用户名: 密码: 验证码:
胰岛素样生长因子I型受体作为肿瘤治疗靶点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素生长因子I型受体(Insulin-like growth factor-Ⅰreceptor, IGF-IR)是细胞表面跨膜酪氨酸激酶受体,在细胞的增殖、分化、凋亡和转移中发挥重要的功能。IGF-IR在很多肿瘤中过表达,包括乳腺癌、肺癌、宫颈癌、肾母细胞瘤等。另外研究发现IGF-IR在正常肝细胞中低表达,而在肝细胞肝癌(Hepatocellular carcinoma, HCC)中高表达。在对HCC进行治疗时,IGF-IR信号的活化是HCC对很多化疗药物产生耐药的重要原因之一。因此,在对HCC进行治疗的过程中,IGF-IR是个潜在的治疗靶点。目前已经开发了很多针对IGF-IR胞内区酪氨酸激酶的小分子抑制剂,但由于IGF-IR胞内区与IR具有很高的同源性,这种小分子抑制剂的应用前景受到挑战。最近开发了许多针对IGF-IR的特异性单克隆抗体,虽然这些抗体针对很多肿瘤细胞做了临床前的研究,但关于抗IGF-IR的单克隆抗体对HCC治疗效果还没有进行全面的研究报道。
     本研究通过杂交瘤技术筛选出针对IGF-IR的单克隆抗体4F2,4F2能抑制配体IGF-Ⅰ/Ⅱ与受体IGF-IR的结合,但不能抑制胰岛素与其受体IR的结合;CCK-8检测发现4F2抑制了HCC细胞的增殖,当其与阿霉素联用时抑制效果比单用时更明显;4F2能抑制IGF-IR及作用底物IRS-1的磷酸化,以及抑制IGF-IR下游信号通路分子的活化。在4F2作用肿瘤细胞48小时后引起IGF-IR表达下调;4F2和阿霉素单用时引起细胞发生凋亡,当两者联合使用时增强了细胞的凋亡率,通过对前凋亡分子以及抗凋亡分子表达变化的检测得到进一步证实;体内治疗结果显示,4F2单独使用时,效果不明显,但当其阿霉素联用时增强了阿霉素的抑瘤作用。
     在全世界头颈癌(squamous cell carcinomas of the head and neck, SCCHN)是第十种最流行的癌症。尽管在目前的治疗方法有了很大的提高,在过去的10年中5年生存率却依然很低。因此,特别是对于低分化的SCCHN,发现新的、有效的分子靶向治疗方法及其分子作用机制是很重要的治疗途径。
     IGF-IR在癌症治疗中是一个新的潜在的靶点。以前也有研究证明在SCCHN中有IGF-IR过表达,而且IGF-IR信号的活化增强了头颈癌细胞的增殖、迁移。但到目前为止,通过IGF-IR的反义寡核苷酸单独或与化疗药对SCCHN进行联合治疗的效果未曾有报道,本研究试图通过下调IGF-IR的表达来观察对IGF-IR通路的抑制能否增强化疗药对SCCHN的敏感性。IGF-IR的硫代磷酸反义寡核苷酸(phosphorothioate antisense oligonucleotides, AS[S]ODN)下调了IGF-IR的表达,抑制TU159和183A细胞增殖,减弱了IGF-IR的磷酸化及其下游信号通路的活化。AS[S]ODN提高了化疗药物对TU159和183A细胞的抑制作用,增强了化疗药阿霉素诱导的细胞凋亡。体内实验发现,AS[S]ODN增强了阿霉素对TU159肿瘤的抑制作用。
IGF-IR is a membrane-bound tyrosine kinase receptor that plays a critical role in tumor cell proliferation, differentiation and apoptosis. The IGF-IR expression was constitutively low in normal hepatocytes and overexpressed in HCC. And what's more, the level of ligand IGF-Ⅱis highly expressed in many human malignancies, including breast cancer, pediatric tumors, colon cancer and HCC. Therefore, IGF-IR is an attractive anti-tumor target for HCC.Because of high homology to insulin receptor, the development of specific small molecule inhibitors of IGF-IR tyrosine kinase activity was challengeable. Recently, many specific neutralizing antibodies for IGF-IR have been researched. Although the effects of anti-tumor about theses antibodies were tested for several cell types, no comprehensive research on the anti-tumorignic impact on HCC cells have been reported to date.
     Here, we generated a murine anti-IGF-IR antibody and tested our hypothesis both in vitro and in vivo by treating HCC tumor cells with the 4F2 antibody alone and in combination with the cytotoxic chemotherapeutic drugs. The anti-IGF-IR therapeutic antibody 4F2 blocks IGF-induced IGF-IR signaling and downregulates the expression of IGF-IR in HCC cells. The antitumor effect of treatment with doxorubicin could be enhanced by combining it with the 4F2.
     Squamous cell carcinoma of head and neck (HNSCC) is the tenth most common cancer in worldwide. In spite of advances in recent therapies, the 5-year mortality rate of SCCHN patients has not improved in the past few decades. It is important to discover novel and effective molecular-targeted approaches. Previous studies have indicated that IGF-IR is highly expressed in human head and neck cancer and that IGF-IR signaling significantly improves the proliferation, motility, and tumorigenicity of human head and neck cancer cell lines. However, the function of IGF-IR overexpression regarding therapy in human head and neck cancer is still unclear.
