1996,18(1-2):55-60.
    [100]F.Gao,H.Chao,J.Q.Wang,Y.X.Yuan,B.Sun,Y.F.Wei,B.Peng,L.N.Ji.Targeting topoisomerase Ⅱ with the chiral DNA-intercalating ruthenium(Ⅱ)polypyridyl complexes.J.Biol.Inorg.Chem.,2007,12(7):1015-1027.
    [101]D.Lawrence,V.G.Vaidyanathan,B.U.Nair.Synthesis,characterization and DNA binding studies of two mixed ligand complexes of ruthenium(Ⅱ).J.Inorg.Biochem.,2006,100(7):1244-1251.
    [102]E.C.Long,J.K.Barton.On Demonstrating DNA Intercalation[J].Acc.Chem.Res.,1990,23(9):271-273.
    [103]D.H,Ran,X.Wu,J.H.Zheng,J.H.Yang,H.P.Zhou,M.F.Zhang,Y.J.Tang.Study on the Interaction between Florasulam and Bovine Serum Albumin.J.Fluoresc.,2007,17(6):721-726.
    [104]商志才,易平责,俞庆森.环丙沙星与牛血清白蛋白的结合反应[J].物理化学学报,2001,17(1):48-52.
    [105]李来生,黄伟东,王瑞琼,鄢远.荧光法研究抗癌药物更生霉素D与小牛胸腺DNA的作用机理[J].化学学报,1999,57(6):572-577.
    [106]吴红星,李风华,林海.二胺桥联邻菲啰啉衍生物的合成及其与DNA相互作用研究[J].无机化学学报,2005,21(1):117-122.
    [107]C.V.Kumar,E.H.Asuncion.Sequence dependent energy transfer from DNA to a simple aromatic chromophore.J.Chem.Soc.Chem.Commun.,1992,6:470-472.
    [108]C.V.Kumar,R.S.Turner,E.H.Asuncion.Groove binding of a styrylcyanine dye to the DNA double helix:the salt effect.J.Photochem.Photobiol.A:Chem.,1993,74(2-3):231-238.
    [109]C.V.Kumar,E.H.Asuncion.DNA Binding Studies and Site Selective Fluorescence Sensitization of an Anthryl Probe.J.Am.Chem.Soc.,1993, 115(19):8547-8553.
    [110]N.C.Price.Conformational issues in the characterization of proteins[J].Biotechnol.Appl.Biochem.,2000,31(1):29-40.
    [111]M.Dockal,D.C.Carter,F.Rüker.Conformational transitions of the three recombinant domains of human serum albumin depending on pH.J.Biol.Chem.,2000,275(5):3042-3050.
    [112]冯永君,张长铠,陈雅丽,周永芬,易涛.火菇素的圆二色性与溶液二级结构,化学学报,2000,58(7):816-830.
    [113]A.A.Zinchenko,V.G.Sergeyev,K.Yamabe,S.Murata,K.Yoshikawa.DNA Compaction by Divalent Cations:Structural Specificity Revealed by the Potentiality of Designed Quaternary Diammonium Salts[J].Chem.Bioehem.,2004,5(3):360-368.
    [114]G.Dukovic,M.Balaz,P.Doak,N.D.Berova,M.Zheng,R.S.Mclean,L.E.Brus.Racemic Single-Walled Carbon Nanotubes Exhibit Circular Dichroism When Wrapped with DNA.J.Am.Chem.Soc.,2006,128:9004-9005.
    [115]宋玉民,郑秀荣,吴锦绣,吴琼.小檗碱和溴化乙锭与DNA的光谱学作用研究[J].西北师范大学学报(自然科学版),2006,42(5):63-67.
    [116]R.F.Pastemack,C.Bustamante,P.J.Collings,A.Giannetto,E.J.Gibbs.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.J.Am.Chem.Soc.,1993,115(13):5393-5399.
    [117]R.F.Pastcrnack,K.S.Schaefer,P.Hambright.Resonance light-scattering studies of porphyrin diacid aggregates.J.Inorg.Chem.,1994,33(9):2062-2065.
    [118]G.Arena,L.M.Scolaro,R.F.Pastermack,R.Pomeo.Synthesis,Characterization,and Interaction with DNA of the Novel Metallointercalator Cationic Complex(2,2':6',2"-terpyridine)methylplatinum(Ⅱ),J.Inorg.Chem.,1995,34(11):2994-3002.
