用户名: 密码: 验证码:
培肥方式对黑土氮素转化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究松嫩平原退化黑土(由于人为掠夺性的生产方式,使黑土层犁底层加厚,耕层变浅,土壤结构性差,土壤板结,容重增大,孔隙减少,持水量降低,保水保肥性能减弱)在不同培肥处理下,与氮素转化有关的土壤功能细菌(自生固氮细菌、氨化细菌、硝化细菌、反硝化细菌)和土壤酶(脲酶、过氧化氢酶)的变化规律,进而分析对土壤氮素转化的功能如自生固氮作用强度、氨化作用强度、硝化作用强度和反硝化作用强度的动态影响,以及对硝态氮不同土层淋溶和植物收获的氮素输出量的影响,从而对土壤中氮素转化机理进行深入的理论研究,为生产实践中科学合理的利用土壤氮素和指导氮素肥料的施用提供科学依据,为保护黑土资源、减少农业非点型污染等提供科学参考。
     本试验得出的主要结论有:
     1.不同培肥处理对土壤自生固氮细菌、土壤氨化细菌、硝化细菌、反硝化细菌影响差异显著。施用农肥处理能促进土壤自生固氮细菌的生长,单独施用化肥对氨化细菌影响不大,而对反硝化细菌生长有一定的促进作用。单独施用农肥、农肥化肥配合施用提高了土壤自生固氮细菌、土壤中氨化细菌、硝化细菌及反硝化细菌数量。
     2.不同培肥处理对土壤自生固氮作用强度、土壤氨化作用强度、硝化作用强度、反硝化作用强度影响均达到显著水平。各培肥处理对自生固氮作用强度均产生抑制作用,农肥处理抑制的作用较大。农肥的单独施用及农肥化肥配比施用均可提高土壤氨化作用强度,纯化肥的施用一定程度上降低了土壤氨化作用强度。农肥化肥单独施用及配比施用对硝化作用强度具有促进作用。对反硝化作用强度影响最大的是化肥单独施用处理,化肥能增强反硝化作用强度。
     3.脲酶活性在花期达到最大值,在大豆整个生育期,各培肥处理中化肥低量处理和农肥处理能更好的提高脲酶活性;在施入等量氮素的前提下,低氮素含量处理的过氧化氢酶活性高于高氮素含量处理;农肥施用处理的过氧化氢酶活性高于化肥施用处理。
     4.土壤pH值、土壤含水量对与土壤氮素转化有关的细菌及生化作用强度都有一定的影响。pH的升高促进了氨化细菌的生长却抑制了反硝化细菌的生长。土壤温度和氨化细菌呈正相关,在一定的温度范围内温度的升高促进了氨化细菌的生长繁殖,土壤氨化细菌可产生氨化作用。
     5.各培肥处理的NO_3~--N淋溶量显著高于对照,差异显著。与对照相比化肥处理的NO_3~--N淋溶量高于农肥处理。在施用等量氮素条件下,农肥施用处理的淋失率要远远小于化肥施用处理,化肥处理的氮素损失较农肥施用处理多。
     6.土壤NO_3~--N含量与土壤NO_3~--N淋溶量有直接的关系,NO_3~--N淋溶量随着土壤NO_3~--N含量增加而增加,30cm深度土壤NO_3~--N含量与硝氮淋溶量的相关系数为r=0.726,60cm深度土壤NO_3~--N含量与硝氮淋溶量的相关系数为r=0.836**,可以看出与对照相比各施用处理均能使土壤中氮素的淋溶量增加,以化肥处理的淋溶量增加最多,损失量也是最大的,而农肥处理和农化配比使用处理能有效的减少氮素的淋失。
     7.各培肥处理提高了大豆植株中的氮素含量,提高最显著的为农肥高量施用处理,,其次为农肥低量施用处理和化肥高量施用处理,再次为农化等量施用处理,提高最少的为化肥低量施用处理,说明农肥处理能够增加植物中的氮素含量。
     8.不施肥的土壤生态系统就是一个自然的生态系统,它的氮素输入主要来自于大气固氮,因此对照处理自生固氮作用强度高于其他施肥处理。其固氮的量与作物吸收利用、土壤中挥发淋溶的氮相比,是很少的,最终导致土壤氮素的缺乏,而农肥、化肥的施用能够有效地增加土壤氮库储量。
The paper studied the rules of functional bacteria diversification(self-nitrogen-fixation bacteria,ammonifying bacteria,nitrobacteria,denitrobacteria ) on the nitrogen transitions and soil enzyme transformation(urease,catalase) under the different fertilizer managements in agro-ecosystem of the black soil district in Songnen Plain and effects on the intensity of the spontaneous nitrogen fixation,the intensity of the process of ammonification,nitrification and denitrification in soils in order to further study the mechanism of nitrogen transition in soils,supply scientific basis on reasonable use of the nitrogen in soil and guidance for the nitrogenous fertilizer utilization in field practice and provide scientific reference for protecting black soil resource, reducing agricultural non-point pollution and producing the organic food.
     Main conclusions educed from this experiment were as follows:
     1.The effect of different fertilizing treatments on soil ammonifying bacteria,nitrobacteria, denitrobacteria was significant.The impact of separate fertilizer on ammonifying bacteria was not remarkable,but it could improve the growth of denitrobacteria.The manure application could improve the quantities of soil ammonifying bacteria,nitrobacteria and denitrobacteria.
     2.In the whole growing period,the effect of different fertilizing treatments on the soil ammonification intensity,the nitrification intensity and denitrification intensity was significant.The separate manure and fertilizer application and combining of manure and fertilizer could improve soil ammonification intensity,whereas the fertilizing application could decrease soil ammonification intensity.The separate manure and fertilizer application and combining of manure and fertilizer treatments play the role in promoting nitrification intensity.
     3.The separate manure and fertilizer application and combining of manure and fertilizer treatments could improve the soil urease activity and catalase activity.However,the impact on soil enzyme was different among them;the effect of manure application is higher than that of fertilizer on improving the soil caralase activity.
     4.Soil pH value,soil water content had definite impacts on the soil bacterium related with soil nitrogen transformation and biochemical intensity respectively.The higher pH value facilitated the growth of ammonifying bacterial,whereas restrained the quantities of denitrobacterial.
     5.NO_3~--N leaching under different treatments of manure and fertilizer application were significantly higher than that of comparison and had obvious differences.To compare with comparison,the rate of NO_3~--N leaching in the treatment of fertilizers was higher than the treatment of manure.Under the condition of equal amount of nitrogen,the rate of leaching loss in the treatment of manure was less than the treatment of fertilizers,whereas the loss of nitrogen in the treatment of nitrogen was more than the treatment of manure.
     6.The content of NO_3~--N in soil was relative directly to the content of NO_3~--N leaching.The rate of NO_3~--N leaching was increased with the content of NO_3~—N in soil.The relative coefficient was r = 0.726 with the content of NO_3~—N under 30cm depth in soil and Nitrate Leaching.The relative coefficient was r = 0.836~(**)with the content of NO_3~—N under 60cm depth in soil and Nitrate Leaching.We can draw that with the compare to comparison the different treatments of manure and fertilizer can increase the rate of nitrogen leaching in soil.The leaching under the fertilizer application treatment was the most and the rate of loss was maximal,whereas the treatments of mamure application and the treatments of mix mamure and fertilizer application can reduce effectively the loss of nitrogen.