     In this study, we attempt to investigate whether IGF-IR downregulation results in an enhanced chemosensitive phenotype of head and neck cancer cells. Compared to phosphorothioate sense oligonucleotides (SS[S]ODN), IGF-IR phosphorothioate antisense oligonucleotides (AS[S]ODN) treatment inhibited cancer cell proliferation and attenuated activation of IGF-IR, IRS-1, Erk and Akt. IGF-IR antisense treatment was shown to enhance the sensitivity of SCCHN cell lines to doxorubicin in vitro and in vivo.
引文
[1]Curado MP, Hashibe M. Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol 2009;21:194-200.
    [2]Pollak MN, Schemhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer 2004;4:505-18.
    [3]Mitsiades CS, Mitsiades N. Treatment of hematologic malignancies and solid tumors by inhibiting IGF receptor signaling, Expert Rev Anticancer. Ther 2005;5:487-99.
    [4]Reinmuth N, Fan F, Liu W, et al. Impact of insulin-like growth factor receptor-1 function on angiogenesis, growth, and metastasis of colon cancer. Lab Invest 2002;82:1377-89.
    [5]Lee CY, Jeon JH, Kim HJ, et al. Clinical 1 significance of insulin-like growth factor-1 receptor expression in stage 1 nonsmall-cell lung cancer: immunohistochemical analysis. Korean J Intern Med 2008;23:116-20.
    [6]Belinsky MG, Rink L, Cai KQ, et al. The insulin-like growth factor system as a potential therapeutic target in gastrointestinal stromal tumors. Cell Cycle 2008;7: 2949-55.
    [7]Slomiany MG, Black LA, Kibbey MM, et al. Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma.Cancer Lett 2007;248:269-79.
    [8]Barnes CJ, Ohshiro K, Rayala SK, et al. Insulin-like Growth Factor Receptor as a Therapeutic Target in Head and Neck Cancer. Clin Cancer Res 2007; 13:4291-9.
    [9]Resnicoff M, Coppola D, Sell C, et al.Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor. Cancer Res 1994; 54:4848-50.
    [10]D'cunja J, Shalaby T, Rivera P, et al. Antisense treatment of IGF-IR induces apoptosis and enhances chemosensitivity in central nervous system atypical teratoid/rhabdoid tumours cells. Eur J Cancer 2007;43:1581-9.
    [11]Kurihara S, Hakuno F, Takahashi S. Insulin-like growth factor-Ⅰ-dependent signal transduction pathways leading to the induction of cell growth and differentiation of human neuroblastoma cell line SH-SY5Y:The roles of MAP kinase pathway and PI 3-kinase pathway. Endocr J 2000;47:739-51.
    [12]Tang Y, Zhang D, Fallavollita L, et al. Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type Ⅰ insulin-like growth factor receptor. Cancer Res 2003;63:1166-71.
    [13]Maloney EK, McLaughlin JL, Dagdigian NE,et al. Ananti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 2003;63:5073-83.
    [14]Liu X, Turbyville T, Fritz A, et al. Inhibition of insulin-like growth factor Ⅰ receptor expression in neuroblastoma cells induces the regression of established tumors in mice. Cancer Res 1998; 58:5432-8.
    [15]Lee CT, Wu S, Gabrilovich D, et al. Antitumor effects of an adenovirus expressing antisense insulin-like growth factor Ⅰ receptor on human lung cancer cell lines. Cancer Res 1996; 56:3038-41.
    [16]Burfeind P, Chernicky CL, Rininsland F, et al. Antisense RNA to the type Ⅰ insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo.PNAS USA 1996;93:7263-8.
    [17]Gooch JL, Van Den Berg CL, Yee D. Insulin-like growth factor (IGF)-Ⅰ rescues breast cancer cells from chemotherapy-induced cell death:proliferative and anti-apoptotic effects. Breast Cancer Res Treat 1999;56:1-10.
    [18]Benini S, Manara MC, Baldini N, et al. Inhibition of insulin-like growth factor Ⅰ receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells. Clin Cancer Res 2006; 17:1790-7.
    [19]Turner BC, Haffty BG., Narayanan L, et al. Insulin-like growth factor-Ⅰreceptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 1997;57:3079-83.
    [20]Sell C, Baserga R, Rubin R. Insulin-like growth factor Ⅰ (IGF-Ⅰ) and the IGF-Ⅰ receptor prevent etoposide-induced apoptosis. Cancer Res 1995;55:303-6.
    [21]Nakamura S, Watanabe H, Miura M,et al.Effect of the insulin-like growth factor 1 receptor on ionizing radiation-induced cell death in mouse embryo fibroblast. Exp Cell Res 1997; 235:287-94.
    [22]Dunn SE, Hardman RA, Kari FW, et al.Insulin-like growth factor 1 (IGF-Ⅰ) alters drug sensitivity of HBL 100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 1997;57:2687-93.
    [23]Warshamana-Greene G.S, Litz J, Buchdunger E, et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 2005;11:1563-71.
    [24]Baserga R, Hongo A, Rubini M, et al. The IGF-Ⅰ receptor in cellgrowth, transformation and apoptosis. Biochim Biophys Acta 1997; 1332:F 105-26.
    [25]Macaulay VM, Salisbury AJ, Bohula EA, et al. Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene 2001;20:4029-40.
    [26]Playford MP, Bicknell D, Bodmer WF, et al. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA 2000; 97:12103-8.
    [1]Lin CM, Huang YL, Lin ZY. Influence of gender on serum growth hormone, insulin-like growth factor-Ⅰ and its binding protein-3 during aging. Yonsei Med J 2009;50:407-13.
    [2]Humbel RE. Insulin-like growth factors Ⅰ and Ⅱ. Eur J Biochem 1990; 190:445-62.
