用户名: 密码: 验证码:
直接甲醇燃料电池(DMFC)阳极催化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)以廉价的液体甲醇为燃料,不需要燃料重整设备,运行温度较低,燃料来源丰富,易携带和储存,是便携式电子设备、电动汽车的理想动力源。但其阳极催化剂采用贵金属Pt及PtRu合金,成本高,催化活性低,难以商业化。因此,降低贵金属Pt用量、提高Pt催化剂的活性和利用率,是重要的研究课题。本文采用微乳液法,以聚苯胺-石墨复合材料为载体,成功制备了具有纳米分散性的Pt/PANI-G、Pt-Ni-Zr/ PANI-G阳极催化剂。
     (1)通过微乳液法成功合成了聚苯胺-石墨导电高分子催化剂载体,并应用FT-IR、TG、XRD、TEM、导电性和电化学性能测试表征了结构与性能。结果表明石墨含量为10wt%时载体具有较好的导电性能,石墨与聚苯胺之间存在键合作用,聚苯胺-石墨复合材料比聚苯胺具有更大的比表面积。
     (2)通过A to B和A+B两种微乳液法成功制备了Pt(20wt%)/PANI-G和Pt-Ni-Zr/ PANI-G电催化剂,采用XRD、TEM、XPS等手段对催化剂进行表征。结果表明A+B微乳液法制得的催化剂具有更好的结构和性能。微乳液的ω、前驱体的浓度对催化剂粒径存在显著的影响,当ω=8.71、前驱体浓度为0.0192mol /L时制得的催化剂Pt粒径4.0nm,以0、+2和+4氧化态存在,电化学活性面积15.99 m~2/g,对甲醇的电化学氧化峰电流为282.04μA·㎝~(-2)、氧化峰电位为0.603V。Pt-Ni-Zr/PANI-G催化剂中金属之间形成较好合金结构,催化剂金属以0、+2等多种氧化态形式存在,Pt粒径大小在3nm左右;Pt_(11)Ni_6Zr_3/PANI-G催化剂中Pt具有较大的电化学活性面积和较高的热稳定性,对甲醇也有较高的电催化活性且随甲醇浓度和温度的升高而增强,常温时Pt_(11)Ni_6Zr_3/PANI-G催化剂在1mol/L甲醇+0.5mol/L硫酸溶液中的氧化峰电流为440.94μA·㎝~(-2)、氧化峰电位0.539V。
Direct methanol fuel cell (DMFC) use cheap methanol as the fuel. It does not need the fuel reforming equipment. Its operating temperature is low.The fuel source is abundant and is easy to store and to transport. Therefore, it is an ideal power for mobile electronic equipments and electric automobiles. However, it is difficult for commercialization due to high cost and low catalytic activity of noble metal Pt and PtRu alloys anodes. So it is an important research topic to reduce the dosage and increase the activity and utilization of noble metal Pt. In this paper, nano-dispersed Pt/PANI-G and Pt-Ni-Zr/PANI-G anodic catalysts were prepared successfully via the microemulsion method, which use polyaniline-graphite compound material as carrier.
     (1)Conducting polyaniline-graphite composites was synthesized by microemulsion and the structure and performance of the carrier was characterized by FT-IR TG XRD TEM conducting and electrochemical tests. The results shows that the carrier has preferable conductivity when the graphite amount is 10wt.%. there are bonds between graphite and polyaniline. Polyaniline-graphite composites has bigger surface area than polyaniline.
     (2)Pt(20wt%)/PANI-G and Pt-Ni-Zr/PANI-G electrocatalyst was prepared by A to B and A+B microemulsion and the catalysts was characterized by XRD TEM XPS and so on. The results indicate that the catalyst prepared by A+B microemulsion has better structure and performance. The particle size of catalyst is influenced remarkably by theωvalues of mictoemulsion and the concentration of precursors. When theωis 8.71 and the concentration is 0.0192mol/L, the particle size of the catalyst is about 4.0nm. Pt is 0 +2 and +4 value. The electrochemical surface area is about 15.99m~2/g. The peak current density and peak potential of the catalyst for methanol electrooxidation is 282.04μA·㎝~(-2) and 0.603V respectively. The metals in Pt-Ni-Zr/PANI-G form good alloyed structure. The metals are 0 +2 value and so on in the catalyst. The particle size of Pt is about 3nm.The Pt in Pt_(11)Ni_6Zr_3/PANI-G has big electrochemical activity surface areas and the catalyst has high heat stabilization. The catalyst also has better electrocatalytic activity for methanol, which become better with the increasing of the concentration and temperature of methanol. At room temperature, the peak current density and peak potential of Pt_(11)Ni_6Zr_3/PANI-G in 1mol/L CH_3OH + 0.5mol/L H2SO4 solution is 440.94μA·㎝~(-2) and 0.539V respectively.
