用户名: 密码: 验证码:
光解水用改性金红石型TiO_2析氧催化剂的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对“双床”光解水析氧过程中光生电子与空穴对分离效率低,导致光解水析氧速率偏低,难于与析氢速率匹配的现状,本研究采用半导体掺杂、半导体复合以及还原气氛处理等多种手段对金红石型TiO_2进行了改性,得到了一系列改性TiO_2析氧用光催化剂,研究了紫外光(或可见光)辐照下,改性TiO_2的光解水析氧性能。首次制备了WO_3复合铌掺杂TiO_2析氧用光催化剂,并考察了WO_3复合浓度对WO_3-TiO_2/Nb_2O_5光催化性能的影响;制备了WO_3、V_2O_5和Fe_2O_3复合的金红石型TiO_2光催化剂,首次考察了不同催化剂复合和同一催化剂不同复合浓度对金红石型TiO_2催化剂光解水析氧性能的影响,探讨了光催化剂的光致发光性能与其析氧活性之间的关系;首次制备了含氧缺位的金红石型TiO_2光催化剂,考察了氧缺位浓度对金红石型TiO_2光催化剂析氧性能的影响,采用量子化学计算方法,研究了含氧缺位金红石型TiO_2的能带结构;首次制备了含氧缺位的2%WO_3-TiO_2光催化剂,考察了氧缺位浓度对2%WO_3-TiO_2催化剂光解水析氧性能的影响。
     主要研究结果如下:
     1)WO_3的复合能提高TiO_2/Nb_2O_5的光催化活性,当WO_3复合浓度为2%时,WO_3-TiO_2/Nb_2O_5的光催化活性最高,达到152μmol·l~(-1)·h~(-1),此时WO_3在TiO_2/Nb_2O_5表面刚好达到单层复合。另外,当WO_3复合浓度为2%,Fe~(3+)浓度为16·10~(-3)mol·L~(-1),二次处理温度为873K时,WO_3-TiO_2/Nb_2O_5光催化剂光解水析氧速率约为191.7μmol·l~(-1)·h~(-1)。光能转化材料器件化简化了光催化反应装置,能适当延长TiO_2光催化剂的使用寿命,简化实验装置,具有较为广阔的前景。
     2)LRS表明WO_3在TiO_2表面的单层复合浓度为2%,当达到单层复合时,析氧速率最大,在紫外光辐照下2%WO_3-TiO_2催化剂光解水的析氧速率约为420μmol·L~(-1)·h~(-1)。根据其透射光谱,采用外推法求出WO_3能隙约为2.78eV。LRS表明V2_O_5在TiO_2表面的单层复合浓度约为8%,8%V_2O_5-TiO_2催化剂在紫外光辐照下分解水析氧速率约为110μmol·L~(-1)·h~(-1),在可见光辐照下分解水的析氧速率约为80μmol·L~(-1)·h~(-1)。根据其透射光谱,采用外推法求出V_2O_5的能隙约为2.14eV,推导出金红石型TiO_2能隙约为3.08eV。无论是在紫外光还还是在可见光照射下,Fe_2O_3-TiO_2光催化剂都不能分解水析出氧气。光催化剂的FL测试结果显示:光催化剂的光致发光性能并非影响催化剂光催化活性的决定性因素。
     3)在Ti~(3+)含量极少,只有极少量羟基(OH)存在的情况下,适量的氧缺位能显著提高金红石型TiO_2光解水的析氧活性,其最大析氧速率达222μmol·L~(-1)·h~(-1)。量子化学计算结果显示:氧缺位能降低半导体带隙能,在带隙中引入中间能级。
     4)含氧缺位的2.0%WO_3-TiO_2光催化剂的最大析氧速率约为803μmol·L~(-1)·h~(-1)。基本与“双床”光解水析氢速率相匹配。
In this study, because of the low separation efficiency of photo-electrons and holes that leads to the low rate of oxygen evolution and difficult to match the rate of hydrogen evolution in the "Double-Bed" splitting water system, modified rutile TiO_2 was synthesised by being treated using semiconductor doping, semiconductor compounding and reducing atmosphere. The photocatalytic-activities for oxygen evolution were firstly compared in the "Double-Bed" splitting water system using rutile TiO_2 catalysts compounded different semiconductors or the same semiconductor with different compounding concentration. Rutile TiO_2 and 2% WO_3-TiO_2 were treated by reducing atmosphere and the photocatalytic activity of TiO_2 and 2% WO_3-TiO_2 with oxygen vacancies were firstly investigated in the "Double-Bed" splitting water system. Quantum chemistry calculations for different oxygen vacancies content of TiO_2 were carried out and the results can reasonablely explain experimental results.
     WO_3 compounding can improve the rate of O_2 evolution of the photodecomposition of water. It reaches to 151.8μmol·L~(-1)·h~(-1) when the concentration of compounding WO_3 is 2% which is the concentration of monolayer for WO_3 on the surface of TiO_2/Nb_2O_5. Besides, the concentration of the electron acceptor Fe~(3+) and the second calcination temperature also can effect the rate of O~2 evolution. When the concentration of Fe~(3+) is 16·10~(-3)mol·L~(-1) and the second calcination temperature is 600℃the maximum rate of O_2 evolution of 2%WO_3-TiO_2/Nb_2O_5 photocatalyst is 191.7μmol·L~(-1)·h~(-1).
