用户名: 密码: 验证码:
转录因子SOX7及DNA甲基转移酶DNMT3a在结肠癌凋亡与衰老过程中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤发生的主要事件是肿瘤细胞逃逸衰老和死亡程序而进入永生化,因此诱导肿瘤细胞重新获得衰老特性及诱导肿瘤细胞凋亡是抑制肿瘤生长和增殖的重要途径。SOX7是含有HMG domain的SOX转录因子家族成员。SOX基因是近些年来在动物中发现的一类编码转录因子的基因家族,参与多种早期胚胎发育过程。Wnt信号转导通路在胚胎发育及癌症发生等过程中发挥作用,Wnt通路在结直肠癌中异常激活,研究显示鼠SOX7能够下调β-catenin激活的Wnt通路报告基因活性。人SOX7基因在多种癌细胞系包括结肠癌SW480细胞中低表达,具体机制未见报道。DNA甲基化是肿瘤抑制基因在肿瘤中沉默的重要机制,DNA甲基化转移酶(DNMT)在胚胎发育和癌症发生过程中发挥重要作用。DNMTs在多种肿瘤中的表达明显上调,DNMTs在衰老与凋亡过程中都起到一定作用。在本文中,我们对SOX7在结肠癌中的表达及其在结肠癌抑癌中的作用以及DNMT3a在阿霉素诱导结肠癌衰老与凋亡转换中的作用及机制进行了研究。在Part I中,我们的工作显示,SOX7在结肠癌细胞及结肠癌组织中低表达,甲基化特异性PCR及亚硫酸氢盐测序实验表明,SOX7在结肠癌中的低表达受到DNA甲基化修饰的调控;Hoechest33342染色、MTT及克隆形成实验证实,过表达SOX7能促进结肠癌SW480细胞凋亡,抑制SW480细胞增殖及克隆形成;过表达SOX7能够抑制结肠癌中异常活化的Wnt通路。在Part II中,我们的工作显示,阿霉素能诱导结肠癌HCT116细胞中DNMT3a的表达,尤其是凋亡浓度阿霉素能够显著上调DNMT3a的表达,p53参与了阿霉素对DNMT3a的调控;衰老相关β-gal染色及凋亡相关TUNEL染色结果表明,DNMT3a在阿霉素诱导结肠癌HCT116细胞衰老与凋亡转换过程中起作用。干涉DNMT3a,在凋亡浓度阿霉素刺激下,p21的表达有所上升;过表达DNMT3a,在衰老浓度阿霉素刺激下,p21的表达有所下降;ChIP实验显示,衰老浓度阿霉素刺激结肠癌HCT116细胞,p21启动子组蛋白H3及H4高乙酰化,检测到p53的结合,而在凋亡浓度阿霉素刺激下,p21启动子组蛋白H3及H4低乙酰化,p53结合减少,检测到DNMT3a及HDAC1的结合;进一步的CoIP实验证实DNMT3a与HDAC1在凋亡浓度阿霉素刺激下存在于一个复合物中。我们的工作为更好地了解转录因子SOX7的功能,以及DNA甲基转移酶DNMT3a在阿霉素诱导结肠癌细胞衰老与凋亡转换中的作用机制提供了重要的实验依据。
Tumor cells escaping senescence and apoptosis is the main events of tumor development, so inducing tumor cells senescence and apoptosis is an important way to inhibit tumor growth and proliferation. The sex-determining region Y-box 7 (SOX7) is a member of high mobility group (HMG) transcription factor family, essential for embryonic development and endoderm differentiation. Deregulation of Wnt signaling pathway is a hallmark of colorectal cancer. Mouse SOX7 represses Wnt/β-catenin-stimulated transcription in HEK 293 cell line. But the mechanisms of the regulation of human SOX7 gene are unclear, and the tumor suppressive function of SOX7 in colorectal cancers needs to be validated. DNA methylation is an important mechanism to silence certain tumor suppressor genes in the development of tumor. DNMTs play important roles in embryonic and cancer development. DNMTs are highly expressed in many cancer cells and play roles in senescence and apoptosis. In this paper, we studied the role of SOX7 in inhibiting colorectal cancer cells and the role of DNMT3a in switches between doxorubicin (Dox)-induced senescence and apoptosis of colorectal cancer cells. In part I, we showed that the expression level of SOX7 mRNA was frequently down-regulated in human colorectal cancer cell lines and in primary colorectal tumor tissues, and the SOX7 silencing was partially due to the aberrant DNA methylation of the gene. Restoration of SOX7 induced colorectal cancer cell apoptosis, inhibited cell proliferation and colony formation. In addition, SOX7 efficiently suppressedβ-catenin-mediated transcriptional activity and altered the epigenetic modification of promoters of the Wnt target genes. In part II, we showed that the DNA methyltransferase DNMT3a was upregulated by Dox especially at concentrations that induced apoptosis in HCT116 colorectal cancer cells, and this process was regulated by p53. Meanwhile, p21 expression was significantly upregulated at senescence-inducing concentrations and kept low upon treatment with apoptosis-inducing concentrations of Dox. The differential expression of DNMT3a and p21 in response to Dox suggests that DNMT3a may be a key factor in switches between Dox-induced senescence and apoptosis. Moreover, when DNMT3a was silenced, treatment of HCT116 cells with apoptosis-inducing concentration of Dox increased the percentage of cells undergoing senescence, accompanied by upregulation of p21. Contrarily, senescence-inducing concentration of Dox promoted apoptosis rate, and p21 expression was repressed. Surprisingly, no changes in DNA methylation status at p21 promoter were detected at either ranges of Dox, though DNMT3a and HDAC1 were recruited to p21 promoter at apoptosis-inducing Dox concentration, where they were present in the same complex. Our work will help to further study the mechanism of SOX7 and DNMT3a in colorectal cancer senescence and apoptosis.