    [3]Pietrzkowski Z, Mulholland G, Gomella L, Jameson BA, Wernicke D, Baserga R. Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1. Cancer Res 1993;53:1102-6.
    [4]Choi JE, Lee SS, Sunde DA,et al.Insulin-like growth factor-Ⅰ receptor blockade improves outcome in mouse model of lung injury. m J Respir Crit Care Med 2009;179:212-9.
    [5]Scrimgeour AG, Blakesley VA, Stannard BS, Le Roith D. Mitogenactivated protein kinase and phosphatidylinositol 3-kinase pathways are not sufficient for insulin-like growth factor Ⅰ-inducedmitogenesis and tumorigenesis. Endocrinology 1997; 138: 2552-8.
    [6]Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor 1 receptor signalling in cancer. r J Cancer 2005;92:2097-101
    [7]Kaleko M, Rutter WJ, Miller AD. Overexpression of the human insulin-like growth factor Ⅰ receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol 1990; 10:464-73.
    [8]Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor.Proc Natl Acad Sci USA 1993;90:11217-21.
    [9]Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer 2003; 107:873-7.
    [10]Le Roith D, Roberts CT. The insulin-like growth factor system and cancer. Cancer Lett 2003; 195:127-37.
    [11]Macaulay VM. Insulin-like growth factors and cancer.Br J Cancer 1992;65:311-20.
    [12]Rajski M, Zanetti-Dallenbach R, Vogel B,et al.IGF-Ⅰ induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients. BMC Med 2010;8:1.
    [13]Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R,et al. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 1994;54:2218-22.
    [14][Lindsay CR, Evans TJ. The insulin-like growth factor system and its receptors:A potential novel anticancer target. Biologics 2008;2:855-64.
    [15]Liu T, Wu J, Huang Q, et al. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock,2008;29(5):603-11
    [16]董志伟,王琰,等.抗体工程[M].2版.北京:北京医科大学出版社,2002:267,2802282,3052308.
    [17]Sepp-Lorenzino L. Structure and function of the insulin-like growth factor Ⅰ receptor. Breast Cancer Res 1998;47:235-53.
    [18]Herbert Y, Thomas R. Role of the insulin-like growth factor family in cancer development and progression. Natl Cancer Inst 2000;92 (18):1472-89
    [19]Duman CH, Schlesinger L, Terwilliger R,et al.Peripheral insulin-like growth factor-Ⅰ produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res 2009;198:366-71
    [20]Baserga R. IGF-Ⅰ receptor signaling in cell growth and prolif-eration. In Hall MN, RaffM, Thomas G, eds. Cell growth:control of cell size. Cold Spring Harbor Laboratory Press,2004.235-263
    [21]Waksmanski B, Dudkiewicz J, Dabrowski S. Fuction of insulin-like growth factor(IGF-1)and its binding protein (IGFBP) in pathological proliferation of endometrium. Wiad Lek 2001; 54 (11-12):656-61.
    [22].Sachdev D, Li SL, Hartell JS, et al. A chimeric humanized single-chain antibody against the type 1 insulin like growth factor (IGF)receptor renders breast cancer cells refractory to themitogenic effects of IGF-1. Cancer Res 2003;63(3):627-35.
    [23]Sedlaczek N, Hasilik A, Neuhaus P, Schuppan D, Herbst H. Focal overexpression of insulin-like growth factor 2 by hepatocytes and cholangiocytes in viral liver cirrhosis. Br J Cancer 2003;88:733-9.
    [24]Scharf JG, Braulke T. The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res 2003;35:685-93.
    [25]Yao X, Hu JF, Daniels M, Yien H, Lu H, Sharan H, et al. A novel orthotopic tumor model to study growth factors and oncogenes in hepatocarcinogenesis. Clin Cancer Res 2003;9:2719-26.
    [1]Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth 1 factor-Ⅱ signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008;14:1690-8.
    [2]Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer2003; 107:873-7.
    [3]Pollak MN, Schernhammer ES, Hankinson SE. Insulinlike growth factors and neoplasia. Nat Rev Cancer 2004;4:505-18.
    [4]Resnik JL, Reichart DB, Huey K, et al. Elevated Insulin-like growth factor Ⅰ receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res 1998;58:1159-64.
    [5]Pekonen F, Partanen S, Makinen T, et al. Receptor for epidermal growth factor and insulin-like growth factor Ⅰ and their relation to steroid receptors in human breast cancer. Cancer Res 1988;48:1343-7.
    [6]Steller MA, Delgado CH, Bartels CJ, et al. Overexpression of the insulin-like growth factor 1 receptor and autocrine stimulation in human cervical cancer cells. Cancer Res 1996;15:1761-5.
    [7]Werner H, Re GG, Drummond IA, et al. Increased expression of the insulin-like growth factor Ⅰ receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc Natl Acad Sci U S A 1993;90:5828-32.
    [8]Kaiser U, Schardt C, Brandscheidt D, et al. Expression of insulin-like growth factor receptors Ⅰ and in normal human lung and in lung cancer. J Cancer Res Clin Oncol 1993;119:665.
    [9]Parker AS, Cheville JC, Janney CA, et al. High expression levels of insulin-like growth factor-Ⅰ receptor predict poor survival among women with clear-cell renal cell carcinoma. Hum Pathol 2002;33:801-5.
    [10]Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells. Science 1997;276:1268-72.
    [11]Sohda T, Iwata K, Soejima H, et al. In situ detection.of insulin-like growth factor Ⅱ (IGF2) and H19 gene expression in hepatocellular carcinoma. J Hum Genet 1998;43:49-53.