     7.All of Manure and fertilizer applications increased the content of nitrogen in soybean plant, which was significantly increased under high fertilizer application,and in the next place was under low farming fertilizer application and the high manure,and again was under half of manure and half of fertilizer application,and was the lowest under low manure application.From it we can draw the conclusion the fertilizer application can increase the content of nigrogen in plant.
     8.Soil ecosystem with no fertilizers was an exhausted ecosystem,the input of nitrogen came mainly from nitrogen-fixation in the atmosphere,therefore the intensity of the spontaneous nitrogen fixation under control application was higer than other fertilizer application effectively.
引文
蔡贵信,张绍林,朱兆良.1979.测定稻田土壤氮素矿化过程的淹水密闭培养法的条件试验.土壤(6):234-240
    蔡贵信,朱兆良.1983.水稻生长对土壤氮素矿化的影响.土壤学报.20:272-278
    蔡燕飞,廖宗文.2002.番茄青枯病的土壤微生物防治研究[J].农业环境保护.21(5):417-420
    曹志洪,林先贵,杨林章,胡正义等.2006.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学报.43(2):256-260
    程东娟,刘树庆,王殿武,等.2003.长期定位培肥对土壤酶活性及土壤养分动态变化影响.河北农业大学学报.26(3)
    戴伟,白红英.1995.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报.17(1)
    邓波儿,冯跃华,陈明亮.1993.水分状况对菜地土壤N素转化运移的影响.土壤通报
    丁洪,蔡贵信,王跃思,陈立德.2001.玉米-潮土系统中氮肥硝化反硝化损失与N_2O排放.中国农业科学.34(4):416-421
    丁美丽,陆引罡,赵承,王家顺.2006.烟地土壤氮素的氮化作用与硝化作用的强度变化.贵州农业科学.34(4):36-38
    董文旭,胡春胜,张玉铭.2004.不同施肥土壤对尿素NH_3挥发的影响.干旱地区农业研究.22(2):71-74
    杜慧玲,李恋卿,潘根兴,王建琐,姚永平,张俊珍.2001.粉煤灰结合施肥对土壤微生物和酶活性的效应[J].土壤与环境.10(1):20-22
    范丙全.1998.灌溉施肥对潮土硝态氮淋溶的影响.植物营养与施肥.4(1):16-21
    范晓晖,朱兆良.1997.农田土壤剖面反硝化活性及其影响因素的研究.植物营养与肥料学报.3(2):97-103
    封克,殷士学.1995.影响氧化亚氮形成与排放的土壤因素.土壤学进展.23(6):35-42
    付融冰,杨海真,顾国维,张政.2005.人工湿地基质微生物状况与净化效果相关分析.环境科学研究.6:44-49
    甘健民,薛敬意和谢寿昌.1996.云南中山湿性常绿阔叶林中降水对养分淋溶的影响.植物生态学报.20(3):279-284
    关松荫.1989.土壤酶活性影响因子的研究有机肥料对土壤中酶活性及氮磷转化的影响[J].土壤学报.26(1):72-77.
    郭大应,熊清瑞.2001.灌溉土壤硝态氮运移与土壤湿度的关系.灌溉排水.20(6):66-68
    韩成卫,李忠佩,刘丽,车玉萍.2007.去除溶解性有机质对红壤水稻土碳氮矿化的影响.中国农业科学.40(1):107-113
    何念祖.1986.浙江省几种水稻土的酶活性及其与土壤肥力的关系[J].浙江农业大学学 报.12(1):43-47
    和文祥,朱铭莪.1997.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报.34(4):392-398.
    胡克林、李保国等.2004.预测农田水分渗漏和氮素淋失的两种模型比较[J].水科学进展15(1):87-93
    黄国宏,陈冠雄,韩冰等.1999.土壤含水量与N_2O产生途径研究[J].应用生态学报.10(1):53-56.
    黄绍敏,张鸿程.2000.施肥对土壤硝态氮含量及分布的影响及合理施肥研究.土壤与环境.9(3):201-203
    姜培坤,蒋秋怡,钱新标,张春桃.1995.有机肥料对杉木根际土壤生化性质的影响[J].土壤与环境.(3):39-43.
