用户名: 密码: 验证码:
控制性增温和施氮肥对荒漠草原土壤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以内蒙古高原短花针茅+冷蒿+无芒隐子草的荒漠草原为研究对象,在野外自然条件下进行生态系统控制性增温与施氮肥实验。在模拟全球气候变暖的条件下,研究温度和氮素的增加对荒漠草原土壤的影响,探讨荒漠草原生态系统对全球气候变化的响应机制,为我国全球变化与陆地生态系统关系提供长期的研究平台。本论文的研究结果表明:
     (1)实验期间内(2006年6月24日至2008年10月11日),增温处理样地0cm、7.5cm、15cm、30cm和50cm土壤平均温度与对照样地相比,平均增加了1.42℃、0.98℃、0.94℃、0.81℃、0.71℃,土壤温度呈现出上层变异性大于下层,其中2008年的对照和增温处理间的同一层土壤温度都达到显著差异(P<0.05)。
     (2)控制性增温和施氮肥对荒漠草原土壤产生了一定的影响,土壤温度的增加虽然使0-30cm土壤湿度有所提高,但变化差异不显著。
     (3)增温有效增加土壤有机质、全氮、全磷、速效氮、速效磷、铵态氮含量。其中,不施氮肥增温的有机质、速效磷、铵态氮含量高于施氮肥增温作用。有机质、速效磷含量2007年10-20cm土层内不施氮肥增温显著高于施氮肥增温、施氮肥不增温、对照(P<0.05)。
     增温施氮肥互作效应使全氮、全磷、速效氮含量高于不施氮肥增温作用。全氮含量2007年10-20cm土层施氮肥增温显著高于不施氮肥增温、施氮肥不增温和对照(P<0.05)。速效氮含量2007、2008年0-30cm土层内增温施氮肥显著高于不施氮肥增温、施氮肥不增温、对照(P<0.05)。速效钾含量2007、2008年各土层内增温施氮肥显著高于不施氮肥增温、施氮肥不增温、对照(P<0.05)。
     (4)施氮肥有效增加土壤全钾、速效钾和硝态氮含量。其中增温施氮肥互作效应下的硝态氮含量高于施氮肥不增温作用。2007、2008年0-10cm土层内施氮肥增温显著高于不施氮肥增温、施氮肥不增温、对照(P<0.05)。
     (5)增温和施氮肥作用下土壤有机质、全氮、全磷、速效氮、速效磷、速效钾含量的剖面变化特征为随着土层的加深而逐渐减少。其中有机质、全氮、全磷含量在0-10cm土层中显著高于10-20cm、20-30cm土层。(P<0.05)。
     (6)土壤养分间的相关分析得出,土壤有机质、全氮、全磷、速效氮、硝态氮和铵态氮在各种处理中有较好的正相关关系。
     (7)增温和施氮肥作用有所增加土壤呼吸速率,但各处理间未达到显著差异。增温和对照的土壤呼吸速率与地表温度(0cm)、7.5cm土壤温度及0-10cm土壤含水量均呈极显著指数相关(P<0.01)。
To study the effect of warming, nitrogen fertilizer and the compound effect of the warming and the nitrogen fertilizer on the communities of the Breviflora+ Artemisia frigida + Cleistogenes songorica desert steppe in Inner Mongolia and the production ability of the plain, the sample plot was heat by the MSR-2420 infrared radiators while being processed by the nitrogen fertilizer. In a simulated global warming condition, we research the effect of warming and N addition on soil and explore the desert grassland ecosystems to global climate change response mechanism for our Global Change and Terrestrial Ecosystems provide long-term research platform. The result of paper showed:
     1)During the experiment (form on June 24, 2006 to on October 11, 2008), comparison with CK (0cm,7.5cm,15cm,30cm and 50cm), the temperature of soil increased 1.42℃,0.98℃,0.94℃,0.81℃and 0.71℃in warming plot, respectively. The variability of soil temperature was larger in upper than in lower, especially in 2008, the signature (P<0.05) was observed in the same treatment layer both between warming treatment and CK.
     2)Warming and N addition have a certain impact on the soil of desert steppe. Although elevated soil temperature has caused increased of soil moisture (0-30cm), no signature variable was observed (P>0.05).
     3)Warming improved the content of soil organic matter, total nitrogen, total phosphorus, nitrogen speed, speed P, Speed K, ammonium nitrogen. Among of them, warming of the organic matter, fertilizer, rate of phosphorus, ammonium nitrogen fertilizer was higher than warming plus N supply. In 2007, soil organic matter, phosphorus-speed in 2007 with 10 ~ 20cm is significantly (P<0.05) in warming plots higher than in warming plus N addition plots, N addition plots and CK plots.