引文
1. Wilson M, Koopman P: Matching SOX. partner proteins and co-factors of the SOX family of transcriptional regulators[J]. Curr Opin Genet Dev, 2002, 12(4):441-446.
    2. Lefebvre V, Dumitriu B, Penzo-Mendez A, et al. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors[J]. Int J Biochem Cell Biol, 2007, 39(12):2195-2214.
    3. Wegner M. From head to toes: the multiple facets of Sox proteins[J]. Nucleic Acids Res, 1999, 27(6):1409-1420.
    4. Schafer AJ, Goodfellow PN. Sex determination in humans[J]. Bioessays, 1996, 18(12):955-963.
    5. Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites[J]. Mol Cell Biol, 1997, 17(11):6321-6329.
    6. Chen QL, Zheng WL, Yao WJ, et al. Analysis of SOX4 gene mutation in non-small cell lung cancer tissues[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2007, 24(5):505-509.
    7. Otsubo T, Akiyama Y, Yanagihara K, et al. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis[J]. Br J Cancer, 2008, 98(4):824-831.
    8. Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J]. Nature, 1990, 346(6281):240-244.
    9. Prior HM, Walter MA. SOX genes: architects of development[J]. Mol Med, 1996, 2(4):405-412.
    10. Schepers GE, Bullejos M, Hosking BM, et al. Cloning and characterisation of the Sry-related transcription factor gene Sox8[J]. Nucleic Acids Res, 2000, 28(6):1473-1480.
    11. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures[J]. Trends Genet, 1994, 10(3):94-100.
    12. Wissmuller S, Kosian T, Wolf M, et al. The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors[J]. Nucleic Acids Res, 2006, 34(6):1735-1744.
    13. Bianchi ME, Beltrame M. Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia[J]. EMBO Rep, 2000, 1(2):109-114.
    14. Roose J, Korver W, de Boer R, et al. The Sox-13 gene: structure, promoter characterization, and chromosomal localization[J]. Genomics, 1999, 57(2):301-305.
    15. Taniguchi K, Hiraoka Y, Ogawa M, et al. Isolation and characterization of a mouse SRY-related cDNA, mSox7[J]. Biochim Biophys Acta, 1999, 1445(2):225-231.
    16. Wegner M. Secrets to a healthy Sox life: lessons for melanocytes[J]. Pigment Cell Res, 2005, 18(2):74-85.
    17. Sattler HP, Lensch R, Rohde V, et al. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer[J]. Prostate, 2000, 45(3):207-215.
    18. Xia Y, Papalopulu N, Vogt PK, et al. The oncogenic potential of the high mobility group box protein Sox3[J]. Cancer Res, 2000, 60(22):6303-6306.
    19. Ahn SG, Kim HS, Jeong SW, et al. Sox-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG)A(2) and delta(12)-PGJ(2) [J]. Exp Mol Med, 2002, 34(3):243-249.
    20. Ueda R, Yoshida K, Kawakami Y, et al. Expression of a transcriptional factor, SOX6, in human gliomas[J]. Brain Tumor Pathol, 2004, 21(1):35-38.
    21. Schlierf B, Friedrich RP, Roerig P, et al. Expression of SoxE and SoxD genes in human gliomas[J]. Neuropathol Appl Neurobiol, 2007, 33(6):621-630.
    22. Guo L, Zhong D, Lau S, et al. Sox7 Is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells[J]. Mol Cancer Res, 2008, 6(9):1421-1430.
    23. Soderstrom M, Bohling T, Ekfors T, et al. Molecular profiling of human chondrosarcomas for matrix production and cancer markers[J]. Int J Cancer, 2002, 100(2):144-151.
    24. Wehrli BM, Huang W, De Crombrugghe B, et al. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors[J]. Hum Pathol, 2003, 34(3):263-269.
    25. Bannykh SI, Stolt CC, Kim J, et al. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas[J]. J Neurooncol, 2006, 76(2):115-127.
    26. Addo-Yobo SO, Straessle J, Anwar A, et al. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma[J]. J Neuropathol Exp Neurol, 2006, 65(8):769-775.
    27. Khong HT, Rosenberg SA. The Waardenburg syndrome type 4 gene, SOX10, is a novel tumor-associated antigen identified in a patient with a dramatic response to immunotherapy[J]. Cancer Res, 2002, 62(11):3020-3023.
    28. Weigle B, Ebner R, Temme A, et al. Highly specific overexpression of the transcription factor SOX11 in human malignant gliomas[J]. Oncol Rep, 2005, 13(1):139-144.
    29. Saitoh T, Katoh M. Expression of human SOX18 in normal tissues and tumors[J]. Int J Mol Med, 2002, 10(3):339-344.
    30. Katoh M. Expression of human SOX7 in normal tissues and tumors[J]. Int J Mol Med, 2002, 9(4):363-368.
    31. Hayes JJ, Bashkin J, Tullius TD, et al. The histone core exerts a dominant constraint on the structure of DNA in a nucleosome[J]. Biochemistry, 1991, 30(34):8434-8440.
    32. Hayes JJ, Clark DJ, Wolffe AP. Histone contributions to the structure of DNA in the nucleosome[J]. Proc Natl Acad Sci U S A, 1991, 88(15):6829-6833.