    金洁、杨京平.2004.高肥力稻田分次施氮对氮素淋失的影响[J].水土保持学报.18(3):98-101
    金相灿,崔哲,王圣瑞.2006.连续淹水培养条件下沉积物和土壤的氮素矿化过程.土壤通报.37(5):909-915
    巨晓棠.2000.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化和去向.北京:中国农业大学博士学位论文
    李贵才,韩兴国,黄建辉等.2001.森林生态系统土壤氮矿化影响因素研究进展.生态学报,21(7):1187-1195
    李军,孙宏德,尚惠贤,等.1986.黑土酶的活性与施肥和产量相关性分析[J].土壤通报.17(6):280-283.
    李世清,李生秀.2000.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报.11(2):240-242.
    李晓欣,胡春胜,程一松.2003.不同施肥处理对作物产量及土壤中硝态氮累计的影响.干旱地区农业研究.21(3):36-42
    李玉中,祝廷成,Redmann R E.2002.羊草草地土壤氮的总矿化、硝化和无机氮消耗速率研究.中国农业科学.35(11):1428-1431
    林保,林继雄,李家康.1996.长期施肥的作物产量和土壤肥力变化[M].北京:中国农业科技出版社
    廖先岑,徐银华,朱兆良.1982.淹水种稻条件下化学的硝化-反硝化的初步研究.土壤学报.19:257-262
    廖晓勇,张杨珠,刘学军,陈新平等.2001.农业生态系统中土壤氮素行为的研究现状与展望.西南农业学报.14(3):94-98
    刘春增.1996.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报.27(5):216-218.
    刘晓宏,田梅霞.2001.黄土长期轮作施肥土壤剖面硝态氮的分布与累积.土壤肥料,(1):9-12
    刘忠翰、彭江燕.2000.化肥氮素在水稻田中迁移与淋失的模拟研究[J].农业生态环境, 16(2):9-13
    梁万福,幸亨泰.1996.土壤氮素对小麦生育期硝酸还原酶活性的影响.西北示范大学学报(自然科学版).32(1)
    卢善玲,蒋筱仙,闵三第.1988.上海郊区水稻土脲酶活性的初步研究[A].全国土壤酶学研究文集[C].沈阳:辽宁科学技术出版社.75-79.
    鲁彩艳,陈欣等.2005.东北黑土资源质量变化特征研究概述[J].农业系统科学与综合研究.21(3):182-185
    陆敏,刘敏,茅国芳,黄明蔚,屈潘.2006.大田条件下稻田土壤氮素淋失研究.华东师范大学学报(自然科学版).4(4):71-77
    吕殿青,杨学云,张航.1996.陕西壤土中硝态氮运移特点及影响因素.植物营养与肥料学报,2(4):289-296
    骆世明.2001.农业生态学.中国农业出版社.323-330
    罗兰芳,郑圣先,廖育林,谢坚等.2007.控释氮肥对稻田土壤微生物的影响及其与土壤氮素肥力的关系.湖南农业大学学报(自然科学版).33(5):608-613
    罗良国等.1996.北方稻田生态系统养分平衡研究[J].应用生态学报,10(3):301-304
    毛小云、廖宗文等.2002.施用控释肥对氮素淋失及水稻产量的影响研究初报[J].华南农业大学学报(自然科学版),23(3):01
    孟凯,张兴义.1998.松嫩平原黑土退化的机理及其生态复原[J].土壤通报.29(3):100-102彭克明,裴保义主编.农业化学.农业出版社,1979,77-81
    史德明,梁音.2002.我国脆弱生态环境的评估与保护.水土保持学报.16(1):6-10
    王天元,宋雅君.2004.土壤脲酶及脲酶抑制剂.化学工程.8:22-24
    殷士学,陈丽敏.土壤中硝化、反硝化微生物的研究进展.土壤学报,2002,39(增刊):116-128
    赵兰坡.1996.施用有机物料对土壤的培肥作用[J].土壤通报.27(2):76-78
    赵兰坡,王鸿斌,刘会青,王艳玲,刘淑霞,王宇.2006.松辽平原玉米带黑土肥力退化机理研究[J].土壤学报.1:79-84
    朱兆良,文启效.1992.中国土壤氮素.南京:江苏科学出版社
    朱兆良.氮素管理与粮食生产和环境.土壤学报,2002,39(增刊):3-11 索东让.2003.长期定位施用不同肥料对养分吸收参数及土壤供肥能力的影响[J].中国农学通报,19(1):51-55
    邹国元.2001.冬小麦/厦玉米轮作体系中肥料氮的硝化-反硝化作用研究[博士学位论文].北京:中国农业大学
    A.Aboukhaled,et al,.1982.Lysimeter(FAO Irrigation and drainage,paper 39),FAO,Rome
    Abeiliovich,A.1987.Nitrifying bacteria in wastewater reservoirs.Appl.Environ.Microbiol.53(4):754-760
    Adamson,A.W.1960.Physical chemistry ofsurface.Inter Sci.pub.N.Y.57:5-8
    AndrenO,PaustainK.1987.Barley straw decomposition in the field:a comparison of models[J].Ecology.68:1190-1200
    Angers,DA,Bjssonnette,N.Legere,A,et al.1993.Microbial and biochemical changes induced by rotation and tillage in a soil under barley production[J].Can.J.SoilSci. (73):39-50
    