    [12]Takeda S, Kondo M, Kumada T, et al. Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease. Oncogene 1996; 12:1589-92.
    [13]Boulle N, Logie A, Gicquel C, et al. Increased levels of insulin-like growth factor Ⅱ (IGF-Ⅱ) and IGF-binding protein 2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 1998;83:1713-20.
    [14]Martin DM, Singleton JR, Meghani MA, et al. IGF receptor function and regulation in autocrine human neuroblastoma cell growth. Regul Pept 1993;48:225-32.
    [15]Reeve AE, Eccles MR, Wilkins RJ, et al. Expression of insulin-like growth factor-Ⅱ transcripts in Wilms'tumour. Nature 1985;317:258-62.
    [16]Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 2006;25:3787-800.
    [17]Wilkin F, Gagne N, Paquette J, et al. Pediatric adrenocortical tumors:molecular events leading to insulin-like growth factor Ⅱ gene overexpression. J Clin Endocrinol Metab 2000;85:2048-56.
    [18]Denley A, Brierley GV, Carroll JM, et al. Differential activation of insulin receptor isoforms by insulin-like growth factors is determined by the C domain. Endocrinology 2006;147:1029-36.
    [19]acobs S, Cook S, Svoboda ME, et al. Interaction of the monoclonal antibodies alpha IR-1 and alpha IR-3 with insulin and somatomedin-C receptors. Endocrinology 1986;118:223-6.
    [20]Sachdev D, Li SL, Hartell JS, et al. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-Ⅰ. Cancer Res 2003; 63:627-35.
    [21]Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005;11:2063-73.
    [22]Lu D, Zhang H, Koo H, et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 2005;280:19665-72.
    [23]M. Hopfner, A. Huether, A.P. Sutter, V. Baradari, D. Schuppan, Blockade of IGF-1 receptor tyrosine kinase has antineoplastic effects in hepatocellular carcinoma cells.Biochemical pharmacology 2006;71:1435-48.
    [24]Valentinis B,Baserga R. IGF-I receptor signalling in transformation and differentiation. Mol Pathol 2001;54:133-7.
    [25]Hellawell GO, Turner GD, Davies DR, et al. Expression of the type 1 insulin-like growth factor receptor is upregulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002;62:2942-50.
    [26]Samani AA, Brodt P. The receptor for the type I insulin2like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am 2001;10:289-312.
    [27]Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol 2001;54:138-44.
    [28]Chun K, Kosmeder Ⅱ JW, Sun S, et al. Effects of deguelin on the phosphat idylinositol 32 kinase AKT pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 2003;95:291-302.
    [29]Moorehead RA, Sanchez OH, Baldw in RM, et al. T ransgenic overexpression of IGF-Ⅱ induces spontaneous lung tumors:a model for human lung adenocarcinoma. Oncogene 2003;22:853-7.
    [30]Katayose Y, Kim M, Rakkar AN, et al. Promoting apoptosis:a novel activity associated with the cyclin-dependentkinase inhibitor P27. Cancer Res 1997; 57:5441-5.
    [31]Gooch JL, Van Den Berg CL, Yee D. Insulin-like growth factor (IGF)-Ⅰ rescues breast cancer cells from chemotherapy-induced cell death:proliferative and anti-apoptotic effects,Breast Cancer ResTreat 1999;56:1-10.
    [32]Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Lollini PL,et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells, Clin Cancer Res 2001;7:1790-7.
    [33]Sell C, Baserga R, Rubin R.Insulin-like growth factor Ⅰ (IGF-Ⅰ) and the IGF-Ⅰ receptor prevent etoposide-induced apoptosis,Cancer Res 1995;55:303-6.
    [34]Nakamura S, Watanabe H, Miura M, Sasaki T.Effect of the insulin-like growth factor 1 receptor on ionizing radiation-induced cell death in mouse embryo fibroblast,Exp Cell Res 1997; 235:287-94.
    [35]Dunn SE, Hardman RA, Kari FW.Insulin-like growth factor 1 (IGF-Ⅰ) alters drug sensitivity of HBL 100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs.Cancer Res 1997;57:2687-93.
    [36]Dunn SE, Hardman RA, Kari FW, Barrett JC. Insulin-like growth factor 1 (IGF-Ⅰ) alters drug sensitivity of HBL 100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs,Cancer Res 1997;57:2687-93.
    [37]Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW. The insulin-like growth factor-Ⅰ receptor kinase inhibitor NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy, Clin Cancer Res 2005; 11:1563-71.
    [38]Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B.The IGF-I receptor in cellgrowth, transformation and apoptosis, Biochim Biophys Acta 1997; 1332: F105-26.
    [39]Macaulay VM, Salisbury AJ, Bohula EA, Playford MP, Smorodinsky NI,et al. Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase, Oncogene 2001;20:4029-40.
    [40]Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin, Proc Natl Acad Sci USA.2000;97:12103-8.
    [1]Pitot HC. Hepatocyte death in hepatocarcinogenesis. Hepatology 1998;28:1-5.
    [2]Villanueva A, Newell P, Chiang DY, et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007;27(1):55-76.
    [3]James SJ, Muskhelishvili L, Gaylor DW,et al. Upregulation of apoptosis with dietary restriction:implications for carcinogenesis and aging. Environ Health Perspect 1998; 106:307-12.
    [4]Snorri s. Molecular pathogenesis of human hepatocellular carcinoma. Nature Genetics 2002;31:339-346.