    [119]C.Z.Huang,K.A.Li,S.Y.Tong.Determination of Nucleic Acids by a Resonance Light-Scattering Technique with α、β、γ、δ-Tetrakis[4-(trimethylammoniumyl)phenyl]porphine[J].Anal.Chem.,1996,68(13):2259-2263.
    [120]C.Z.Huang,K.A.Li,S.Y.Tong.Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light.Scattering of the Cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex[J].Anal.Chem.,1997,69(3):514-520.
    [121]黄承志,李克安,童沈阳.水溶性游离碱阳离子卟啉与核酸作用的光谱研究[J].高等学校化学学报,1997,18(4):525-529.
    [122]奉萍,黄承志,舒为群.长链烷基化物与牛血清白蛋白相互作用的共振光散射研究[J].环境化学,2001,20(5):497-502.
    [123]黄承志,黄新华.李原芳.藏红T在核酸分子表面进行长距组装的光谱特征[J].西南师范大学学报(自然科学版),2000,25(4):420-428.
    [124]S.H.Song,S.A.Asher.UV Resonance Raman Studies of Peptide Conformation in Poly(L-lysine),Poly(L-glutarnie acid),and Model Complexes:the Basis for Protein Secondary Structure Determinations.J.Am.Chem.Soc.,1989,111(12):4295-4305.
    [125]C.E.Stephen,J.K.Ernest,L.P.Warner.Determiantion of the Backbone Structure of Nucleic acids and Nucleic Acid Oligemers by Laser Raman Scattering.J.Proc.Nat.Acad.Sci.USA,1972,69:938-941.
    [126]R.M.Wartell,J.T.Harrell.Characteristics and Variations of B-type DNA Conformation in Solution:a Quantitative Analysis of Raman Band Intensities of Eight DNAs.J.Biochem.,1986,25:2664-2671.
    [127]W.K.Surewicz,H.H.Mantsch.New insight into protein secondary structure from resolution-enhanced infrared spectra[J].Biochimica et Biophysica Acta,1988,952:115-130.
    [128]W.K.Surewicz,M.A.Moscarello,H.H.Mantsch.Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry.J.Biol.chem.,1987,26(26):8598-8602.
    [129]李晓峰,徐怡庄,张庭芳,吴瑾光,徐光宪.钙调素的构象及Ca~(2+)、Eu~(3+)对它的影响[J].光谱学与光谱分析,1996,16(2):24-28.
    [130]Y.Q.Wu,O.Yukihiro.Two Dimensional Tnffared Corelation spectroscopy Studies of Proteins in Aqueous Solutions.J.Infrared Millim.Waves,2003, 22(3):161-168.
    [131]O.N.Tretinnikov,Y.Tamada.Influence of Casting Temperature on the Near-Surface Structure and Wettability of Cast Silk Fibroin Films[J].Langmuir,2001,17(23):7406-7413.
    [132]Y.L.Zhou,Y.Z.Li.Studies of the interaction between poly(diallyldimethyl ammonium chloride)and DNA by spectroscopic methods[J].Colloid Surface A,2004,233(1-3):129-135.
    [133]李锐,任海平,孙艳亭,姚英艳,卢奎,马丽.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1801-1806.
    [134]W.J.Cai.Syntheses,characterization and DNA-binding study of chiral complexes △△- and △△-[Ru(bpy)_2(bdptb)Ru(bpy)2]~(4+).J.Inorg.Biochem.,2004,98(3):497-501.
    [135]S.Moradell,J.Lorenzo,A.Rovira,M.S.Robillard,F.X.Avilés,V.Moreno,R.de Llorens,M.A.Martinez,J.Reedijk,A.Llobet.Platinum complexes of diaminocarboxylic acids and their ethyl ester derivatives:the effect of the chelate ring size on antitumor activity and interactions with GMP and DNA.J.Inorg.Biochem.,2003,96(4):493-502.
    [136]K.M.Anna,N.Magnus,S.Olle.Microstructure of protein-surfactant complexes in gel and solution - an NMR relaxation study[J].Langumir,1999,15(17):5480-5488.
    [137]K.M.Anna,R.Oren,K.Ali.A cryo-TEM study of protein-surfactant gels and solution.J.Colloid Interf.Sci.,2000,222(2):170-178.
    [138]J.L.Beck,M.L.Colgrave,S.F.Ralph.Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs,metals,and proteins[J].Mass Spectrom Rev.,2001,20(2):61-87.
    [139]A.H.Steven,H.G.Richard.Analysis of Noncovalent Complexes of DNA and RNA by Mass Spectrometry[J].Chem.Rev.,2001,101(2):377-390.