     From the result of LRS, the concentration of monolayered WO_3 on the surface of TiO_2 is 2 mol%. The rate of O_2 evolution for TiO_2 compounded with WO_3 as photocatalyst is larger than that of the TiO_2 within 12 hours. With the increase of the quantity of loaded WO_3, the rate of O_2 evolution also increases. It reaches to the maximum rate of 420μmol·L~(-1)·h~(-1) with the UV-light irradiation when the concentration of loaded WO_3 is 2%. When the concentration of compounding WO_3 is above 2.67%, the rate of O_2 evolution decreased gradually. There is no response to visible light for WO_3-TiO_2. According to its transmitted spectrum, the band gap energy of WO_3 is about 2.78eV by extrapolation. The concentration of monolayer for V_2O_5 on the surface of TiO_2 is 8%. The maximum rate of O_2 evolution is 110μmol·L~(-1)·h~(-1) when the concentration of compounding V_2O_5 is 8% with the UV-light irradiation and 80μmol·L~(-1)·h~(-1) with the visible light irradiation. According to its transmitted spectrum, the band gap energy of V_2O_5 is about 2.14eV by extrapolation and 3.08eV for rutile TiO_2. As for Fe_2O_3- TiO_2, there is no gas evolution with the UV-light or visible light irradiation. The FL spectrum and the rate of O_2 evolution show that the photocatalytic activity of the catalyst is influenceed by several factors and the FL intensity is not the pacing one.
     Appropriate oxygen vacancies could obviously improve the photocatalytic activity of rutile TiO_2 with minute quantity Ti~(3+) and hydroxyl group (OH). The maximum rate for O_2 evolution of rutile TiO_2 with oxygen vacancies was 222μmol·L~(-1)·h~(-1). The theoretical calculation shows that oxygen vacancies can reduce the band-gap energy of rutile TiO_2 and introduce middle energy level in its forbidden band.
     The maximum rate for O_2 evolution of 2.0%WO_3-TiO_2 with oxygen vacancies is 803μmol·L~(-1)·h~(-1) which matches the H_2 evolution speed in "Double-Bed" water splitting.
引文
[1]陈启元,杨亚辉,尹周澜,李洁.实用化光解水制氢技术前景分析.中国科学院2005年技术预见报告,北京:科学出版社,2005:379-387
    [2]李越湘,吕功煊,李树本.半导体光解水研究进展.[J].分子催化,2001,15(1):72-79
    [3]任成军,李大成,周大利,刘恒,钟本和.纳米TiO_2的光催化原理及其应用.四川有色金属,2004,4:19-22
    [4]Nowotny J, Sorrell C C, Sheppard L R, Bak T. Solar-hydrogen: Environmentally safe fuel for the future. [J]. International Journal of Hydrogen Energy, 2005, 30:521-544
    [5]上官文峰.太阳能光解水制氢的研究进展.无机化学学报,2001,17(5):619-626
    [6]Fujishima A, Honda K. Electrochmical photolysis of water at a semiconductor electrode. [J].Nature, 1972, 238:37-38
    [7]Frank E Osterloh. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater, 2008, 20(1): 35-54
    [8]Bard A J, Heterogeneous Photoeatalytic Decomposition of Saturated Carboxylic Acids on TiO_2 Powder De-carboxylation Route to Alkanes. Science, 1980, 4427(207) :139-144
    [9]Sato S, White J M.. Photodecomposition of Water over Pt/TiO_2 Catalysts. [J]Chem.Phys. Lett., 1980, 70(1): 131-134
    [10]Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980, 286: 474-764
    [11]Kudo A, Domen K, M aruya K. Photocatalytic activities of titanium dioxide loaded with nickel oxide. [J ].Chem. Phys. Lett., 1987, 133-138
    [12]Sayama K, A rakawa H. Remarkable effect of sodium carbonate addition on photodecomposition of liquid water into hydrogen and oxygen from a suspension of semiconductor powder loaded with various metals. [J ].Chem. Lett., 1992, 253-256
    [13]Avudaithai M, Kutty T R N. Sacrificial photolysis of water on Ti_(1-x)Sn_xO_2 ultrafine powders. Materials Research Bulletin, 1989, 24(9): 1163-1170
    [14]Karakitson K E, Verykios X E. Effect of altervalent cation doping of T1O2 on its performance as a photocatalyst for water cleavage. Journal of Physical Chemistry, 1993,97(6):1184-1189
    [15]Luo H M, Takata T, Lee Y, et al. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine. Chemistry of Materials,2004,16(5):846-849
    [16]Fujihara K, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO_2 particles. J. Chem. Soc, Faraday Trans, 1998,94,3705-3709
    [17]Lee S G, Lee S, Lee H I. Photocatalytic production of hydrogen from aqueous solution containing CN~- as a hole scavenger. Applied Catalysis A:General, 2001,207:173-181
    [18]Ryu Abe , Kazuhiro Sayama, Kazunari Domen, Hironori A rakawa, A new type of water splitting system composed of two different TiO_2 photocatalysts(anatase,rutile)and a IO_3~-/I~- shuttle redox mediator, Chemical Physics Letters, 2001, 344(3-4):339-344
    [19]Moon S.C.,Mametsuka H.,Suzuki E.,et al. Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water. Catalysis Today, 1998, 45(l-4):79-84
    [20]Moon S C, Mametsuka H, Tabata S, et al. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catalysis Today, 2000, 58(2):125-132
    [21]Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO_2 catalyst. Journal of Chemical Society:Faraday Transactions, 1997, 93(8):1647-1654
    [22]Ohno T, Tanigawa F, Fujihara K, et al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A:Chemistry, 1999,127(1-3): 107-110
    [23]Yin S, Wu J H, Aki M,et al. Photocatalytic hydrogen evolution with fibrous titania prepared by the solvothermal reactions of protonic layered tetratitanate(H_4Ti_4O_9).International Journal of Inorganic Materials, 2000, 2 (4):325-331
    [24]彭绍琴,李凤丽,王添辉,李越湘.可见光活性的Ru掺杂TiO_2光催化剂的制备及光解水制氢性能研究.有色金属(冶炼部分),2006,3,42-44
    [25]Asah I R, Mor Ikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. [J].Science, 2001, 293: 269-271.