引文
[1] Grove, W.R.. On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science, 1839, (3)14:127-130.
    [2] Mond, L. and Langer, C.. A new form of gas battery. Proceedings of the Royal Society of London,1889,46:296-304.
    [3] G. Halpert, H. Frank, Surampudi. Batteries and Fuel Cell in Space. The Electrochem. Soc. Interface, 1999.
    [4] L.Carrette, K. A. Friedrich, U. Stimming.Fuel cell: principles, types, fuels, and applications.Chemphyschem, 2000, 1:162.
    [5] 毛宗强. 氢能—21 世纪的绿色能源. 北京: 化学工业出版社, 2005: 251.
    [6] 郭公毅. 燃料电池. 能源出版社, 1984.
    [7] A.O.麦克杜格尔. 燃料电池. 国防工业出版社, 1983.
    [8] 陆天虹, 邢巍. 燃料电池——并不十分遥远的环保型电化学发动机. 产业论坛, 2003, 9: 23
    [9] Scott K, Taama W M, Argyropoulos P. Engineering aspects of the direct methanol fuel cell system. J. Power Sources, 1999, 79: 43-59.
    [10] Takeshi Kobayashi, Junichiro Otomo, Ching-ju Wen, et al. Direct alcohol fuel cell-relation between the cell performance and the adsorption of intermediate originating in the catalyst-fuel combinations. J. Power Sources, 2003, 124: 34-39.
    [11] Rice C, Ha S, Masel R I, et al. Direct formic acid fuel cells. J. Power Sources, 2002, 111: 83-89.
    [12] Liu Jiang, Barnett, Scott A. Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics, 2003, 158: 11-16.
    [13] Yuan Xiao-Zi, Ma Zi-Feng, He Qing-Gang, et al. Electrogenerative hydrogenation of allyl alcohol applying PEM fuel cell reactor. Electrochem Commun, 2003, 5: 189-193.
    [14] Zhang J, Wilkinson D P. Electro-oxidation of dimethyl ether in a polymer-electrolyte- membrane fuel cell. J. Electrochem. Soc., 2000, 147: 4058-4060.
    [15] Peled E, Livshits V, Duvdevani T. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NPPCM). J. Power Sources. 2002, 106: 245-248.
    [16] 田大栓. 燃料电池的特点与应用前景. 煤气与热力, 2006, 26(12): 31-32.
    [17] Shi-Chune Yao, Xudong Tang, Cheng-Chieh Hsieh, et al. Micro-electro-mechanicalsystems (MEMS)-based micro-scale direct methanol fuel cell development. Energy, 2006, (5)31: 636–649.
    [18] SURAMPUDI S. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane. USP :5 599 638 ,1997-02-04.
    [19] 魏昭彬,刘建国,乔亚光等.直接甲醇燃料电池性能.电化学,2000,7(2):228-233.
    [20] Ravikumar M K, Shukla A K. Effect of methanol crossover in a liquid-feed polymer electrolyte direct methanol fuel cell. J Electrochem Soc,1996, 143(8):2601-2606.
    [21] John Cruicshank, Keith Scott. The degree and effect of methanol crossover in the direct methanol fuel cell. J Power Sources,1998,70:40-47.
    [22] R. Parsons, T BanderNoot. The oxidation of small organic molecules: A survey of recent fuel cell related research J.Electroanal.Chem., 1988, 257:9-45.
    [23] Gurau B., Viswanathan R., Liu R.X., et al. Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation, J. Phys.Chem. B, 1998,102, 9997-10003.
    [24] M Watanabe,M Uchida,S Motoo. Preparation of Highly Dispersed Pt+Ru Alloy Clusters and the Activity for the Electrooxidation of Methanol. J. Electroanal. Chem., 1987, 229: 395- 406.
    [25] Surampudi S,Narayanan S R,Vamos E,et al.Advances in direct oxidation methanol fuel cells. J. Power Sources, 1994, 47: 377-385.
    [26] Arico A S,Creti P,Antonucci P L,et al.Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface. Electrochimica Acta,1998,43(24):3719-3729.