    [5]Daughaday WH, Rotwein P. Insulin-like growth factors Ⅰ and Ⅱ.Peptide, messenger ribonucleic acid and gene structures, serum,and tissue concentrations. Endocr Rev 1989;10:68-91.
    [6]Jiirgen ZF, Eugen S E, Rudolf FR. Insulin-Like Growth Factors Ⅰ and Ⅱ:Some Biological Actions and Receptor Binding Characteristics of Two Purified Constituents of Nonsuppressible Insulin-Like Activity of Human Serum. Eur J Biochem 2008;190:445-62.
    [7]Pietrzkowski Z, Mulholland G, Gomella L,et al. Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1. Cancer Res 1993;53:1102-6.
    [8]Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor 1 receptor signalling in cancer. Br J Cancer 2005;92:2097-101.
    [9]Giordano TJ, Kuick R, Else T,et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 2009; 15:668-76.
    [10]Derek LR, Charles T, Roberts Jr. The insulin-like growth factor system and cancer. Cancer Letters 2003; 195:127-137.
    [11]Sell C, Baserga R, Rubin R. Insulin-like growth factor Ⅰ (IGF-Ⅰ) and the IGF-Ⅰ receptor prevent etoposide-induced apoptosis.Cancer Res 1995;55:303-6.
    [12]Finn CN, Enmei W. Receptor Binding, Endocytosis, and Mitogenesis of Insulin-Like Growth Factors Ⅰ and Ⅱ in Fetal Rat Brain Neurons. Journal of Neurochemistry 2006;116:1094-101.
    [13]Anders RA, Yerian LM, Tretiakova M, et al. cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis. Am J Pathol 2003; 162:991-1000.
    [14]Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulinlike growth factor Ⅰ. Proc Natl Acad Sci USA 1999;96:7324-9.
    [15]Boulle N, Schneid H, Listrat A,et al. Developmental regulation of bovine insulin-like growth factor-Ⅱ(IGF-Ⅱ) gene expression:homology between bovine transcripts and human IGF-II exons. J Mol Endocrinol 1993;11:117-28.
    [16]Sadowski T, Dietrich S, Koschinsky F, Sedlacek R. Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol Biol Cell 2003;14:4569-80.
    [17]Jones.JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995;16:3-34.
    [18]Liu LX, Huang S, Zhang QQ, et al. Insulin-like growth factor binding protein-7 induces activation and transdifferentiation of hepatic stellate cells in vitro. World J Gastroenterol 2009; 15:3246-53.
    [19]Degraff DJ, Aguiar AA, Sikes RA. Disease evidence for IGFBP-2 as a key player in prostate cancer progression and development of osteosclerotic lesions. Am J Transl Res 2009;1:115-30.
    [20]Ricort JM, Binoux M. Insulin-like growth factor binding protein-3 stimulates phosphatidylinositol 3-kinase in MCF-7 breast carcinoma cells. Biochem Biophys Res Commun 2004;314:1044-9.
    [21]Jones JI, Gockerman A, Busby Jr WH,et al.Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc Natl Acad Sci USA 1993; 90:10553-7.
    [22]Perks CM, Newcomb PV, Norman MR, Holly JM. Effect of insulinlike growth factor binding protein-1 on integrin signalling and the induction of apoptosis in human breast cancer cells. J Mol Endocrinol 1999;22:141-50.
    [23]Ning Y, Schuller AG, Conover CA, Pintar JE. Insulin-like growth factor (IGF) binding protein-4 is both a positive and negative regulator of IGF activity in vivo. Mol Endocrinol 2008;22:1213-25.
    [24]Booth BA, Boes M, Dake BL, Bar RS. Isolation and characterization of plasmin-generated bioactive fragments of IGFBP-3. Am J Physiol 1999;276:E450-4.
    [25]Diorio C, Brisson J, Berube S, Pollak M. Intact and total insulin-like growth factor-binding protein-3 (IGFBP-3) levels in relation to breast cancer risk factors:a cross-sectional study. Breast Cancer Res 2008; 10:3206-12.
    [26]Scharf JG, Braulke T, Hartmann H, Ramadori G. Regulation of the components of the 150 kDa IGF binding protein complex in cocultures of rat hepatocytes and Kupffer cells by 30,50-cyclic adenosine monophosphate. J Cell Physiol 2001;186:425-36.
    [27]Villafuerte BC, Goldstein S, Murphy LJ, Phillips LS. Nutrition and somatomedin. XXV. Regulation of insulinlike growth factor binding protein 1 in primary cultures of normal rat hepatocytes. Diabetes 1991;40:837-41.
    [28]Veldhuis JD, Frystyk J, Iranmanesh A. Testosterone and estradiol regulate free insulin-like growth factor Ⅰ (IGF-Ⅰ), IGF binding protein 1 (IGFBP-1), and dimeric IGF-Ⅰ/IGFBP-1 concentrations. J Clin Endocrinol Metab.2005;90:2941-7.
    [29]Pao CI, Farmer PK, Begovic S, Villafuerte BC, Wu GJ, Robertson DG, et al. Regulation of insulin-like growth factor-Ⅰ (IGF-Ⅰ) and IGFbinding protein 1 gene transcription by hormones and provision of amino acids in rat hepatocytes. Mol Endocrinol 1993;7:1561-8.
    [30]Sanz S, Pucilowska JB, Liu S, et al. Expression of insulin-like growth factor Ⅰ by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut 2005;54:134-41.
    [31]Beauchamp MC, Yasmeen A, Knafo A, et al. Targeting insulin and insulin-like growth factor pathways in epithelial ovarian cancer. Mol Cell Biol 1999; 19: 3278-88.