    [26]Jang J S, Kim H G, Sm J I, et al. Formation of crystal line TiO_(2-x)N_x and its photocatalytic activity, Journal of Solid State Chemistry, 2006, 179 (4): 1067-1075
    [27]Torres G R, Indgren L T, Lu J, et al. Photoelectro-chemical study of nitrogen2doped titanium dioxide for water oxidation. Journal of Physical Chemistry B,2004,108(19): 5995-6003
    [28]Bamwenda G R, Uesigi T, Abe Y, et al.The photocatalytic oxidation of water to O_2 over pure CeO_2,WO_3,and TiO_2 using Fe~(3+) and Ce~(4+) as electron acceptors. Applied Catalysis A:General, 2001, 205:117-128
    [29]Kazuhiro Sayama, Rintaro Yoshida, Hitoshi Kusama, et al..Photocatalytic decomposition of water into H_2 and O_2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe~(3+)/Fe~(2+) redox system. Chemical Phsics Letters,1997, 227(4), 387-391.
    [30]Kazuhiro Sayama, Kazuaki Mukasa, Ryu Abe, et al.. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. journal of photochemistry and photobiology A:Chemistry,2002,148(1-2), 71-77
    [31]Kato H, Asakura K, Kudo. Highly Efficient Water Splitting into H_2 and O_2 over Lanthanum-Doped NaTaO_3 Photocatalysts with High Crystallinity and Surface Nanostructure. A. J. Am. Chem. Soc. 2003, 125 (10): 3082-3089
    [32]Gurunathan K. Photocatalytic hydrogen production using transition metal ions-doped γ-Bi_2O_3 semiconductor particles. International Journal of Hydrogen Energy, 2004, 29(9):933-940
    [33]王桂贇,王延吉,赵新强,宋宝俊.CoO/SrTiO_3的合成及光解水制氢性能.物理化学学报,2005,21(1):84-88
    [34]Masanobu Higashi, Ryu Abe, Kentaro Teramura, et al.. Two step water splitting into H_2 and O_2 under visible light by ATaO_2N (A = Ca, Sr, Ba) and WO_3 with IO_3~-/I~- shuttle redox mediator. Chemical Physics Letters, 2008, 452 ,120-123
    [35]Fujihara K, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO_2 particles. J. Chem. Soc, Faraday Trans, 1998,94, 3705-3709
    [36]Masaaki Kitano, Masato Takeuchi, Masaya Matsuoka, et al. Photocatalytic water splitting using Pt-loaded visible light-responsive TiO_2 thin film photocatalysts. Catalysis Today, 2007, 120, 133-138
    [37]Masaaki Kitano, Masaya Matsuoka , Shohei Fukumoto, et al. The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO_2 thin films. Catal.Today (2008), doi:10.1016/j.cattod.2007.12.032
    [38]杨亚辉,K_2La_2Ti_3O_(10)催化剂的制备与光解水活性研究:[博士学位论文].长沙:中南大学,2006
    [39]Spallart M N, Kalyanasundaram K, Gr(?)tzel C, et al. Ruthenium dioxide electrodes as suitable anodes for water photolysis. Helv. Chim. Acta, 1980, 65(3):1111-1118
    [40]James R. Darwent, Andrew Mills, Photo-oxidation of water sensitized by WO_3 powder. J. Chem. Soc, Faraday Trans. 2,1982, 78, 359-367
    [41]毕只初,俞稼镰,田心棣.SrTiO_3粉末在可见光照射下光氧化水产氧的研究.感光科学与光化学,1989,2:8-12
    [42]Ohno T., Tanigawa F.,Fujihara K.,et al.. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry Photobiology A:Chemistry, 1999,127:107-110
    [43]Akihiko Kudo, Hideki Kato, Seira Nakagawa , Water Splitting into H_2 and O_2 on New Sr_2M_2O_7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures:Factors Affecting the Photocatalytic Activity. J. Phys. Chem. B, 2000, 104 (3):571-575
    [44]Santato C, Ulman M, Augustynski J. Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films. J. Phys. Chem B, 2001, 105 (5) 936-940
    [45]Santato C, Odziemkowski M, Ulman M, et al.. Crystallographically Oriented Mesoporous WO_3 Films: Synthesis, Characterization, and Applications. J. Am. Chem.Soc, 2001,123 (43): 10639-10649
    [46]Solarska R, Santato C, Jorand-Sartoretti C, et al. Photoelectrolytic oxidation of organic species at mesoporous tungsten trioxide film electrodes under visible light illumination. J. Appl. Electrochem., 2005, 35(7-8), 715-721