    [140]B.Spengler,D.Kirseh,R.Kaufmann.Peptide sequencing by matrix-assisted laser desorpfion mass spectrometry[J].Rapid Comm.Mass Speotrom.,1992,6(2):105-108.
    [141]W.Pusch,J.H.Wurmbach,H.Thiele.MALDI-TOF mass spectrometry based SNP genotyping[J].Pharmacogenomics,2002,3(4):537-548.
    [142]R.J.Fiel,B.R.Munson.Binding of meso-tetra(4-N-methylpyridyl)porphine to DNA.Nucleic Acids Res.,1980,8(12):2835-2842.
    [143]T.Q.Zhou,S.S.Liu,B.P.Rosen.Interaction of substrate and effector binding sites in the ArsA ATPase[J].Biochemistry,1995,34(41):13622-13626.
    [144]Q.Z.Zhu,F.Li,X.Q.Guo,J.G.Xu,W.Y.Li.Application of a Novel Fluorescence Probe in the Determination of Nucleic Acids[J].Analyst,1997,122(9):937-940.
    [145]Y.M.Song,J.W.Kang,J.Zhou,Z.H.Wang,X.Q.Lu,L.F.Wang,J.Z.Gao.Study on the fluorescence spectra and electrochemical behavior of ZnL_2 and Morin with DNA[J].Spectrochim.Acta A,2000,56(12):2491-2497.
    [146]Y.M.Song,J.W.Kang,Z.H.Wang,X.Q.Lu,J.Z.Gao,L.F.Wang.Study on the interactions between CuL_2 and Morin with DNA.J.Inorg.Biochem.,2002,91(3):470-474.
    [147]王飞,山东大学博士学位论文[D],济南:山东大学,2006.
    [148]J.Liu,T.B.Lu,H.Deng,L.N.Ji,L.H.Qu,H.Zhou.Synthesis,DNA-binding and cleavage studies of macrocyclic copper(Ⅱ)complexes[J].Transit.Metal Chem.,2003,28(1):116-121.
    [149]朱庆枝,李芳,郭详群,许金钩,李文友.竹红菌素A与DNA作用的研究[J].分析化学新进展,1997,C(4):244-24.
    [150]Y.Cao,X.W.He.Studies of interaction between Safranin T and double helix DNA by spectral methods[J].Spectrochim.Acta A,1998,54(6):883-892.
    [151]G.Prativel,J.Bermadou,B.Meunier.Carbon-Hydrogen Bonds of DNA Sugar Units as Targets for Chemical Nucleases and Drugs,Angew.Chem.Int.Ed.Engl.,1995,34(7):746-769.
    [152]Y.C.Jiang,S.K.Wu.A study on the micellar viscosity in surfactant solution by fluorescence polarization[J].Photagr.Sci.& Photochem.,1995,13:180-185.
    [153]A.Nakajima.A study of the system of pyrene and β-cyclodextrin in aqueous solution utilizing the intensity enhancement phenomenon[J].Spectrochim.Acta A,1983,39(10):913-915.
    [154]A.L.Huidobro,F.J.Rupérez,C.Barbas.LC methods for acyclovir and related impurities determination.J.Pharmaceut.Biomed.Anal.,.2005,37(4)687-694.
    [155]P.D.Tzanavaras,D.G.Themelis.High-throughput HPLC assay of acyclovir and its major impurity guanine using a monolithic column and a flow gradient approach.J.Pharmaceut.Biomed.,2007,43(4)1526-1530.
    [156]F.Q.Yang,J.Guan,S.P.Li.Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography[J].Talanta,2007,73(2):269-273.
    [157]H.S.Lin,A.M.Jenner,C.N.Ong,S.H.Huang,M.Whiteman,B.Halliwell.A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2'-deoxyguanosine:measurement with gas chromatography-mass spectrometry after single solid-phase extraction.Biochem.J.,2004,380(Pt 2):541-548.
    [158]M.Yang,R.Liu,D.Y.Hou,Y.Y.Guo.A novel flow-injection chemiluminescence system for the determination of guanine[J].Luminescence,2005;20(4-5):307-310.
    [159]X.Xiong,J.Ouyang,W.R.G.Baeyens,J.R.Delanghe,X.M.Shen,Y.P.Yang.Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone eleetrophoresis.Electrophoresis,2006,27(16),3243-3253.