    [32]MacDonald RG, Tepper MA, Clairmont KB, Perregaux SB, Czech MP. Serum form of the rat insulin-like growth factor Ⅱ/mannose 6-phosphate receptor is truncated in the carboxyl-terminal domain. J Biol Chem 1989;264:3256-61.
    [33]Gary-Bobo M, Nirde P, Jeanjean A, et al. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem 2007;14:2945-53.
    [34]Hassan AB. Keys to the hidden treasures of the mannose 6-phosphate/insulin-like growth factor 2 receptor. Am J Pathol 2003; 162:3-6.
    [35]Mazziotti G, Sorvillo F, Morisco F, Carbone A, Rotondi M, Stornaiuolo G, et al. Serum insulin-like growth factor I evaluation as a useful tool for predicting the risk of developing hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis:a prospective study. Cancer 2002;95:2539-45.
    [36]Chung J, Bachelder RE, Lipscomb EA,et al. Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation:a survival mechanism for carcinoma cells. J Cell Biol 2002; 158:165-74.
    [37]Price JA, Kovach SJ, Johnson T, Koniaris LG, Cahill PA, Sitzmann JV, et al. Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellular carcinoma. Hepatology 2002;36:1089-97.
    [38]Su Q, Liu YF, Zhang JF, Zhang SX, Li DF, Yang JJ. Expression of insulin-like growth factor Ⅱ in hepatitis B, cirrhosis and hepatocellular carcinoma:its relationship with hepatitis B virus antigen expression. Hepatology 1994;20:788-99.
    [39]Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-Ⅱ signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008;14:1690-8.
    [40]Nardone G, Romano M, Calabro A, Pedone PV, de Sio I, Persico M, et al. Activation of fetal promoters of insulinlike growth factors Ⅱ gene in hepatitis C virus related chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Hepatology 1996;23:1304-12.
    [41]Kim KW, Bae SK, Lee OH, Bae MH, Lee MJ, Park BC. Insulin-like growth factor Ⅱ induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res 1998;58:348-51.
    [42]Chen YW, Boyartchuk V, Lewis BC. Differential roles of insulin-like growth factor receptor-and insulin receptor-mediated signaling in the phenotypes of hepatocellular carcinoma cells. Neoplasia 2009 11:835-45.
    [43]Liu P, Terradillos O, Renard CA, Feldmann G, Buendia MA, Bernuau D. Hepatoca-rcinogenesis in woodchuck hepatitis virus/cmyc mice:sustained cell prolife-ration and biphasic activation ofinsulin-like growth factor Ⅱ. Hepatology 1997;25:874-83.
    [44]Couvert P, Carrie A, Paries J, et al. Liver insulin-like growth factor 2 methylation in hepatitis C virus cirrhosis and further occurrence of hepatocellular carcinoma. World J Gastroenterol 2008;14:5419-27.
    [45]Aihara T, Noguchi S, Miyoshi Y, Nakano H, Sasaki Y, Nakamura Y, et al. Allelic imbalance of insulin-like growth factor Ⅱ gene expression in cancerous and precancerous lesions of the liver. Hepatology 1998;28:86-9.
    [46]Couvert P, Carrie A, Paries J, et al. Liver insulin-like growth factor 2 methylation in hepatitis C virus cirrhosis and further occurrence of hepatocellular carcinoma. World J Gastroenterol 2008;14:5419-27
    [47]Lin SB, Hsieh SH, Hsu HL, Lai MY, Kan LS, Au LC. Antisense oligodeoxynucleotides of IGF-Ⅱ selectively inhibit growth of human hepatoma cells overproducing IGF-Ⅱ. J Biochem (Tokyo) 1997; 122:717-22.
    [48]Lee YI, Lee S, Lee Y, et al. The human hepatitis B virus transactivator X gene product regulates Spl mediated transcription of an insulin-like growth factor Ⅱ promoter 4. Oncogene 1998;16:2367-80.
    [49]Liao M, Zhang Y, Dufau ML. Protein kinase Calpha-induced derepression of the human luteinizing hormone receptor gene transcription through ERK-mediated release of HDAC1/Sin3A repressor complex from Spl sites. Mol Endocrinol 2008;22:1449-63
    [50]Kang-Park S, Lee YI. PTEN modulates insulin-like growth factor Ⅱ (IGF-Ⅱ)-mediated signaling; the protein phosphatase activity of PTEN downregulates IGF-Ⅱ expression in hepatoma cells. FEBS Lett 2003;545:203-8.
    [51]Lee YI, Lee S, Das GC, Park US, Park SM. Activation of the insulinlike growth factor Ⅱ transcription by aflatoxin B1 induced p53 mutant 249 is caused by activation of transcription complexes; implications for a gain-of-function during the formation of hepatocellular carcinoma. Oncogene 2000; 19:3717-26.
    [52]Gary-Bobo M, Nirde P, Jeanjean A,et al. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem 2007;14:2945-53
    [53]Yamada T, De Souza AT, Finkelstein S, Jirtle RL. Loss of the gene encoding mannose 6-phosphate/insulin-like growth factor II receptor is an early event in liver carcinogenesis. Proc Natl Acad Sci USA 1997;94:10351-5.
    [54]Rogers AB, Theve EJ, Feng Y, et al. Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res 2007;67:11536-46
    [55]Jirtle RL, Haag JD, Ariazi EA, Gould MN. Increased mannose 6-phosphate/insulin-like growth factor Ⅱ receptor and transforming growth factor beta 1 levels during monoterpene-induced regression of mammary tumors. Cancer Res 1993;53:3849-52.