    [47]Augustinski J, Solarska R, Hagemam H, et al. Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting. Proceedings of SPIE-The International Society for Optical Engineering, 2006, 6340(Solar Hydrogen and Nanotechnology)
    [48]Bamwenda G.R., Uesigi T, Abe Y.,et al.The photocatalytic oxidation of water to O_2 over pure CeO_2,WO_3, and TiO_2 using Fe~(3+) and Ce~(4+) as electron acceptors. Applied Catalysis A:General, 2001,205:117-128
    [49]Bamwenda G.R., Arakawa H. Cerium dioxide as a photocatalyst for water decomposition to O_2 in the presence of Ce_(aq)~(4+) and Fe_(aq)~(3+) species. Journal of Molecular Catalysis A:Chemical, 2000,161:105-113
    [50]Ryu Abe, Kazuhiro Sayama, Kazunari Domen, et al.. A new type of water splitting system composed of two different TiO_2 photocatalysts(anatase,rutile) and a IO_3~-/I~- shuttle redox mediator. Chemical Physics Letters 2001, 344:339-344
    [51]Akihiko Kudo, Development of photocatalyst materials forwater splitting.International Journal of Hydrogen Energy, 2006, 31, 197-202
    [52]高友良,陈启元,尹周澜等.O_2/Ar气氛中仲钨酸铵热分解制备的WO_3光解水析氧活性.中国有色金属学报,2006,16(5):904-908
    [53]杜俊平,陈启元,赵娟等.铈掺杂WO_3的表征及其光解水催化性能的研究.无机化学学报,2007,23(6):1005-1010
    [54]张云艳,胡盛华.半导体TiO_2的光催化、光解水制氢与光电转化.[J].化学教学,2003,6:27-29
    [55]彭峰,王红娟,张雷.以水为溶剂制备TiO_2-SnO_2复合纳米膜及其光催化降解丙酮性能.[J].科研与开发,2004,8:26-29
    [56]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望,[J].化学物理报,2003,16(5):339-349
    [57]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.二氧化钛的尺寸与光催化活性的关系[J].催化学报.1998,19(3):229-233
    [58]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO_2的光催化性能研究进展.[J]催化学报,2001,22(2):215-218
    [59]查振林,罗亚田.纳米TiO_2的改性及应用研究.[J].北方环境,2004,29(1):30-33
    [60]李萌,张志,崔作林.镧掺杂纳米TiO_2薄膜的制备及对甲醛的光催化降解.[J]青岛科技大学学报,2004,25(2):144-148
    [61]陈俊涛,李新军,杨莹等.Sm掺杂对TiO_2薄膜光催化性能的影响.[J]催化学报,2004,25(5):397-402
    [62]毕怀庆,袁文辉,韦朝海.掺锆纳米TiO_2制备表征及其对光催化活性的影响.[J]材料科学与工程学报,2004,22(1):98-101
    [63]尹京花,赵莲花,崔胜云等.掺铁TiO_2纳米微粒的制备及光催化活性.[J].延边大学学报(自然科学版),2004,30(3):178-181
    [64]王承遇,钟萍,姜妍彦等.掺杂铈对玻璃表面TiO_2薄膜上油酸光催化降解的影响.[J].催化学报,2000,21(5):443-446
    [65]张前程,张凤宝,张国亮等.超细钴掺杂二氧化钛的制备、表征及气相光催化性能.[J].燃料化学学报,2004,32(2):240-243
    [66]卢萍,姚明明,张颖等.钼离子掺杂对TiO_2薄膜光催化性能的影响.[J]硅酸盐通报,2003,2:34-37
    [67]袁文辉,毕怀庆,韦朝海.锌掺杂对纳米TiO_2光催化活性的影响.[J].华南理工大学学报(自然科学版),2004,32(3):29-33
    [68]张华星,张玉红,徐永熙等.铽(Ⅲ)掺杂TiO_2纳米材料相转移和光催化性质研究.[J].化学学报,2003,11(61):1813-1818
    [69]吴树新,马智,秦永宁等.掺杂纳米TiO_2光催化性能的研究.[J].物理化学学报,2004,20(2):138-143
    [70]Choi W. The role of metal ion dopants in quantumsize TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. [J]. J Phys Chem, 1994,98(51): 13669-13679
    [71]Gratzel M, Russell F H. Electron paramagnetic resonance studies of doped TiO_2 colloids. [J]. J Phys Chem, 1990, 94(6): 2566-2572
    [72]Teruhisa Ohno, Fumihiro Tanigawa, Kan Fujihara.et.al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide power. [J].Photochemistry and Photobiology A: Chem 1999,127, 107-110
    [73]张金龙,陈海军,徐华胜等.可见光照射下丙炔光催化水解反应的研究Ⅱ.钒离子对氧化钛催化性能的影响.催化学报,2004,25(1)10-14
    [74]Wang J A, Limas-Ballesteros R. Quantitative Determination of Titanium Lattice Defects and Solide-State Reaction Mechanism in Iron-Doped TiO_2 Photocatalysts. [J]. Phys.Chem.B 2001, 105(40), 692-9698
    [75]Khan Sum, Al-shahrym, Jr Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO_2. [ J ]. Science, 2002, 297: 2243 - 2245
    [76]Teruhisa Ohno, Takahiro Mitsui, and Michio Matsumura. Photocatalytic Activity of S-doped TiO_2 Photocatalyst under Visible Light. [J].Chemistry Letters,2003,364:2412-2418
    [77]Asah I R, Mor Ikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. [ J ].Science, 2001, 293: 269 - 271.