    [160]W.Huang,S.Zhang,Y.Wu.Electrochemical behavior and detection of guanine using a sodium montmorillonite-modified carbon paste electrode.Russ.J.Electrochem.,2006,42(2):178-182.
    [161]U.Yogeswaran,S.Thiagarajan,S.M.Chen.Pinecone shape hydroxypropyl-β-cyclodextrin on a film of multi-walled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine,guanine,adenine and thymine[J].Carbon,2007,45(14):2783-2796.
    [162]龙耀庭,周立启.鸟嘌呤、鸟苷及其甲基化衍生物的近红外傅立叶变换表面 增强拉曼光谱[J].分析化学,1996,24(3):258-263.
    [163]刘美林,李保新,许春丽,章竹君.荧光光度法测定鸟嘌呤[J].光谱学与光谱分析,2003,23(5):1012-1014.
    [164]M.Kai,Y.Ohkura,S.Yonekura,M.Iwasaki.Selective determination of guanine and its nucleosides and nucleotides by reaction with phenylglyoxal as a fluorogenic reagent[J].Anal.Chim.Acta,1988,207(1-2):243-249.
    [165]F Wang,J.H.Yang,X.Wu,X.B.Wang,C.X.Sun,S.F.Liu,C.Y.Guo.Molecular self-assembling and the fluorescence enhancement in morin-Al~(3+)-cetyltrimethylammonium bromide-protein system[J].Biochimie.,2006,88(2):121-129.
    [166]R.T.Liu,J.H.Yang,C.X.Sun,X.Wu,L.Li,Z.M.Li,Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate[J].Anal.Bioanal.Chem.,2003,377(2):375-379.
    [167]曾云鄂等编,现代化学试剂手册,第四分册,北京:化学工业出版社,1989:801.
    [168]聂丽华,马会民,李晓花,孙铭,尤洪涛,金永平.通过三嗪荧光探针的多氢键作用识别胸腺嘧啶[J].高等学校化学学报,2003,24(1):37-39.
    [169]R.Karmakar,A.Samanta.Phase-Transfer Catalyst-Induced Changes in the Absorption and Fluorescence Behavior of Some Electron Donor-Acceptor Molecules.J.Am.Chem.Soc.,2001,123(16),3809-3817.
    [170]N.DiCesare,J.R.Lakowicz.A new highly fluorescent probe for monosaccharides based on a donor-acceptor diphenyloxazole[J].Chem.Commun.,2001,19:2022-2023.
    [171]V.Carrera,E.Sabater,E.Vilanova,M.A.Sogorb.A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine,norepinephrine,dopamine and 5-hydroxytryptamine:Application to the secretion of bovine chromaffin cell cultures.J.Chromatogr.B,2007,847(2)88-94.
    [172]Z.Yang,G.Hu,X.Chen,J.Zhao,G.Zhao.The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid[J]. Colloid Surface B, 2007,54(2):230-235.
    [173] H. Liu, G. Zhao, L. Wen, B. Ye. Simultaneous voltammetric determination of epinephrine and serotonin at a p-tetra-butyl calix[6] arene-L-Histidine chemically modified electrode. J. Anal. Chem., 2006, 61(11):1104-1107.
    [174] X. H. Sun, X. R. Yang, E. Wang. Evaluation of a sol-gel derived carbon composite electrode as an amperometric detector for capillary electrophoresis. J. Chromatogr. A. 2003,991(1): 109-116.
    [175] S. Wei, G. Song, J. M. Lin. Separation and determination of norepinephrine, epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. J. Chromatogr. A, 2005, 1098 (1-2):166-171.
    [176] J. X. Du, L. H. Shen, J. R. Lu. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material[J]. Anal. Chim. Acta, 2003,489(2): 183-189.
    
    [177] X. W. Zheng, Z. H. Guo, Z. J. Zhang. Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminal[J]. Anal. Chim. Acta, 2001,441(1): 81-86.
    [178] C. L. Tong, G. C. Lu, Z. L. Xu. Determination of epinephrine by improved modification of the trihydroxyindole method. Journal of Zhejiang University (science edition), 2000,27(5): 530-533
    [179] X. Wu, C. L. Tong, B. Y. Su, F. Huang, J. H. Yang. Terbium(III) as fluorescence probe for the determination of epinephrine. Journal of Shandong University of China, 1998,34(3):352-355.
    [180] Y. M. Guo, J. H. Yang, X. Wu, H. Z. Mao. Study on the co-luminescence effect of Tb-Gd-epinephrine system and its application to the sensitive determination of epinephrine at nanomol level[J]. Talanta, 2007,73(2):227-231.