    [56]Yang JM, Chen WS, Liu ZP, Luo YH, Liu WW. Effects of insulinlike growth factors-IR and-ⅡR antisense gene transfection on the biological behaviors of SMMC-7721 human hepatoma cells. J Gastroenterol Hepatol 2003;18:296-301.
    [57]Averous J, Maiirin AC, Bruhat A. Induction of IGFBP-1 expression by amino acid deprivation of HepG2 human hepatoma cells involves both a transcriptional activation and an mRNA stabilization due to its 3'UTR. FEBS Lett 2005; 579: 2609-14.
    [58]Huynh H, ChowPK, Ooi LL, Soo KC. A possible role for insulin-like growth factor-binding protein-3 autocrine/paracrine loops in controlling hepatocellular carcinoma cell proliferation. Cell Growth Differ 2002; 13:115-22.
    [59]Honda S, Arai Y, Haruta M, et al. Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer 2008;99:1891-9.
    [60]Scharf JG, Schmidt-SandteW, Pahernik SA, Ramadori G, Braulke T, Hartmann H. Characterization of the insulin-like growth factor axis in a human hepatoma cell line (PLC). Carcinogenesis 1998; 19:2121-8.
    [61]Palmer R, Wilson R, Coward P, Scott D. Analysis of circulating insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) in tobacco smokers and non-smokers. Tob Induc Dis 2003 15;1:157-170.
    [62]Hanafusa T, Yumoto Y, Nouso K, Nakatsukasa H, Onishi T, Fujikawa T, et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma. Cancer Lett 2002; 176: 149-58.
    [63]Lee PD, Suwanichkul A, DePaolis LA, Snuggs MB, Morris SL, Powell DR. Insulin-like growth factor (IGF) suppression of IGFBP-1 production:evidence for mediation by the type I IGF receptor. Regul Peptides 1993;48:199-206.
    [64]Boni-Schnetzler M, Schmid C, Mary JL, Zimmerli B, Meier PJ, Zapf J, et al. Insulin regulates the expression of the insulin-like growth factor binding protein 2 mRNA in rat hepatocytes. Mol Endocrinol 1990;4:1320-6.
    [65]Brouillet JP, Hanslick B, Maudelonde T, Pivat MT, Grenier J, Blanc F, et al. Increased plasma cathepsin D concentration in hepatic carcinoma and cirrhosis but not in breast cancer. Clin Biochem 1991;24:491-6.
    [66]MacFarlane M, Williams AC. Apoptosis and disease:a life or death decision. EMBO Rep 2004;5:674-8.
    [67]Kim E. Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr Res Pract 2009;3:64-71.
    [68]Tsai TF, Yauk YK, Chou CK, Ting LP, Chang C, Hu CP, et al. Evidence of autocrine regulation in human hepatoma cell lines. Biochem Biophys Res Commun 1988;153:39-45.
    [69]Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol 2001;54:138-44
    [70]Lee YI, Han YJ, Lee SY, Park SK, Park YJ, Moon HB, et al. Activation of insulin-like growth factor Ⅱ signaling by mutant type p53:physiological implications for potentiation of IGF-Ⅱ signaling by p53 mutant 249. Mol Cell Endocrinol 2003;203:51-63.
    [71]Kim SO, Park JG, Lee YI. Increased expression of the insulin-like growth factor Ⅰ (IGF-I) receptor gene in hepatocellular carcinoma cell lines:implications of IGF-Ⅰ receptor gene activation by hepatitis B virus X gene product. Cancer Res 1996; 56:3831-6.
    [72]Forgues M, Difilippantonio MJ, Linke SP, et al. Involvement of Crml in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 2003;23:5282-92
    [73]Tanaka S, Mohr L, Schmidt EV, Sugimachi K,Wands JR. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997;26:598-604.
    [74]Cheng W, Tseng CJ, Lin TT,et al. Glypican-3-mediated oncogenesis involves the Insulin-like growth factor-signaling pathway.. Carcinogenesis 2008;29:1319-26
    [75]Tanaka S, Wands JR. Insulin receptor substrate.1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor betal-induced apoptosis. Cancer Res 1996;56:3391-4.
    [76]Coutant A, Rescan C, Gilot D, Loyer P, Guguen-Guillouzo C, Baffet G. PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival. Hepatology 2002;36:1079-88.
    [77]Alimonti A, Nardella C, Chen Z, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 2010; 120:681-93.
    [78]Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone 2008;42:606-15.
    [79]de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 1998;95:8847-51.
    [80]Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 1999;155:703-10.
    [81]Lee CH, Hung HW, Hung PH, Shieh YS. Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Mol Cancer 2010;9:64.
    [82]Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C, et al. Insulin and IGF-1 stimulate the betacatenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 2001;20:252-9.
    [83]Phillips DR, DiMarco A, Zunino F. The interaction of daunomycin with polydeoxynucleotides. Eur J Biochem 1978;85:487-92.
    [84]Papoian T, Lewis W. Anthracyclines selectively decrease alpha cardiac actin mRNA abundance in the rat heart. Am J Pathol 1992;141:1187-95
    [85]Song Y, Wagner BA, Lehmler HJ, Buettner GR. Semiquinone radicals from oxygenated polychlorinated biphenyls:electron paramagnetic resonance studies. Chem Res Toxicol 200821:1359-67.