    [78]Jang J S, Kim H G, J I Sm, et al. Formation of crystal line TiO_(2-x)N_x and its photocatalytic activity. [ J ]. Journal of Solid State Chemistry, 2006, 179 (4) : 1067 -1075
    [79]Torres G R, Lindgren T, Lu J , et al. Photoelectro-chemical study of nitrogen-doped titanium dioxide for water oxidation. [J]. Journal of Physical Chemistry B, 2004, 108(19): 5995 - 6003.
    [80]Kisch H. Angew, Sakthivel S , Chem. Int . Ed. , Daylight photocatalysis by carbon-modified titanium dioxide. 2003, 42 (40) :4908 -4911
    [81]李慧泉,李越湘,周新木等.La_2O_3掺杂TiO_2光催化剂的制备和性能.[J]分子催化,2004,18(4):304-309
    [82]蔡邦宏,赵西平,乐英红等.NH_4H_2PO_4掺杂改性纳米TiO_2的光催化性能.[J].分子催化,2003,17(4):302-305
    [83]籍宏伟,马万红,黄应平.可将光诱TiO_2光催化的研究进展.科学通报,2003,48(21)2199-2204
    [84]Bikiaris D, Aburto J, Alric I. Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylose and starch [J]. Journal of Applied PolymerScience. 1999, 71(7): 1089-1100
    [85]张金龙,陈锋,何斌等.光催化.上海:华东理工大学出版社,2004,44
    [86]Teruhisa Ohno, Fumihiro Tanigawa, Kan Fujihara, et al. Photocatalytic oxidation of water on TiO_2-coated WO_3 particles by visible light using Iron(Ⅲ) ions as electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118 (1)41-44
    [87]颜秀茹,白天,霍明亮等.核-壳式纳米SnO_2/TiO_2光催化剂的制备和性能催化学报.2004,25(2):120-124
    [88]刘奎仁,韩 庆,陈建设等.光降解用WO_3-TiO_2复合光催化剂.东北大学学报(自然科学版),2003,24(11)1064-1067
    [89]王恒志,杨娟,汪信.TiO_2/SnO_2的制备及其光催化降解甲基橙.上海化工,2001,13:14-15
    [90]施利毅,古宏晨,李春忠等.SnO_2-TiO_2复合光催化剂的制备和性能.催化学报,1999,20(3),338-342
    [91]杨海刚,项金钟,杨爱民等.纳米SnO_2-TiO_2复合粉体制备及其红外特性研究.功能材料,2004,增刊(35),215-220
    [92]Kang M G, Han H E, Kim K J . Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO_2. [J ] Photochem Photobiol A:Chem,1999 ,125(1/ 2/ 3) :119-125
    [93]Li X Z, Li F B, Yang CL, Photocatalytic activity of WOx- TiO_2 under visible light irradiation. [J ] Photochem Photobiol A:Chem, 2001 ,141(2/ 3) :209-217
    [94] Wainwright M S, Foster N R, Catalysts,kinetics and reactor design in phthalic anhydride synthesis. Catal. Rev. Sci. Eng. 1979,19 (2)211-292
    [95] Vedrine (Ed.) J C, Eurocat oxide, X-ray photoelectron spectroscopy of V_2O_5/TiO_2 catalysts. Catal. Today, 1994, 20, 109-124
    [96] Vedrine (Ed.) J C, Eurocat oxide, an European V_2O_5-WO_3/TiO_2 SCR standard catalyst study Characterisation by electron microscopies (SEM, HRTEM, EDX) and by atomic force microscopy. Catal. Today, 2000, 56 (4) 415-430
    [97]Went G T, Leu L J, Rosin R R, Bell A T, Quantitative structural analysis of dispersed vanadia species in TiO_2 (anatase)-supported V_2O_5. J. Catal. 1992, 134(2) :479-491
    [98]Sanati M, Andersson A. Ammoxidation of toluene over TiO _2 (B)-supported vanadium oxide catalysts. J. Mol. Catal, 1990, 59, 233-237
    [99]Sanati M, Andersson A, Study of the oxidation and the ammoxidation of toluene over a TiO_2(B)-supported vanadia catalyst. J. Mol. Catal, 1993, 81 (1) 51-62
    [100]Narayana K V, Venugopal A, Rama Rao K S, et al. Ammoxidation of 3-picoline over V_2O_5/TiO_2 (anatase) system. Ⅱ. Characterisation of the catalysts by DTA, SEM, FTIR, ESR and oxygen and ammonia chemisorption. Appl. Catal A: General, 1998,167(1)11-22
    [101]Reddy B M, Ganesh I, Padmanabha Reddy E. Study of Dispersion and Thermal Stability of V_2O_5/TiO_2-SiO_2 Catalysts by XPS and Other Techniques. J. Phys. Chem.B,1997, 101 (10)1769-1774
    [102]Miyamoto A, Yamazaki Y, Inomata M, et al. Determination of the number of vanadium=oxygen species on the surface of vanadium oxide catalysts. 1. Unsupported vanadium pentoxide and vanadium pentoxide/titanium dioxide treated with an ammoniacal solution. J.Phys. Chem, 1981, 85(16), 2366-2372
    [103]Roozeboom F, Mittelmeyer-Hazeleger M C, Moullin J A, et al. Vanadium Oxide Monolayer Catalysts.3. A Raman Spectroscopic and Temperature-Programmed Reduction Study of Monolayer and Crystal-Type Vanadia on Various -supports. J. Phys. Chem, 1980,84:2783-2791
    [104] Went G T, Oyama S T, Bell A T, Laser Raman Spectroscopy of Supported Vanadium Oxide Catalysts. J. Phys. Chem, 1990, 94:4240-4246.