    [181] J. H. Yang, G. L. Zhang, X. Wu, F. Huang, C. G. Lin, X. H. Cao, L. M. Sun, Y. J. Ding. Fluorimetric determination of epinephrine with o-phenylenediamine [J]. Anal. Chim. Acta, 1998,363(1): 105-110.
    [182] J. H. Yang, G. L. Zhang, X. H. Cao, L. M. Sun, Y. J. Ding. Fluorimetric determination of epinephrine with 2,3-diaminonaphthalene[J].Spectrochim.Acta A,1997,53(10):1671-1676.
    [183]童林荟编.环糊精化学-基础与应用[M],北京:科学出版社,2001.
    [184]T.Loftsson,M.Masson.Cyclodextrins in topical drug formulations:theory and practice.Int.J.Pharm.,2001,225(1-2):15-30.
    [185]S.Monti,S.Sortino.Photoprocesses of photosensitizing drugs within cyclodextrin cavities[J].Chem.Soc.Rev.,2002,31(5):287-300.
    [186]Y.Liu,L.Li,H.Y.Zhang,Y.J.Song.Synthesis of Novel Bis(β-Cyclodextrin)s and Metallobridged Bis(β-Cyclodextrin)s with 2,2'-Diselenobis(benzoyl)Tethers and Their Molecular Multiple Recognition with Model Substrates.J.Org.Chem.,2003,68(2),527-536.
    [187]J.L.Mieusset,D.Krois,M.Pacar,L.Brecker,G.Giester,U.H.Brinker.Supramolecular Recognition and Structural Elucidation of Inclusion Complexes of an Achiral Carbene Precursor in β- and Permethylated β-Cyclodextrin[J].Org.Lett.,2004,6(12),1967-1970.
    [188]宋乐新,柯晓康,郭子建.荧光标识的环糊精二聚体与小肽衍生物之间的包合行为研究[J].化学学报,2002,60(8):1419-1427.
    [189]Y.Liao,B.Cornelia.Alcohol Effect on Equilibrium Constants and Dissociation Dynamics of Xanthone-Cyclodextrin Complexes.J.Phys.Chem.,1996,100:734-743.
    [190]A.H.Carolyn,J.E.Christopher,L.M.Bruce,F.L.Stephen.Cooperative Binding of 6-(p-Toluidiayl)naphthalene-2-sulfonate by β- Cyclodextrin Diamer.J.Phys.Chem.,1996,100:14457-14461.
    [191]A.Ueno,K.Takahashi,Y.Hino,T.Osa.Fluorescence enhancement of α-naphthyloxyacetic acid in the cavity of γ-cyclodextrin,assisted by a space-regulating molecule.J.Chem.Soc.Chem.Commun.,1981,4:194-195.
    [192]江云宝,黄贤智,陈国珍.荧光光谱和吸收光谱研究脂肪醇与β-环糊精的相互作用[J].物理化学学报,1991,7(3):289-293.
    [193]李改仙,李建晴,卫艳丽,董川.芘荧光探针法研究环糊精与有机溶剂的极 性微环境性质[J].光谱实验室,2005,22(2):416-421.
    [194]Ramon Martínez-Manez,Félix Sancenon.Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J].Chem.Rev.,2003,103:4419-4476.
    [195]G.C.Catena,F.V.Bright.Thermodynamic Study on the Effect of β-Cyclodextrin Inclusion with Anilinonaphthalenesulfonates[J].Anal.Chem.,1989,61(8):905-909.
    [196]戚文彬,戚志红.新分析增效试剂,杭州大学出版社,1994,p97.
    [197]K.Harata,H.Uedaira.The Circular Dichroism Spectra of the β-Cyclodextrin Complex with Naphthalene Derivatives[J].Bull.Chem.Soc.Jpn.,1975,48(2):375-378.
    [198]M.Kajtar,C.Horvath-Toro,E.Kuthi.A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes.Acta Chim.Acad.Sci.Hung.,1982,110(3):327-355.
    [199]R.J.Bergeron,M.A.Channing,G.J.Gibeily,D.M.Pillor.Disposition requirements for binding in aqueous solution of polar substrates in the cyclohexaamylose cavity.J.Am.Chem.Soc.,1977,99:5146-5151.
    [200]N.Berova,D.Gargiulo,F.Derguini,K.Nakanishi,N.Harada.Unique UV-Vis absorption and circular dichroic exciton-split spectra of a chiral biscyanine dye:origin and nature.J.Am.Chem.Soc.,1993,115(11):4769-4775.