    [86]Bates DA, Winterbourn CC. Deoxyribose breakdown by the adriamycin semiquinone and H2O2:evidence for hydroxyl radical participation. FEBS Lett 1982; 145:137-42.
    [87]Cullinane C, Cutts SM, Panousis C, Phillips DR. Interstrand cross-linking by adriamycin in nuclear and mitochondrial DNA of MCF-7 cells. Nucleic Acids Res 2000;28:1019-25.
    [88]Bachur NR, Yu F, Johnson R, Hickey R, Wu Y, Malkas L. Helicase inhibition by anthracycline anticancer agents. Mol Pharmacol 1992;41:993-8.
    [89]Ross WE, Bradley MO. DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. Biochim Biophys Acta 1981;654:129-34.
    [90]Mattila JP, Sabatini K, Kinnunen PK. Oxidized phospholipids as potential novel drug targets. Biophys J 2007;93:3105-12.
    [91]Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood 2001;98:2603-14.
    [92]Chen YR, Meyer CF, Tan TH. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem 1996;271:631-4.
    [93]Shishodia S, Sethi G, Ahn KS, Aggarwal BB. Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol 2007;74:118-30.
    [94]Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 1998; 17:4668-79.
    [95]Zhu J, Zhou W, Jiang J, Chen X. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 1998;273:13030-6.
    [96]Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol.2007; 150:963-76.
    [97]Abbadie C, Kabrun N, Bouali F, Smardova J, Stehelin D, Vandenbunder B, et al. High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell 1993;75:899-912.
    [98]Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM. Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood 1998;91:4624-31.
    [99]Majdalawieh A, Ro HS. Regulation of IkappaBalpha function and NF-kappaB signaling:AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010;82:38-41.
    [100]Bash J, Zong WX, Gelinas C. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the Gl/S-phase transition. Mol Cell Biol 1997;17: 6526-36.
    [101]Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982-95.
    [102]Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med.2010;3:33-40
    [103]Jiang S, Song MJ, Shin EC, Lee MO, Kim SJ, Park JH. Apoptosis in human hepatoma cell lines by chemotherapeutic drugs via Fas-dependent and Fas-independent pathways. Hepatology 1999;29:101-10.
    [104]Qin LF, Ng IO. Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 2002; 175:27-38.
    [105]Maeda Y, Hwang-Verslues WW, Wei G,et al.Tumour suppressor p53 down-regulates the expression of the human hepatocyte nuclear factor 4alpha (HNF4alpha) gene. Biochem J.2006;400:303-13.
    [106]Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogenactivated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001; 12:397-408.
    [107]Lee Jr JT, McCubrey JA. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16:486-507.
    [108]Zhu AX. Predicting the response to sorafenib in hepatocellular carcinoma:where is the evidence for phosphorylated extracellular signaling-regulated kinase. BMC Med. 2009;24:7-42.
    [109]Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida 0, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18:813-22.
    [110]Brenner B, Koppenhoefer U, Weinstock C, Linderkamp 0, Lang F, Gulbins E. Fas or ceramide-induced apoptosis is mediated by a Racl-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 1997;272:22173-81.
    [111]Kunduzova OR, Bianchi P, Pizzinat N,et al. Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J.2002; 16:1129-31.
    [112]Wang X, Martindale JL, Liu Y, Holbrook NJ. The cellular response to oxidative stress:influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 1998;333:291-300.
    [113]Singh S, Upadhyay AK, Ajay AK, Bhat MK. p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma:a novel target of p53 in apoptosis. FEBS Lett.2007;581:289-95.
    [114]Persons DL, Yazlovitskaya EM, Cui W, Pelling JC. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells:inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res 1999;5:1007-14.
    [115]Hamamoto T, Suzuki K, Sasaki H, et al. Differences in effects of oncogenes on sensitivity to anticancer drugs. J Radiat Res.2005;46:197-203.
    [116]MacKeigan JP, Collins TS, Ting JP. MEK. inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem 2000;275:38953-6.
    [117]Mikula M, Gotzmann J, Fischer AN, Wolschek MF, Thallinger C, Schulte-Hermann R, et al. The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene 2003;22:6725-38.
    [118]Fritz G, Kaina B. Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-iun expression. Mol Cell Biol.1999; 19:1768-74
    [119]Viktorsson K, Heiden T, Molin M, Akusjarvi G, Linder S, Shoshan MC. Increased apoptosis and increased clonogenic survival of 12VH-ras transformed rat fibroblasts in response to cisplatin. Apoptosis 2000;5:355-67.
    [120]Zhang Y, Foster R, Sun X, et al. Restraint stress induces lymphocyte reduction through p53 and PI3K/NF-kappaB pathways. J Neuroimmunol.2008;30:71-6.
    [121]Sun SB, Fujita N, Hashimoto Y. Proteolytic cleavage of epidermal growth factor receptor by caspases. FEBS Letters 2001;491:16-20
    [122]Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways:sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem 2003;278:26715-21.
    [123]Jiri Aubrecht, Ebru Caba. Gene expression profile analysis:An emerging approach to investigate mechanisms of genotoxicity. Pharmacogenomics, Jun 2005;6: 419-428
    [124]Oka Y, Waterland RA, Killian JK, Nolan CM, Jang HS, Tohara K, et al. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology 2002;35:1153-63.
    [125]Prasad KV, Ao Z, Yoon Y,Wu MX, Rizk M, Jacquot S, et al. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci USA 1997;94:6346-51.
    [126]Huei FL.Celecoxib induces p53-PUMA pathway for apoptosis in human colorectal cancer cells. Chemico-Biological Interactions 2008; 176:48-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700