    [105]Coustumer L R Le, Taouk B, Meur M Le, et al. Characterization by ~(51)V Solid-State NMR, Laser Raman, and X-ray Photoelectron Spectroscopy of Vanacllum Species Deposited on γ -A1_2O_3. J. Phys. Chem, 1988, 92, 1230-1235
    [106]Israel E. Wachs, Shirley S. Chan, In situ characterization of small V_2O_5 crystallites supported on TiO_2 (anatase). Application of surface science, 1984, 20(1-2):181-185
    [107]Israel E. Wachs, Shirley S. Chan , Ramzi Y. Saleh, The interaction of V_2O_5 with TiO_2 (anatase) Ⅱ. Comparison of fresh and used catalysts for o-xylene oxidation to phthalic anhydride. Journal of catalysis, 1985, 91 (2): 366-369
    [108]Cristiane B. Rodella, Valmor R. Mastelaro, Structural characterization of the V_2O_5/TiO_2 system obtained by the sol-gel method. Journal of Physics and Chemistry of Solids, 2003, 64:833-839
    [109]胡蓉蓉,钟顺和.复合型复合半导体V_2O_5-TiO_2/SiO_2表面V_2O_5和TiO_2的相互修饰作用.催化学报,2005,16(1):32-36
    [110]刘学军,顾晓东,沈俭一.V_2O_5/TiO_2催化剂的表面结构和酸碱性及氧化还原性:催化学报,2003,24(9):674-680
    [111]徐毓龙.氧化物与化合物半导体基础.西安:西安电子科技大学出版社,1991,49
    [112]高友良,陈启元,尹周澜等.氧空位对WO_3光催化析氧活性影响的研究.无机化学学报,2005,10(21):1510-1514
    [113]Harris L A, Schumacher R. The influence of preparation on semiconducting rutile (TiO_2). J. Electrochem. Soc:Solid-state Sci. Technol, 1980, 127 (5):1186-1188
    [114]Heller A, Degani Y, Johnson J r., Gallagher D W, et al. Controlled suppression and enhancement of the photoactivity of titanium-dioxide (rutile) pigment. J.Phys.Chem, 1987, 91 (23): 5987-5991
    [115]Chen Y X, Wei Z B, Chen Y X, et al. Metal-semiconductor catalyst-photocatalytic and electrochemical behavior of Pt-TiO_2 for the water gas shift reaction. J. Mol.Catal. 1983, 21(10), 275-289
    [116]Howe, R F, Gr(?)tzel, M. Electron-paramagnetic-resobservation of trapped electrons in colloidal TiO_2. J. Phys.Chem. 1985, 89 (21): 4495-4499
    [117]Qin, D, Chang, W, Chen, Y, et al. Dynamic ESR study of oxygen chemisorption on TiO_2-based catalysts. J.Catal, 1993, 142(2):719-724
    [118]Rekoske, J E, Barteau, et al. Isothermal reduction kinetics of titanium dioxide-based materials.J. Phys. Chem.B, 1997, 101 (7):1113-1124
    [119]Liu H, Ma H T, Li X Z, et al. The enhancement of TiO_2 photocatalytic activity by hydrogen thermal treatment. Chemosphere, 2003, 50:39-46
    [120]井立强,袁福龙,侯海鸽等.ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系.中国科学,B辑,2004,34(4):310-314
    [121]李树本.太阳能光解水的途径.[J].太阳能,1999,4:30-31
    [122]上官文峰.太阳能光解水制氢的研究进展.[J]无机化学学报,2001,17(5):619-626
    [123]李斌,邱勇.染料敏化纳米太阳能电池.感光科学与光化学,2000,11(4):336-347
    [124] Sang-Chul Moon, Hiroaki Mametsuka, Soichi Tabata. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catalysis Today, 2000, 58: 125-130
    [125]Choi W Y, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-size TiO_2-correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys.Chem, 1994 ,98 (51): 13699-13679
    [126]Ping Cheng, Maoping Zheng, Yangping Jin. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. [J].Mater Lett, 2003,57(20) :2989-2994
    [127]Benjaram M Reddy, Biswajit Chowdhury. X-ray photoelectron spectroscopy study of V_2O_5 dispersion on a nanosized Al_2O_3-TiO_2 mixed oxide. [J]. Langmuir,2001,17 (4) :1132-1137
    [128]Benjaram M Reddy, Pavani M Sreekanth, Ettireddy P Reddy. Surface characterization of La_2O_3-TiO_2 and V_2O_5/L a_2O_3-TiO_2 Catalysts. [J]. J Phys Chem,2002,106 (22) :5695-5700
    [129]李芳柏,古国榜,李新军等.WO_3/TiO_2纳米材料的制备及光催化性能.物理化学学报,2000,16(11):997-1002
    [130]蔡乃才,王亚平,曹银良.复合型Pt-TiO_2光催化的研究.催化学报,1999,20(2):177-180
    [131]Bin Xu, Lin Dong,Yining Fan, et al. A Study on the Dispersion of NiO and/or WO_3 on Anatase.J Catal,2000, 193 (1): 88-95
    [132]Kazuhiro Sayama, Rintaro Yoshida, Hitoshi Kusama. Photocatalytic decomposition of water into H_2 and O_2 by a two-step photoexcitation reaction using a WO_3 suspension catalyst and an Fe~(3+)/Fe~(2+) redox system. Chem Phys Lett, 1997, 277(14): 387-391
    [133]张琦,李新军,李芳柏.制备工艺对WO_3/TiO_2薄膜可见光催化活性的影响.中国有色金属学报,2002,12(6):1299-1303