    [201]张勇,黄贤智.荧光光谱法研究α-溴代萘和β-环糊精2:2重叠包结物的形成[J].化学学报,1997,55:69-75.
    [202]C.M.Niemeyer,Nanoparticles,proteins,and nucleic acids:biotechnology meets materials science[J].Angew.Chem.Int.Ed.,2001,40:4128-4158.
    [203]C.Kessler.The digoxigenin:anti-digoxigenin(DIG)technology-a survey on the concept and realization of a novel bioanalytical indicator system[J].Mol.Cell.Probes,1991,5:161-205.
    [204]R.G.Chubet,B.L.Brizard.Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells[J].BioTechniques,1996,20:136-141.
    [205]C.M.Niemeyer,W.Bürger,J.Peplies.Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures[J]. Angew. Chem. Int. Ed., 1998,37: 2265-2268.
    [206] S. R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly[J]. Nature, 2000,405: 665-666.
    [207] C. A. Mrikin, R.L. Letsinger, R.C. Mucic, J.J, Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996,382: 607-609.
     [208] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277:1078-1080.
    [209] G. P. Mitchell, C. A. Mrikin, R. L. Letsinger. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc, 1999,121: 8122-8123.
    [210] J. J. Storhoff, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies. J. Am. Chem. Soc, 2000,122: 4640-4650.
    [211] S. J. Park, et al. The electrical properties of gold nanoparticle assemblies linked by DNA[J]. Angew. Chem. Int. Ed., 2000,39: 3845-3848.
    [212] J. J. Marty, R. C. Oppenheimer, P. Speiser. Nanoparticles: a new colloiclal. Drug delivery system[J]. Pharm. Acta Helv., 1978, 53: 17-21.
    [213] C. Weber, C. Coester, J. Kreuter, K. Langer. Desolvation process and surface characteristics of protein nanoparticles. Int. J. Pharm., 2000,194(1):91-102.
    [214] K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. Briesen, D. Schubert.Optimization of the preparation process for human serum albumin(HSA) nanoparticles. Int. J. Pharm., 2003,257(1-2):169-180.
    [215] C. Weber, S. Reiss, K. Langer. Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. Int. J. Pharm., 2000, 211: 67-78.
    [216] W. Lin, M. C. Garnett, E. Schacht, S. S. Davis, L. Ilium. Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int. J. Pharm., 1999, 189: 161-170.
    [217]J.H.Adair,E.Suvaci.Morphological control of particles[J].Curr.Opin.Colloid Interf.Sci.,2000,5(1-2):160-167.
    [218]P.Calandra,M.Goffredi,V.T.Liveri.Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy[J].Colloids Surf.A,1999,160(1):9-13.
    [219]蒋治良,刘绍璞,江洪流,唐平生,尹传磊.[AuI_4]~--RDG~+缔合物纳米微粒体系的共振散射增强与荧光猝灭[J].应用化学,2002,19(12):1133-1136.
    [220]Z.L.Jiang,Z.W.Feng,F.Li.Science in China,Series B[M].2001,31(2):185-188.
    [221]袁伟恩,蒋治良,潘宏程.HSA-磷钼杂多酸缔合纳米微粒体系荧光猝灭机理研究[J].光谱学与光谱分析,2004,24(8):970-974.
    [222]I.S.Kikuchi,A.M.Carmona.Interactions between DNA and Synthetic Cationic Liposomes.J.Phys.Chem.B,2000,104(13):2829-2835.
    [223]S.Franceshi,O.Bordeau,C.Millerioux.Highly Compacted DNA-Polymer Complexes Obtained via New Polynorbomene Polycationic Latexes with Lactobionate Counterion[J].Langmuir,2002,18(5):1743-1747.
    [224]L Wang,J.Yoshida,N.Ogata.Self-Assembled Supramolecular Films Derived from Marine Deoxyribonucleic Acid(DNA)-Cationic Surfactant Complexes:Large-Scale Preparation and Optical and Thermal Properties[J].Chem.Mater.,2001,13(4):1273-1281.
    [225]G.R.Li,J.J.Wu,W.J.Jin,Study on aggregation of palladium-porphyrins using room temperature phosphorescence[J].Spectrochim.Acta A,2004,60(1-2):265-269.
    [226]Y.H.Chen,J.T.Yang,H.M.Martinez.Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion[J].Biochemistry,1972,11(22):4120-4131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700