    33. Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997, 389(6648):251-260.
    34. Grunstein M. Histone function in transcription[J]. Annu Rev Cell Biol 1990,6:643-678.
    35. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis[J]. Proc Natl Acad Sci U S A, 1964, 51:786-794.
    36. Kimura A, Horikoshi M. Tip60 acetylates six lysines of a specific class in core histones in vitro[J]. Genes Cells, 1998, 3(12):789-800.
    37. Verreault A, Kaufman PD, Kobayashi R, et al. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase[J]. Curr Biol, 1998, 8(2):96-108.
    38. Roth SY, Denu JM, Allis CD. Histone acetyltransferases[J]. Annu Rev Biochem, 2001, 70:81-120.
    39. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer[J]. J Cell Physiol 2000;184(1):1-16.
    40. Grunstein M. Histone acetylation in chromatin structure and transcription[J]. Nature, 1997, 389(6649):349-352.
    41. Miremadi A, Oestergaard MZ, Pharoah PD, et al. Cancer genetics of epigenetic genes[J]. Hum Mol Genet, 2007, 16 Spec No 1:R28-49.
    42. Park SY, Kim BH, Kim JH, et al. Methylation profiles of CpG island loci in major types of human cancers[J]. J Korean Med Sci, 2007, 22(2):311-317.
    43. Lai HC, Lin YW, Huang TH, et al. Identification of novel DNA methylation markers in cervical cancer[J]. Int J Cancer, 2008, 123(1):161-167.
    44. Jacinto FV, Ballestar E, Esteller M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome[J]. Biotechniques, 2008, 44(1):35, 37, 39 passim.
    45. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Hum Mol Genet, 2007, 16 Spec No 1:R50-59.
    46. Esteller M. CpG island methylation and histone modifications: biology and clinical significance[J]. Ernst Schering Res Found Workshop, 2006(57):115-126.
    47. Strathdee G, Davies BR, Vass JK, et al. Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene[J]. Carcinogenesis, 2004, 25(5):693-701.
    48. Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene[J]. Nature, 1991, 350(6318):512-515.
    49. Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA[J]. Nature, 2008, 452(7183):112-115.
    50. Yu C, Lu W, Tan W, et al. Lack of association between CCND1 G870A polymorphism and risk of esophageal squamous cell carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(2):176.
    51. Esteller M. The necessity of a human epigenome project[J]. Carcinogenesis, 2006, 27(6):1121-1125.
    52. Hellebrekers DM, Jair KW, Vire E, et al. Angiostatic activity of DNA methyltransferase inhibitors[J]. Mol Cancer Ther, 2006, 5(2):467-475.
    53. Esteller M. DNA methylation and cancer therapy: new developments and expectations[J]. Curr Opin Oncol, 2005, 17(1):55-60.
    54. Kim DS, Lee SM, Yoon GS, et al. Infrequent hypermethylation of the PTEN gene in Korean non-small-cell lung cancers[J]. Cancer Sci, 101(2):568-572.
    55. Attaleb M, El hamadani W, Khyatti M, et al. Status of p16(INK4a) and E-cadheringene promoter methylation in Moroccan patients with cervical carcinoma[J]. Oncol Res, 2009, 18(4):185-192.
    56. Buckingham L, Penfield Faber L, Kim A, et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients[J]. Int J Cancer, 126(7):1630-1639.
    57. Guo W, Dong Z, Guo Y, et al. Detection of promoter hypermethylation of the CpG island of E-cadherin in gastric cardiac adenocarcinoma[J]. Eur J Med Res, 2009, 14(10):453-458.
    58. Fackler MJ, McVeigh M, Evron E, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma[J]. Int J Cancer, 2003, 107(6):970-975.
    59. Malik K, Salpekar A, Hancock A, et al. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor[J]. Cancer Res, 2000, 60(9):2356-2360.
    60. Hanafusa T, Yumoto Y, Nouso K, et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma[J]. Cancer Lett, 2002, 176(2):149-158.
    61. Suzuki M, Toyooka S, Shivapurkar N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection[J]. Oncogene, 2005, 24(7):1302-1308.
    62. Enokida H, Shiina H, Igawa M, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer[J]. Cancer Res, 2004, 64(17):5956-5962.
    63. Margetts CD, Astuti D, Gentle DC, et al. Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas[J]. Endocr Relat Cancer, 2005, 12(1):161-172.
    64. Li Z, Ren Y, Lin SX, et al. Association of E-cadherin and beta-catenin with metastasis in nasopharyngeal carcinoma[J]. Chin Med J (Engl), 2004, 117(8):1232-1239.
    65. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer[J]. Cancer Res, 2000, 60(16):4346-4348.
    66. Fendrich V, Slater EP, Heinmoller E, et al. Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas[J]. Pancreas, 2005, 30(2):e40-45.
    67. Kallakury BV, Sheehan CE, Winn-Deen E, et al. Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas[J]. Cancer, 2001, 92(11):2786-2795.
    68. Guitton AE, Berger F. Control of reproduction by Polycomb Group complexes in animals and plants[J]. Int J Dev Biol, 2005, 49(5-6):707-716.
    69. Ishida E, Nakamura M, Ikuta M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma[J]. Oral Oncol, 2005, 41(6):614-622.
    70. Fukushima T, Katayama Y, Watanabe T, et al. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomasto nitrosourea[J]. Clin Cancer Res, 2005, 11(4):1539-1544.
    71. Okuda T, Kawakami K, Ishiguro K, et al. The profile of hMLH1 methylation and microsatellite instability in colorectal and non-small cell lung cancer[J]. Int J Mol Med, 2005, 15(1):85-90.