    [134]杨南如.无机非金属材料测试方法.武汉:武汉工业大学出版社,1993,88
    [135] Engweiler J, Har J f, Baikerl A. WO_x/TiO_2 Catalysts Prepared by Grafting of Tungsten Alkoxides:Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH_3.J Catal,1996, 159: 259-268
    [136]Claudio Minero, Eugenio Lorenzi, Edmondo Pramauro, et al. Dioxygen evolution from inorganic systems: Water oxidation mediated by RuO_2 and TiO_2-RuO_2 Colloids. Inorganica Chimica Acta, 1984, 91(4):301-305
    [137]Sang-Chul Moon, Hiroaki Mametsuka, Soichi Tabata, et al. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catalysis Today, 2000, 58:125-132
    [138]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社,1994,100
    [139]徐秀梅,景介辉,吴大青.焙烧温度对TiO_2纳米晶型转变及粒度的影响.黑龙江科技学院学报,2006,16(2):111-115
    [140]陈绮丽,唐超群,肖 循.TiO_2纳米微粒的溶胶-凝胶法制备及XRD分析.[J].材料科学与工程,2002,20(2):225-227
    [141]邵艳群,唐电,熊惟皓.热处理对含微量DBS金红石TiO_2纳米晶的组织形貌的影响.[J].材料热处理学报,2003,12(4):46-50
    [142]Do Y R, Lee K, Dwight K, The effect of WO_3 on the photocatalytic activity of TiO_2. Journal of Solid State Chemistry, 1994,108(1): 198-203
    [143]Chan.S.S., Wachs.I.E., Murrell. L. L., et al. Insitu laser raman-spectroscopy of supported metal-oxides.J.Phys.Chem.,1984, 88(24): 5831-5835
    [144]Ramanl.N.C, Sullivan.D.L., Ekerdt.J.G, et al. Selective Oxidation of 1-Butene over Silica-Supported Cr(Ⅵ), Mo(Ⅵ), and W(Ⅵ) Oxides. J. Catal., 1998, 176 (1):143-154
    [145]Engweiler J, Harf J, Baiker A, WOx /TiO_2 Catalysts Prepared by Grafting of Tungsten Alkoxides:Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH_3. Journal of catalysis,1996, 159(2): 259-269
    [146]Scholz A, Schnyder B, Wokaun A. Influence of calcinations treatment on the structure of grafted WOx species on titania. Journal of Molecular Catalysis A:Chemical, 1999, 138 (2/3): 249-261
    [147]黄翠英,由万胜,党利琴等.钕掺杂对纳米TiO_2光解水制氢活性的影响.催化学报,2006,27(3):203-209
    [148]Mills A., Hunte S.L.. A overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry, 1997,108(1): 1-35
    [149]Do Y R, L ee W , Dw igh t K. The Effect of WO_3 on the Photocatalytic Activity of TiO_2. Journal of Solid State Chemistry, 1994, 108 (1) : 198-201
    [150]靳治良,吕功煊.光解水制氢研究进展.分子催化,2004,18(4):310-320
    [151]韩维屏.催化化学导论.北京:科学出版社,2003,272-310
    [152]吴道新,陈启元,李洁等.Nb~(5+)掺杂r-TiO_2的光解水析氧活性.有色金属学报,2008,18(1):171-176
    [153]方志烈.半导体发光材料和器件.上海:复旦大学出版社,1992,92
    [154]李芳柏,古国榜,黎永津.WO_3/TiO_2复合半导体的光催化性能研究.环境科学.1999,20(4):75-78
    [155]张琦,李新军, 李芳博等.WO_x/TiO_2光催化剂的可见光催化活性机理探讨.物理化学学报,2004,20(5):507-511
    [156]Ohno T, Haga D, Fujihara K, et al. Unique Effects of Iron(Ⅲ) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide. J. Phys.Chem. B, 1997,101 (49): 10605-10612
    [157]刘士军.几种钨同多酸盐及同多酸离子的热力学性质研究:[博士学位论文].长沙:中南大学,1999
    [158]Ahalapitiya H. Jayatissa, Shih-Te Cheng, Tarun Gupta. Annealing effect on the formation of nanocrystals in thermally evaporated tungsten oxide thin films. Materials Science and Engineering B, 2004, 109 (1-3) :269-275
    [159]Koichi Kobayakawaa, Chotaro Sato, Yuichi Sato, et al. Continuous-ow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 21 (1) 65-69
    [160]Campostrini R, Carturan G. Sol-gel derived anatase TiO_2: morphology and photoactivity. Materials chemistry and physics, 1994, 38 (3):277-283
    [161]Fujihara K, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO_2 particles. J.Chem. Soc, Faraday Trans., 1998, 94(24):3705-3709
    [162]Ohsaka T, Yamaoka S, Shimomura O. Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO_2). Solid state communications, 1979, 30 (6):345-347
    [163]T. R. N. Kutty, R. Balachandran. Direct precipitation of lead zirconate titanate by the hydrothermal method. Materials research bulletin, 1984, 19(11): 1479-1488
    [164]Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Beijing: Science Press, 1988,199
    [165]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社,1994,25