     The content of total phosphorus, total nitrogen, speed nitrogen, speed potassium was higher in warming plus N addition plots than warming plots. Compared with warming, N addition and CK, the content of total nitrogen with 10-20cm was higher (P<0.05) in warming plus N addition plots. Both two years (in 2007 and 2008), the content of speed nitrogen and speed potassium with 0-30cm was higher (P<0.05) in warming plus N addition than other treatments (warming, N addition and CK).
     4)Effectively increase content of nitrate nitrogen in N addition. The content of soil nitrate nitrogen was higher in warming plus nitrogen supply plots than in warming plot. Compared with other treatments (warming, N addition and CK), warming and N addition was significantly increased (P<0.05) the content of nitrate nitrogen with 0-10cm in both two years.
     5)With the deepening of soil, the content of soil organic matter, total nitrogen, total phosphorus, and speed nitrogen, speed P and Speed K was decreased in warming and N addition plots, whereas the content of soil organic matter, total nitrogen and total phosphorus were higher (P<0.05) in 0-10cm than in 10-20cm and 20-30cm.
     6)Through analyzing parameters the correlation between simulated experiment (include warming and N addition) and soil chemical properties, we obtained that among of soil organic matter, total nitrogen, total phosphorus, nitrogen and ammonium-speed have a positive correlation of each other.
     7)Warming and N addition increased soil respiration but no signature (P>0.05) was found. The extent of the impact on warming and N addition to soil respiration was closely related to soil surface temperature, soil temperature in 7.5cm, and water content with 0-10cm (P<0.01).
引文
1 Houghton R A.The annual net flux of carbon to the atmosphere from changes in land use 1850-1990, Tellus, 50B, 298-313. Houghton, R A J L Hackler. and K T Lawrence, 1999,The U.S. carbon budget: contributions from land-use change[J]. Science, 1999,285,574-578
    2沈永平.IPCC WGI第四次评估报告关于全球气候变化的科学要点.[J]冰川冻土,2007.29(1)
    3 IPCC. IPCC WGI Fourth Assessment Report. Climatic change 2007: the physical science basis.[M] Geneva: Intergovernmental Panel on Climate Change
    4王长科,刘洪滨,罗勇.气候变化及其对农业和生态系统的影响[J].科学中国人,2005,11: 24-26
    5气候变化国家评估报告[M].北京:科学出版社,2007.23-33
    6 IPCC. IPCC WGI Fourth Assessment Report. Climatic change 2007: the physical science basis[M]. Geneva: Intergovernmental Panel on Climate Change
    7马瑞芳.内蒙古草原区近50年气候变化及其对草地生产力的影响[D].硕士学位论文,中国农业科学院,2007,25
    8 Agren G I, Mcmurtrie R F, Parton W J, et al. State-of-art of models of production decomposition linkages in conifer and grassland ecosystems[J]. Ecological Applications,1991,1:118-138
    9 Freeman C M, Lock A, Reynolds B. Climate change and mathematical study of growth and productivity of a calluna sphagum community[J]. Journal of Applied Ecology,1993, 11:281-295
    10 Coughenour M B, Chen D X. Assessment of grassland ecosystem response to atmospheric change using linked plant-soil process models[J]. Ecological Applications, 1997,7: 802-827
    11 Harrison A F, et al. Role of nitrogen in herbage production by Agrostis Festuca hill grassland[J]. Journal of Applied Ecology,1994,31:351-360
    12 Bowman W D, Theodose T A, Fisk M C. Physiological and production response of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change[J]. Oecologia,1995, 101: 217-227
    13 Theodese T A, Bowman W D. Nutrient availability, plant abundance, and species diversity in two alpine tundra communities[J]. Ecology,1997,78:1861-1872
    14 Samuel M J, Hart R H. Nitrogen fertilization, botanical composition and biomass production on mixed-grass rangeland[J]. Journal of Rangeland Management,1998,51: 408-416
    15 Harrison A F, et al. Potential of a root bioassay for determination of P-deficiency in high-altitude grasslands[J]. Journal of Applied Ecology,1991,11:277-289
    16赵义海,柴琦.全球气候变化与草地生态系统[J].草业科学. 2000, 17(5):49-54
    17 Freeman C, Lock M A, Reynolds B. Climatic change and the release of immobilized nutrients from Welsh riparian wetland soils[J]. Ecological Engineering,1993,2: 367-373
    18 Zak D R, Holmes W E, MacDonald N W,Pregitzer K S. Soil temperature, metric potential , and the kinetics of microbial respiration and nitrogen mineralization[J]. Soil science society of American Journal,1999,63:575-584
    19 Chapin F S III,Shaver G R, Gibbin A E, et al. Responses of arctic tundra to experimental an observed changes in climate[J]. Ecology,1995,76:694-711
    20王其兵,李凌浩,白永飞,邢雪荣.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报,2000,24(6):687-692
    21 Ineson P, Benham D G, Poskitt J, et al. Effects of climate change on nitrogen dynamics in upland soils. 2. A soil warming study[J]. Global Change Biology,1998,4(1):153-161.