    72. Makarla PB, Saboorian MH, Ashfaq R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms[J]. Clin Cancer Res, 2005, 11(15):5365-5369.
    73. Okuda H, Toyota M, Ishida W, et al. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma[J]. Oncogene, 2006, 25(12):1733-1742.
    74. Tada M, Yokosuka O, Fukai K, et al. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma[J]. J Hepatol, 2005, 42(4):511-519.
    75. Matros E, Wang ZC, Lodeiro G, et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles[J]. Breast Cancer Res Treat, 2005, 91(2):179-186.
    76. Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update[J]. Histol Histopathol, 2005, 20(2):645-663.
    77. Kim BN, Yamamoto H, Ikeda K, et al. Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues[J]. Int J Oncol, 2005, 26(5):1217-1226.
    78. Tuck-Muller CM, Narayan A, Tsien F, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients[J]. Cytogenet Cell Genet, 2000, 89(1-2):121-128.
    79. Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients[J]. J Clin Oncol, 2000, 18(5):956-962.
    80. Cho HJ, Kim SY, Kim KH, et al. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines[J]. World J Surg Oncol 2009;7:49.
    81. Patties I, Jahns J, Hildebrandt G, et al. Additive effects of 5-aza-2'-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines[J]. Strahlenther Onkol, 2009, 185(5):331-338.
    82. Beck NE. Genetic instability in patients with metachronous colorectal cancers[J]. Br J Surg, 1997, 84(12):1750-1751.
    83. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J]. Science, 2003, 300(5618):489-492.
    84. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6):415-428.
    85. Iacopetta B, Kawakami K, Watanabe T. Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? [J]. Int J Clin Oncol, 2008, 13(6):498-503.
    86. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis[J]. Gastroenterology, 2008, 135(4):1079-1099.
    87. Lee S, Hwang KS, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia[J]. Lab Invest, 2004, 84(7):884-893.
    88. Ahuja N, Li Q, Mohan AL, et al. Aging and DNA methylation in colorectal mucosa and cancer[J]. Cancer Res, 1998, 58(23):5489-5494.
    89. Goto T, Mizukami H, Shirahata A, et al. Aberrant methylation of the p16 gene is frequently detected in advanced colorectal cancer[J]. Anticancer Res, 2009, 29(1):275-277.
    90. Ivanauskas A, Hoffmann J, Jonaitis LV, et al. Distinct TPEF/HPP1 gene methylation patterns in gastric cancer indicate a field effect in gastric carcinogenesis[J]. Dig Liver Dis, 2008, 40(12):920-926.
    91. Moinova HR, Chen WD, Shen L, et al. HLTF gene silencing in human colon cancer[J]. Proc Natl Acad Sci U S A, 2002, 99(7):4562-4567.
    92. Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily[J]. Cancer Res, 2001, 61(22):8094-8099.
    93. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell, 1982, 31(1):99-109.
    94. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species[J]. Embo J, 1989, 8(6):1711-1717.
    95. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1[J]. Nature, 1996, 382(6592):638-642.
    96. Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor[J]. Nature, 1996, 382(6588):225-230.
    97. Rubinfeld B, Souza B, Albert I, et al. Association of the APC gene product with beta-catenin[J]. Science, 1993, 262(5140):1731-1734.
    98. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins[J]. Science, 1993, 262(5140):1734-1737.
    99. Steitz SA, Tsang M, Sussman DJ. Wnt-mediated relocalization of dishevelled proteins[J]. In Vitro Cell Dev Biol Anim, 1996, 32(7):441-445.
    100. Wharton KA, Jr.. Runnin' with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction[J]. Dev Biol, 2003, 253(1):1-17.
    101. Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin[J]. Embo J, 1998, 17(5):1371-1384.
    102. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway[J]. Science, 1998, 281(5382):1509-1512.
    103. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nature, 1999, 398(6726):422-426.
    104. Giampuzzi M, Oleggini R, Albanese C, et al. beta-catenin signaling and regulation of cyclin D1 promoter in NRK-49F cells transformed by down-regulation of the tumor suppressor lysyl oxidase[J]. Biochim Biophys Acta, 2005, 1745(3):370-381.
    105. Li YJ, Wei ZM, Meng YX, et al. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis[J]. World J Gastroenterol, 2005, 11(14):2117-2123.
    106. Brabletz T, Jung A, Dag S, et al. beta-catenin regulates the expression of the matrixmetalloproteinase-7 in human colorectal cancer[J]. Am J Pathol, 1999, 155(4):1033-1038.
    107. Li L, Yuan H, Xie W, et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells[J]. J Biol Chem, 1999, 274(1):129-134.
    108. Howe LR, Crawford HC, Subbaramaiah K, et al. PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2[J]. J Biol Chem, 2001, 276(23):20108-20115.
    109. You L, He B, Xu Z, et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth[J]. Cancer Res, 2004, 64(15):5385-5389.
    110. Willert K, Jones KA. Wnt signaling: is the party in the nucleus? [J]. Genes Dev, 2006, 20(11):1394-1404.
    111. Dale TC. Signal transduction by the Wnt family of ligands[J]. Biochem J, 1998, 329 ( Pt 2):209-223.
    112. Miyoshi Y, Iwao K, Nagasawa Y, et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3[J]. Cancer Res, 1998, 58(12):2524-2527.
    113. Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium[J]. J Clin Endocrinol Metab, 2003, 88(8):3860-3866.