    [27] Wasmus S,Kuver A. Methanol oxidation and direct methanol fuel cells:a selective review. J. Electroanal Chem.,1999,461:14-31.
    [28] Kauranen P S,Skou E,Munkj.Kinetics of methanol oxidation on carbon-supported Pt and Pt+Ru catalysts. J. Electroanal Chem.,1996,404:1-13.
    [29] Li Liu,Cong Pu,Rameshkrishman Viswanathan,et al.Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells.Electrochimica Acta,1998,43(24):3657 -3663.
    [30] SHEN P K, TSEUNG A C C. Anodic oxidation of methanol on Pt/WO3 in acidic media . J Electrochem Soc , 1994 ,141 :3082-3089.
    [31] HABL E C T , WRIGHTON M S. Electrocatalytic oxidation of methanol by assemblies of platinum/ tin catalyst particles in a conducting polyaniline matrix . Langmuir , 1991,7:1305 -1309.
    [32] BEDEN B , KARDIGAN F , LAMY C , et al. Electrocatalytic oxidation of methanol on platinum based binary electrodes . J Electroanal Chem , 1981 ,127:75 -85.
    [33] R. Parson, T. Vanderncot, The oxidation of small organic molecules A survey of recent fuel cell related research. J. Electroanal. Chem., 1988, 257: 9
    [34] P. C. Biswas,M. Enyo, Electro-oxidation of methanol on graphite-supported perovskite- modified Pt electrodes in alkaline solution. J. Electroanal. Chem., 1992, 322: 203
    [35] P. K. Shen, A. C. C. Tseung, Co-deposited Pt-WO, electrodes. Part 1:methanol oxidation and in- situ studies, J. Electrochem. Soc., 1994, 141:3082.
    [36] P.K.Shen,K.Y Chen, A.C.C. Tseung,Anodoc oxidation of formic acid on electrodeposited Pt/WO3, electrodes at room temperature, J. Electrochem. Soc,1995,142:L54.
    [37] C.C.Hays, R.Manoham, J.B.Goodenough. Methanol oxidation and hydrogen reactions on NiZr in acid solution. J. Power Sources, 1993,45:291-301.
    [38] G.ErtI,H.Knozinger,J.Weitkamp. Handbook of heterogeneous catalysis, VCH,1997.
    [39] Auer.E,Freund.A,Pietsch.J,Tacke.T, Carbons as supports for industrial precious metal catalysts,Appl.Catal.A,1998,173,259-271.
    [40] Coq.B,PlaneixJ.M.,Brotons.Valerie, Fullerene-based materials as new support media in heterogeneous catalysis by metals, Appl.catal.A, 1998,173,175-183
    [41] J.Shim,D.YYoo,J.S.Lee. Characteristics for electrocatalytic properties and hydrogen -oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000, 45,1943-1951.
    [42] 衣宝廉等.燃料电池——原理,技术,应用. 北京:化学工业出版社, 2003: 181-182.
    [43] 刘长硼,杨辉,邢魏等.铂、钌共修饰的氧化钦电极对甲醇的电催化氧化. 应用化学, 2001,18(7): 517-520
    [44] S. G. Sun, J. Clavilier, Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J. Electroanal. Chem., 1987,236: 95.
    [45] B. Beden, S. Juanto, J. M. Leger, et al. Infrared spectroscopic study of the methanol adsorb at a platinum electrod. Part 3:Structure effects and behavior of a polycrystalline surface. J. Electroanal. Chem., 1987, 238: 323.
    [46] Y. Morimoto, E. Yeager. CO oxidation on on smooth and high area Pt, Pt-Ru,and Pt-Sn electrodes. J. Electroarral. Chem., 1998, 441:77.
    [47] 陈胜洲,董新法. MoOx、WOx 对 PtRu/C 催化剂甲醇电氧化作用的影响. 电源技术,2004,28(8):498-500
    [48] Jin Yong Kim, Yang Z G, CHANG C.-C, et al. A sol-gel-based approach to synthesizehigh-surface-area Pt-Ru catalysts as anodes for DMFCs. Journal of The Electrochemical Society, 2003, 150 (11):1421-1431.
    [49] Haralampos Tsaprailis, Viola I. Birss. Sol-gel derived Pt-Ir mixed catalysts for direct methanol fuel cell application. Electrochemical and Solid-State Letters, 2004, 7(10):348-352.