    22 Turner J, Olson P R. Nitrogen relation in a Douglas-fir plantation[J]. Annals of Botany,1976,40:1185-1193
    23 Robertson G P,Huston M A,Evans F C, Tiedje J M. Spatial variability in a successional plant community[J]. Ecology,1988,69(5):1517-1524
    24 Rustard L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126:543-562
    25 Robertson G P,Huston M A,Evans F C, Tiedje J M. Spatial variability in a successional plant community[J]. Ecology,1988,69(5):1517-1524
    26新.内蒙古高原荒漠草原生态系统概论.见:赛胜宝,李德新著.荒漠草原生态系统研究[C].呼和浩特:内蒙古人民出版社出版社,1994,1-7
    2 7中华人民共和国农业部畜牧兽医司.中国草地资源数据[M].北京:中国农业科技出版社,1992.115-125
    28 ughes L. Biological consequences of global warming: is the signal already[J]. Trends in Ecology and Evolution, 2000, 15:56-61
    29鲍士旦.土壤农化分析[M](第三版).中国农业出版社,2000(12):42~57
    30鲁如坤.土壤农业化学分析方法(J).北京;中国农业科学出版社,1999:129~193
    31 CORRE M D,SCHNABELA R R,SHAFFERA J A.Evaluation of soil organic carbon under forests,cool!season and warm!season grasses in the northeastern US[J].Soil Biology and Biochemistry,1999,31(11):1531-1539.
    32黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    33 ANDERSEN M K,JENSEN L S.Low soil temperature effects on short!term gross N mineralization-immobilisation turnover after incorporation of a green manure[J].Soil Biology and Biochemistry, 2001,33(4-5):511-521.
    34 MIKO U F K.The temperature dependence of SOM decomposition and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry,1995,27(6):753-760.
    35 DALIAS P.Long!term effects of temperature on carbon mineralization processes Soil Biology and Biochemistry [J].Soil Biology and Biochemistry,2001,33(7-8):1 049-1 057.
    36黄东迈,朱培立.旱地和水田有机碳分解速率的探讨与质疑[J].土壤学报,1998,35(4):482-491.
    37 OLIVIER C D,WILLIAM R H.Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures andmoistures [J].Soil Biology and Biochemistry,2000,32(11-12):1773-1785.
    38黄元仿,周志宇,苑小勇,张红艳.干旱荒漠区土壤有机质空间变异特征.生态学报.第24卷第12期2004,12(12):2777-2781.
    39 Rashid G H, Scheafer R. Seasonal variation in the nitrogen mineralization and mineral nitrogen accumulation in two temperate forest soils[J]. Pedobiologia, 1988,31: 335-347
    40陈全胜,李凌浩,韩兴国等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报,2003,27(4):441-447
    41刘颖,韩士杰,胡艳玲,戴冠华.土壤温度和湿度对长白松林土壤呼吸速率的影响[J].应用生态学报,2005,16(9):1581-1585
    42贾丙瑞,周广胜,王风玉,王玉辉.放牧与围栏羊草草原生态系统土壤呼吸作用比较[J].应用生态学报,2004,15(9):1611-1615
    43陈四清,崔骁勇,周广胜等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究[J].植物学报,1999,41(6):645-650
    44焦树英.短花针茅草原生态系统对不同载畜率水平绵羊放牧的响应[D].博士学位论文,内蒙古农业大学,2006,77-79
    45 Beier C, Emmett B, Gundersen P,et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive night in warming[J]. Ecosystems,2004,7:583-597
    46夏自强.温度变化对土壤水运动影响研究[J].地球信息科学,2001,4:19-24
    47张翔,朱淇勋,孙春河.长期施肥对土壤微生物和腐殖质组分的影响.华北农学报,1998,13(2):87-92
    48 ier C, Emmett B, Gundersen P,et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive night in warming[J]. Ecosystems,2004,7:583-597
    49黄昌勇.土壤学[M].第一版.北京:中国农业出版社,2000:198-199
    50张文君,刘兆辉,江礼花.氮素对大蒜产量影响和氮素供应目标值的研究.土壤肥料科学,2008,7:254-259
    51姚天全,永塚镇男.气候因素对土壤有机质组成和性质的影响[J].山地研究,1994,12(3): 163-168
    52 Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures.[J] Ecological Applications,1994,4:617-625
    53刑素丽,刘孟朝,邢竹.北方褐土区土壤硝态氮运移动态及合理施氮肥调控.中国土壤与肥料,2007(5):15-31
    54张亚力,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选(J).土壤学报,2004,41(4):571-575
    55来璐,郝德明,彭令发.黄土区干旱地苜蓿连作条件下施肥对土壤磷素的影响.西北植物学报,2003,23(8):1471-1474
    56李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报, 1998, 6(2): 90-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700