    [166]Lethy K J, Beena D, Vinod Kumar R, et al. Structural, optical and morphological studies on laser ablated nanostructured WO_3 thin films. Applied Surface Science, 2008, 254: 2369-2376
    [167]Ramanl.N.C, Sullivan.D.L, Ekerdt.J.G, et al. Selective Oxidation of 1-Butene over Silica-Supported Cr(Ⅵ), Mo(Ⅵ), and W(Ⅵ) Oxides. J. Catal, 1998, 176 (1):143-154
    [168]Wachs I E, Weckhuysen B M. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships. Appl Catal A ,1997, 170 (1): 75-88
    [169]许波连,范以宁,刘浏等.V_2O_5/TiO_2催化剂表面钒氧物种的分散状态和催化性能.中国科学(B辑),2002,32(3):235-242
    [170]许旻,邱家稳,贺德衍.V_2O_5薄膜的结构和光电性能研究.真空科学与技术,2003, 23(6):373-376
    [171]Ikari H , Okanishi K, Tomita M,et al. Fluorescence MDR features of Eu~(3+) doped sol-gel TiO_2 hydrate microspheres. Opt. Mater,doi:10.1016/j.optmat.2007.06.018
    [172]Yanqin Wang, Humin Cheng, Li Zhang, et al. The preparation, characterization,photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO_2 nanoparticles. Journal of Molecular Catalysis A: Chemical, 2000,151: 205-216
    [173]李旦振,郑宜,付智贤.纳米二氧化钛光致发光,材料研究学报,2000,14(6):639-642
    [174]Jing Liqiang, Sun Xiaojun, Xin Bai fu, et al. The preparation and characterization of La doped TiO_2 nanoparticles and their photocatalytic activity.[J].Journal of Solid State Chemistry, 2004,177: 3375-3382
    [175]Jing Liqiang, Sun Xiaojun, Cai Weimin, et al. The preparation and characterization of nanoparticle TiO_2/Ti films and their photocatalytic activity.Journal of Physics and Chemistry of Solids, 2003, 64 :615-623
    [176]Lide Z, Chimei M. Luminescence in nanostructured materials. NanoStruct.Mater., 1995,6:831-834
    [177]刘素琴,方东,李朝建等.阳极氧化法制备二氧化钛纳米管及其荧光性质.无机化学学报,2007,23:827-832
    [178]Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO_2 powders by means of experimental characterizations and theoretical calculations. J. Solid State Chem.,2005,178(11): 3293-3302
    [179]Serpone N, Lawless D, Khairutdinov R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO_2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor?. J. Phys. Chem., 1995,99, 16646-16654
    [180]Emeline A V, Serpone N. Photo-Induced Processes in Heterogeneous Nanosystems. From Photoexcitation to Interfacial Chemical Transformations. Chem.Phys. Lett., 2001, 345(54):105-110
    [181]黄德修.半导体光电子学.成都:电子科技大学出版社,1994,4
    [182]井立强,辛柏福,王德军等.ZnO和TiO_2纳米粒子的光致发光性能及其与光催化活性的关系.高等学校化学学报,2005,26,111-115
    [183]莫党.半导体材料(上).北京:人民教育出版社,1963,49
    [184]梁英教,车荫昌.无机热力学数据手册.沈阳:东北大学出版社,1993,460-461
    [185]Meriaudeau, Ellestad P, O. H.; Dufaux M. Metal-support interaction. Catalytic properties of TiO_2-supported platinum, indium, and rhodium. J. Catal., 1982, 75(2):243-250
    [186]吴刚.材料结构表征及应用.北京:化学工业出版社,2001:382-383
    [187]孙锦宜,林西平.环保催化材料与应用.北京:化学工业出版社,2002,460
    [188]Gao Y-M, Lee W, Trehan R. Improvement of photocatalytic activity of titanium(Ⅳ) oxide by dispersion of Au on TiO_2. Mater. Res.Bull.,1991,1212(26):1247-1254
    [189]曲宝涵,马传利,杨爱萍.TiO_2材料的半导化机理探讨.郑州轻工业学院学报(自然科学版),2000,4(15)99-101.
    [190]Rothenberger G, Moser J, Gratzel M, Serpone N, et al. Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles. J. Am.Chem. Soc, 1985, 107:8054-8059
    [191]Sheng Guang Wang , Xiao Dong Wen , Dong Bo Cao , et al. Formation of oxygen vacancies on the TiO_2(110) surfaces. Surface Science, 2005, 577, 69-76
    [192]郭玉宝,杨儒.金红石型纳米TiO_2(110)表面原子结构和电子结构的理论研究.北京化工大学学报,2004,31(5):64-68
    [193]Stampfl.C, Van de Wall C.G. Density-functional calculations for Ⅲ-Ⅴ nitrides using the local-density approximation and the generalized gradient approximation.Phys. Rev., B, 1999, 59 (8): 5521-5535
    [194]Faruque M. Hossain, G. E. Murch, L. Sheppard, et al. Ab initio electronic structure calculation of oxygen vacancies in rutile titanium dioxide. Solid State Ionics,2007, 178:319-325
    [195]Seung-Min Oh, Takamasa Ishigaki. Preparation of pure rutile and anatase TiO_2 nanopowders using RF thermal plasma. Thin Solid Films, 2004, 457:186-191
    [196]何杰,杨万秀.Nb搀杂TiO_2催化剂结构与光催化性能研究.安徽工程科技学院学报,2005,20(2):12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700