    114. Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis[J]. Genes Dev, 1996, 10(20):2527-2539.
    115. Boon EM, van der Neut R, van de Wetering M, et al. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer[J]. Cancer Res, 2002, 62(18):5126-5128.
    116. Clements WM, Lowy AM, Groden J. Adenomatous polyposis coli/beta-catenin interaction and downstream targets: altered gene expression in gastrointestinal tumors[J]. Clin Colorectal Cancer, 2003, 3(2):113-120.
    117. Itoh K, Antipova A, Ratcliffe MJ, et al. Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction[J]. Mol Cell Biol, 2000, 20(6):2228-2238.
    118. Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells[J]. Nat Cell Biol, 2003, 5(3):211-215.
    119. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma[J]. Science, 1997, 275(5307):1784-1787.
    120. Wong SC, Lo SF, Cheung MT, et al. Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients[J]. Clin Cancer Res, 2004, 10(5):1613-1617.
    121. Kikuchi A. Roles of Axin in the Wnt signalling pathway[J]. Cell Signal, 1999, 11(11):777-788.
    122. Liu W, Dong X, Mai M, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling[J]. Nat Genet, 2000, 26(2):146-147.
    123. Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1[J]. NatGenet, 2000, 24(3):245-250.
    124. Stoothoff WH, Bailey CD, Mi K, et al. Axin negatively affects tau phosphorylation by glycogen synthase kinase 3beta[J]. J Neurochem, 2002, 83(4):904-913.
    125. Sparks AB, Morin PJ, Vogelstein B, et al. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer[J]. Cancer Res, 1998, 58(6):1130-1134.
    126. Kuroiwa K, Konomoto T, Kumazawa J, et al. Cell proliferative activity and expression of cell-cell adhesion factors (E-cadherin, alpha-, beta-, and gamma-catenin, and p120) in sarcomatoid renal cell carcinoma[J]. J Surg Oncol, 2001, 77(2):123-131.
    127. Getsios S, Chen GT, MacCalman CD. alpha-, beta-, gamma-catenin, and p120(CTN) expression during the terminal differentiation and fusion of human mononucleate cytotrophoblasts in vitro and in vivo[J]. Mol Reprod Dev, 2001, 59(2):168-177.
    128. Xu W, Kimelman D. Mechanistic insights from structural studies of beta-catenin and its binding partners[J]. J Cell Sci, 2007, 120(Pt 19):3337-3344.
    129. Sorkin BC, Wang MY, Dobeck JM, et al. The cadherin-catenin complex is expressed alternately with the adenomatous polyposis coli protein during rat incisor amelogenesis[J]. J Histochem Cytochem, 2000, 48(3):397-406.
    130. Samowitz WS, Powers MD, Spirio LN, et al. Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas[J]. Cancer Res, 1999, 59(7):1442-1444.
    131. Brabletz T, Jung A, Dag S, et al. [beta-Catenin induces invasive growth by activating matrix metalloproteinases in colorectal carcinoma] [J]. Verh Dtsch Ges Pathol, 2000, 84:175-181.
    132. Shimizu T, Kagawa T, Inoue T, et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells[J]. Mol Cell Biol, 2008, 28(24):7427-7441.
    133. Hatsell S, Rowlands T, Hiremath M, et al. Beta-catenin and Tcfs in mammary development and cancer[J]. J Mammary Gland Biol Neoplasia, 2003, 8(2):145-158.
    134. Almeida M, Han L, Bellido T, et al. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT[J]. J Biol Chem, 2005, 280(50):41342-41351.
    135. Chen S, Guttridge DC, You Z, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription[J]. J Cell Biol, 2001, 152(1):87-96.
    136. Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression[J]. Cell Mol Biol Lett, 2005, 10(4):631-647.
    137. Majumder S, Ghoshal K, Datta J, et al. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription[J]. J Biol Chem, 2006, 281(31):22062-22072.
    138. Oridate N, Lotan R. Suppression of DNA methyltransferase 1 levels in head and neck squamous carcinoma cells using small interfering RNA results in growth inhibition and increase in Cdk inhibitor p21[J]. Int J Oncol, 2005, 26(3):757-761.
    139. Zhu X, Mao X, Hurren R, et al. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells[J]. J Clin Endocrinol Metab, 2008, 93(9):3610-3617.
    140. Muerkoster SS, Werbing V, Koch D, et al. Role of myofibroblasts in innate chemoresistance of pancreatic carcinoma--epigenetic downregulation of caspases[J]. Int J Cancer, 2008, 123(8):1751-1760.
    141. Yokochi T, Robertson KD. Doxorubicin inhibits DNMT1, resulting in conditional apoptosis[J]. Mol Pharmacol, 2004, 66(6):1415-1420.
    142. Yaqinuddin A, Qureshi SA, Qazi R, et al. Down-regulation of DNMT3b in PC3 cells effects locus-specific DNA methylation, and represses cellular growth and migration[J]. Cancer Cell Int, 2008, 8:13.
    143. Kassis ES, Zhao M, Hong JA, et al. Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells[J]. J Thorac Cardiovasc Surg, 2006, 131(2):298-306.
    144. Chowdhury I, Tharakan B, Bhat GK. Current concepts in apoptosis: the physiological suicide program revisited[J]. Cell Mol Biol Lett, 2006, 11(4):506-525.
    145. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control[J]. Cell Death Differ, 2006, 13(8):1351-1359.
    146. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases[J]. J Biol Chem, 1999, 274(29):20049-20052.