    [50] Alessandra Missiroli, Francesca Soavi, Marina Mastragostino. Increased performance of electrodeposited PtRu/C-Nafion catalysts for DMFC. Electrochemical and Solid-State Letters, 2005,8 (2):110-114.
    [51] Witham C K, Chun W., Ruiz, R., et al. Thin Film Catalyst Layers for Direct Methanol Fuel Cells. Electrochemical and Solid-State Letters. 2000,3(11):497-500.
    [52] 崔正刚,殷福珊. 微乳化技术及应用(第一版).北京:中国轻工业出版社, 1999:73-74
    [53] 成国祥,沈锋,张仁柏等. 反相胶束微反应器及其制备纳米微粒的研究进展.化学通报, 1997,(3):14-19
    [54] 孙志刚,胡黎明.气相合成纳米颗粒的制备技术进展.化工进展,1997(2):21-24
    [55] Kazue Kurihara,Jerzy Kizling,Per Stenius, et a1. Laser and pulse radiolytically induced colloidal Gold formation in water and water-in-oil microemulsions .J. Am. Chem. Soc. 1983, 105:2574-2579.
    [56] Srinivasan S, Ticianelli EA, Derouin CR, et al. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. J. Power Sources 1988, 22: 359-368
    [57] L.G.R.A. Santos,C.H.F. Oliveria,I.R. Moraes,et al. Oxygen reduction reation in acid medium on Pt-Ni/C prepared bya microemulsion method.Jorunal of Electroanalytical Chemistry, 2006 (596): 141-148.
    [58] Peng Xiao,Min Xiao,Pinggui Liu,et al. Direct synthesis of a polyaniline-intercalated graphite oxide. Carbon,2000,38: 626-628.
    [59] S. Quillard,G. Louarn,S. Lefrant,et al.Vibrational analysis of polyaniline:A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases Physical Review B, 1994, 50(17): 12496-12508.
    [60] Y. Furukawa,F. Ueda,Y. Hyodo,et al.Vibrational spectra and structure of polyaniline. Macromolecules, 1988, 21 (5):1297-1305.
    [61] H. Zengin,W. Zhou,J. Jin,et al.Carbon Nanotube Doped Polyaniline.Advanced Materials, 2002, 4(20): 1480-1483.
    [62] Irena Kulszewicz-Bajer,Janusz Sobczak,Magdalena Hasik , et al. Spectroscopic studies of polyaniline protonation with poly(alkylene phosphates).Polymer,1996,37(1):25-30.
    [63] Murielle Cochet,Wolfgang K. Maser, Ana M. Benito, et al.Synthesis of a new polyaniline /nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction.Chemcomm Communications,2001:1450-1451.
    [64] W. Feng,X.D. Bai,Y.Q. Lian, et al.Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization[J].Carbon, 2003(41),1551-1557.
    [65] Yijun Yu,Bo Che, Zhihua Si,et al.Carbon nanotube/polyaniline core-shell nanowires prepared byin situ inverse microemulsion.Synthetic Metals,2005(150): 271-277.
    [66] Wu Gang,Li Li,Li Jing-Hong,et al.Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films.Journal of Power Sources,2006(155):118-127.
    [67] Mittal K L,Shah D O.Surfactants in solution. New York:Plenun Press,1991.363-382.
    [68] 耿延候,万梅香 ,王军 .高性能掺杂态聚苯胺. 高分子材料科学与工程,1997, 13(6):124-127
    [69] Crabb E M, Marshall R M, Thompsett D. Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. J Electro -chem Soc ,2000 ,147:4440-4447.
    [70] 周海晖,焦树强,陈金华,等.Pt 微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化[J].物理化学学报,2004,20(1): 9-14.
    [71] 杨辉,李长志,陆天虹,等.甲醇在铂微粒修饰的聚硫堇电极上的电催化氧化[J].物理化学学报,1997,13(6):542-547.
    [72] Yue Zhao, Yifeng E, Louzhen Fan,et al. A new route for the electrodeposition of platinum -nickel alloy nanoparticles on multi-walled carbon nanotubes. Electrochimica Acta,2007(52): 5873-5878.
    [73] A. Roustila, J. Chêneb, C. Séverac. XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound. International Journal of Hydrogen Energy,2007 (32):5026-5032
    [74] 查全性.电极过程动力学导论(第三版). 北京:科学出版社,2002,274.
    [75] M. Trehova, I. Sapurina, D. Hlavata, J. Prokes, J. Stejskal, FTIR study of polyaniline- fullerene complex.Synth. Met., 2001(121):1117-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700