    147. Mashima T, Naito M, Kataoka S, et al. [Cancer chemotherapy and apoptosis] [J]. Nippon Rinsho, 1996, 54(7):1935-1942.
    148. Swift LP, Rephaeli A, Nudelman A, et al. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death[J]. Cancer Res, 2006, 66(9):4863-4871.
    149. Cox RF. Managing skin damage induced by doxorubicin hydrochloride and daunorubicin hydrochloride[J]. Am J Hosp Pharm, 1984, 41(11):2410-2414.
    150. Brunello A, Roma A, Falci C, et al. Chemotherapy and targeted agents for elderly women with advanced breast cancer[J]. Recent Pat Anticancer Drug Discov, 2008, 3(3):187-201.
    151. Pelayo Alvarez M, Gallego Rubio O, Bonfill Cosp X, et al. Chemotherapy versus best supportive care for extensive small cell lung cancer[J]. Cochrane Database Syst Rev, 2009(4):CD001990.
    152. Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacol Rev, 2004, 56(2):185-229.
    153. Sliwinska MA, Mosieniak G, Wolanin K, et al. Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells[J]. Mech Ageing Dev, 2009, 130(1-2):24-32.
    154. Ma S, Tang J, Feng J, et al. Induction of p21 by p65 in p53 null cells treated with Doxorubicin[J]. Biochim Biophys Acta, 2008, 1783(5):935-940.
    155. Stravopodis DJ, Karkoulis PK, Konstantakou EG, et al. Grade-dependent effects on cell cycle progression and apoptosis in response to doxorubicin in human bladder cancer cell lines[J]. Int J Oncol, 2009, 34(1):137-160.
    156. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death[J]. Cell Death Differ, 1999, 6(11):1028-1042.
    157. Hale AJ, Smith CA, Sutherland LC, et al. Apoptosis: molecular regulation of cell death[J]. Eur J Biochem, 1996, 236(1):1-26.
    158. Lockshin RA. [Programmed cell death: history and future of a concept] [J]. J Soc Biol, 2005, 199(3):169-173.
    159. Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis[J]. Science, 1998, 281(5381):1355-1357.
    160. Orth K, O'Rourke K, Salvesen GS, et al. Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases[J]. J Biol Chem, 1996, 271(35):20977-20980.
    161. Miura M, Zhu H, Rotello R, et al. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3[J]. Cell, 1993, 75(4):653-660.
    162. Agarwal A, Mahfouz RZ, Sharma RK, et al. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes[J]. Reprod Biol Endocrinol, 2009, 7:143.
    163. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo[J]. Cell, 1998, 94(3):339-352.
    164. O'Reilly LA, Huang DC, Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry[J]. Embo J, 1996, 15(24):6979-6990.
    165. Boise LH, Thompson CB. Bcl-x(L) can inhibit apoptosis in cells that have undergone Fas-induced protease activation[J]. Proc Natl Acad Sci U S A, 1997, 94(8):3759-3764.
    166. Bras A, Martinez AC, Baixeras E. B cell receptor cross-linking prevents Fas-induced cell death by inactivating the IL-1 beta-converting enzyme protease and regulating Bcl-2/Bcl-x expression[J]. J Immunol, 1997, 159(7):3168-3177.
    167. Cazals-Hatem DL, Louie DC, Tanaka S, et al. Molecular cloning and DNA sequence analysis of cDNA encoding chicken homologue of the Bcl-2 oncoprotein[J]. Biochim Biophys Acta, 1992, 1132(1):109-113.
    168. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death[J]. Cell, 1993, 74(4):609-619.
    169. Korsmeyer SJ, Shutter JR, Veis DJ, et al. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death[J]. Semin Cancer Biol, 1993, 4(6):327-332.
    170. Marchetti A, Cecchinelli B, D'Angelo M, et al. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK[J]. Cell Death Differ, 2004, 11(6):596-607.
    171. Lee SW, Fang L, Igarashi M, et al. Sustained activation of Ras/Raf/mitogen-activated protein kinase cascade by the tumor suppressor p53[J]. Proc Natl Acad Sci U S A, 2000, 97(15):8302-8305.
    172. Deguin-Chambon V, Vacher M, Jullien M, et al. Direct transactivation of c-Ha-Ras gene by p53: evidence for its involvement in p53 transactivation activity and p53-mediated apoptosis[J]. Oncogene, 2000, 19(51):5831-5841.
    173. Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents[J]. Cancer Res, 1999, 59(7):1391-1399.
    174. Schuler M, Green DR. Transcription, apoptosis and p53: catch-22[J]. Trends Genet, 2005, 21(3):182-187.
    175. Shin S, Sung BJ, Cho YS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7[J]. Biochemistry, 2001, 40(4):1117-1123.
    176. Suzuki A, Ito T, Kawano H, et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death[J].Oncogene, 2000, 19(10):1346-1353.
    177. Calviello G, Resci F, Serini S, et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2[J]. Carcinogenesis, 2007, 28(6):1202-1209.
    178. Rodel F, Hoffmann J, Distel L, et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer[J]. Cancer Res, 2005, 65(11):4881-4887.
    179. Lackner MR. Prospects for personalized medicine with inhibitors targeting the RAS and PI3K pathways[J]. Expert Rev Mol Diagn, 10(1):75-87.
    180. Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34[J]. Biochem J, 2008, 410(1):1-17.
    181. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation[J]. Biochemistry (Mosc), 2000, 65(1):59-67.
    182. Cantley LC. The phosphoinositide 3-kinase pathway[J]. Science, 2002, 296(5573):1655-1657.
    183. Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer[J]. Annu Rev Cell Dev Biol, 2001, 17:615-675.
    184. Hamacher R, Schmid RM, Saur D, et al. Apoptotic pathways in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2008, 7:64.
    185. Hayden MS, Ghosh S. Signaling to NF-kappaB[J]. Genes Dev, 2004, 18(18):2195-2224.
    186. Liptay S, Weber CK, Ludwig L, et al. Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer[J]. Int J Cancer, 2003, 105(6):735-746.
    187. Thomas RP, Farrow BJ, Kim S, et al. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death[J]. Surgery, 2002, 132(2):127-134.
    188. Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410(6824):37-40.
    189. Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science, 1994, 265(5173):808-811.
    190. Ghatan S, Larner S, Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons[J]. J Cell Biol, 2000, 150(2):335-347.
    191. Goldman EH, Chen L, Fu H. Activation of apoptosis signal-regulating kinase 1 by reactive oxygen species through dephosphorylation at serine 967 and 14-3-3 dissociation[J]. J Biol Chem, 2004, 279(11):10442-10449.
    192. Nakahara S, Yone K, Sakou T, et al. Induction of apoptosis signal regulating kinase 1 (ASK1) after spinal cord injury in rats: possible involvement of ASK1-JNK and -p38 pathways in neuronal apoptosis[J]. J Neuropathol Exp Neurol, 1999, 58(5):442-450.
    193. Royuela M, Rodriguez-Berriguete G, Fraile B, et al. TNF-alpha/IL-1/NF-kappaB transduction pathway in human cancer prostate[J]. Histol Histopathol, 2008, 23(10):1279-1290.
    194. Katakura Y, Nakata E, Miura T, et al. Transforming growth factor beta triggers two independent-senescence programs in cancer cells[J]. Biochem Biophys Res Commun,1999, 255(1):110-115.
    195. Kawado T, Hayashi O, Sato T, et al. Rapid cell senescence-associated changes in galactosylation of N-linked oligosaccharides in human lung adenocarcinoma A549 cells[J]. Arch Biochem Biophys, 2004, 426(2):306-313.
    196. Place RF, Noonan EJ, Giardina C. HDACs and the senescent phenotype of WI-38 cells[J]. BMC Cell Biol, 2005, 6:37.
    197. Buckley S, Shi W, Driscoll B, et al. BMP4 signaling induces senescence and modulates the oncogenic phenotype of A549 lung adenocarcinoma cells[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286(1):L81-86.
    198. Munro J, Barr NI, Ireland H, et al. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock[J]. Exp Cell Res, 2004, 295(2):525-538.
    199. Roninson IB. Tumor cell senescence in cancer treatment[J]. Cancer Res, 2003, 63(11):2705-2715.
    200. el-Deiry WS, Harper JW, O'Connor PM, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis[J]. Cancer Res, 1994, 54(5):1169-1174.
    201. Han Z, Wei W, Dunaway S, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin[J]. J Biol Chem, 2002, 277(19):17154-17160.
    202. Lin AW, Barradas M, Stone JC, et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling[J]. Genes Dev, 1998, 12(19):3008-3019.
    203. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a[J]. Cell, 1997, 88(5):593-602.
    204. Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk[J]. Cytokine Growth Factor Rev, 2005, 16(3):251-263.
    205. Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins[J]. Adv Immunol ,2000, 75:115-157.
    206. Jeffery TK, Upton PD, Trembath RC, et al. BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(2):L370-378.
    207. Fan J, Shen H, Sun Y, et al. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells[J]. J Cell Physiol, 2006, 207(2):499-505.
    208. Hu MC, Wasserman D, Hartwig S, et al. p38MAPK acts in the BMP7-dependent stimulatory pathway during epithelial cell morphogenesis and is regulated by Smad1[J]. J Biol Chem, 2004, 279(13):12051-12059.
    209. Aubin J, Davy A, Soriano P. In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis[J]. Genes Dev, 2004, 18(12):1482-1494.
    210. Su D, Zhu S, Han X, et al. BMP4-Smad signaling pathway mediates adriamycin-induced premature senescence in lung cancer cells[J]. J Biol Chem, 2009, 284(18):12153-12164.
    211. Rebbaa A, Zheng X, Chou PM, et al. Caspase inhibition switches doxorubicin-inducedapoptosis to senescence[J]. Oncogene, 2003, 22(18):2805-2811.
    212. Sohn D, Essmann F, Schulze-Osthoff K, et al. p21 blocks irradiation-induced apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase-mediated caspase-9 activation[J]. Cancer Res, 2006, 66(23):11254-11262.
    213. Jin YH, Yoo KJ, Lee YH, et al. Caspase 3-mediated cleavage of p21WAF1/CIP1 associated with the cyclin A-cyclin-dependent kinase 2 complex is a prerequisite for apoptosis in SK-HEP-1 cells[J]. J Biol Chem, 2000, 275(39):30256-30263.
    214. Takash W, Canizares J, Bonneaud N, et al. SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling[J]. Nucleic Acids Res, 2001, 29(21):4274-4283.
    215. Jay P, Berta P, Blache P. Expression of the carcinoembryonic antigen gene is inhibited by SOX9 in human colon carcinoma cells[J]. Cancer Res, 2005, 65(6):2193-2198.
    216.卢圣栋.《现代分子生物学实验技术》(第二版)[M].北京:中国协和医科大学出版社,1999
    217. J.萨姆布鲁克,D.W拉塞尔主编.分子克隆实验指南第三版[M].黄培堂等译.北京:科学出版社,2002
    218. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25:402-408.
    219. Dave B, Eason RR, Till SR, et al. The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN[J]. Carcinogenesis, 2005, 26(10):1793-1803.
    220. Rebbaa A, Zheng X, Chu F, et al. The role of histone acetylation versus DNA damage in drug-induced senescence and apoptosis[J]. Cell Death Differ, 2006, 13(11):1960-1967.
    221. Chen J, Huang X, Halicka D, et al. Contribution of p16INK4a and p21CIP1 pathways to induction of premature senescence of human endothelial cells: permissive role of p53[J]. Am J Physiol Heart Circ Physiol, 2006, 290(4):H1575-1586.
    222. Chang BD, Xuan Y, Broude EV, et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs[J]. Oncogene, 1999, 18(34):4808-4818.
    223. Elmore LW, Rehder CW, Di X, et al. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction[J]. J Biol Chem, 2002, 277(38):35509-35515.
    224. Hayward RL, Macpherson JS, Cummings J, et al. Antisense Bcl-xl down-regulation switches the response to topoisomerase I inhibition from senescence to apoptosis in colorectal cancer cells, enhancing global cytotoxicity[J]. Clin Cancer Res, 2003, 9(7):2856-2865.
    225. Chiu CC, Li CH, Ung MW, et al. Etoposide (VP-16) elicits apoptosis following prolonged G2-M cell arrest in p53-mutated human non-small cell lung cancer cells[J]. Cancer Lett, 2005, 223(2):249-258.
    226. Chang BD, Broude EV, Dokmanovic M, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents[J]. Cancer Res, 1999, 59(15):3761-3767.
    227. Ling Y, Sankpal UT, Robertson AK, et al. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histonedeacetylases (HDACs) and its capacity to repress transcription[J]. Nucleic Acids Res, 2004, 32(2):598-610.
    228. Datta J, Ghoshal K, Sharma SM, et al. Biochemical fractionation reveals association of DNA methyltransferase (Dnmt) 3b with Dnmt1 and that of Dnmt 3a with a histone H3 methyltransferase and Hdac1[J]. J Cell Biochem, 2003, 88(5):855-864.
    229. Wang YA, Kamarova Y, Shen KC, et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression[J]. Cancer Biol Ther, 2005, 4(10):1138-1143.
    230. Caldwell GM, Jones C, Gensberg K, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis[J]. Cancer Res, 2004, 64(3):883-888.
    231. Aguilera O, Fraga MF, Ballestar E, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer[J]. Oncogene, 2006, 25(29):4116-4121.
    232. Fu X, Li J, Li K, et al. Hypermethylation of APC promoter 1A is associated with moderate activation of Wnt signalling pathway in a subset of colorectal serrated adenomas[J]. Histopathology, 2009, 55(5):554-563.
    233. Yang ZQ, Liu G, Bollig-Fischer A, et al. Methylation-associated silencing of SFRP1 with an 8p11-12 amplification inhibits canonical and non-canonical WNT pathways in breast cancers[J]. Int J Cancer, 2009, 125(7):1613-1621.
    234. Lin YW, Chung MT, Lai HC, et al. Methylation analysis of SFRP genes family in cervical adenocarcinoma[J]. J Cancer Res Clin Oncol, 2009, 135(12):1665-1674.
    235. Ignatov A, Bischoff J, Ignatov T, et al. APC promoter hypermethylation is an early event in endometrial tumorigenesis[J]. Cancer Sci, 101(2):321-327.
    236. Zhang W, Glockner SC, Guo M, et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer[J]. Cancer Res, 2008, 68(8):2764-2772.
    237. Dammann R, Strunnikova M, Schagdarsurengin U, et al. CpG island methylation and expression of tumour-associated genes in lung carcinoma[J]. Eur J Cancer, 2005, 41(8):1223-1236.
    238. Elliott MJ, Dong YB, Yang H, et al. E2F-1 up-regulates c-Myc and p14(ARF) and induces apoptosis in colon cancer cells[J]. Clin Cancer Res, 2001, 7(11):3590-3597.
    239. Moghaddam SJ, Haghighi EN, Samiee S, et al. Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in hepatocellular carcinoma in Iran[J]. World J Gastroenterol, 2007, 13(4):588-593.
    240. Li CH, Tzeng SL, Cheng YW, et al. Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway[J]. J Biol Chem, 2005, 280(28):26193-26199.
    241. Weinberg WC, Denning MF. P21Waf1 control of epithelial cell cycle and cell fate[J]. Crit Rev Oral Biol Med, 2002, 13(6):453-464.
    242. Marcotte R, Wang E. Replicative senescence revisited[J]. J Gerontol A Biol Sci Med Sci, 2002, 57(7):B257-269.
    243. Roninson IB. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts[J]. Cancer Lett, 2002, 179(1):1-14.
    244. Gerland LM, Ffrench M, Magaud JP. [Cyclin dependent kinase inhibitors and replicative senescence] [J]. Pathol Biol (Paris), 2001, 49(10):830-839.
    245. Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes[J]. Exp Gerontol, 2000, 35(8):927-945.
    246. Zheng QH, Ma LW, Zhu WG, et al. p21Waf1/Cip1 plays a critical role in modulating senescence through changes of DNA methylation[J]. J Cell Biochem, 2006, 98(5):1230-1248.
    247. Brenner C, Deplus R, Didelot C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor[J]. Embo J, 2005, 24(2):336-346.
    248. Milutinovic S, Brown SE, Zhuang Q, et al. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation[J]. J Biol Chem, 2004, 279(27):27915-27927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700