    Anthonisen.A.C, Loehr.R.C, Parkasam.T.B.S, Srinath.E.G. 1976. Inhibition of nitrification by ammonia and nitrous acid. JWPCF48,835-852
    
    ARHEIMER B, BRANDT M.1998. 瑞典南部集水区氮素迁移利持留的建模[J]. AMBIO.27(6): 471-480
    
    Bergstorm L, Brink N. 1986. Plant and Soil. 93:333-345
    
    Bergstrom D W, Monreal CM.1998. Increased soil enzyme activities under two row crops.[J] Soil Sci Soc Am J. (62): 1295-1301
    
    BERGSTROM L, BRINK N.1986. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil[J].Plant and Soil.93(3): 333-345.
    
    Bouwan A. F., Lee D. S., Asman W. A. H. et al.. 1997. A global high-resolution inventory for ammonia, Global Biogeochemical Cycles 11: 561-587
    
    Bouwman A. F. . 1989. The role of soils and land use in greenhouse effect. Background paper of the international conference "Soil and the Greenhouse Effect". Washington, the Netherlands, Into, Soil Ref. and Into. Cnt. 2(8): 14-18
    
    Bremner, J.M. &K. Shaw. 1958. Denitrification in soil, II ,Factors affecting denitrification. J. Agric. Sci. 51,40-52
    
    BreuerL R. Kiese&K. Butterbach-Bahl.2002. Temperature and moisture effects on nitrification rates in tropical rain forest soils. SoilSci.Soc.Am.J. 66:834-844
    
    Broadbent F .E. and T Nakashima. 1968. Reversion of fevtilizer nitrogen in soils. Soil sci.soc. Am.proc. 31: 648-652
    
    Cabon,F.G. And Ledoux,E. 1991. Modelling of the nitrogen cyclein farm land areas. In:J.J.R.Groot,P.D. WilligenandE.L. JVerberne(eds.). Nitrogen Turnover in the Soil Crop System luwer Academic Publishers. The Netherlands.161-171
    
    Cai G X. 1998. N20 emission from cropland in China. Nutrient Cycling in Agroecosystems. 52:249-254
    
    CAI ZC, XLT H. 1997. Mwthane and nitrous oxide emissions from ricepaddy fields as affected by nitrogen fertilisers and water rnanagement[J]. Plant and Soil. 196: 7-14
    
    Calvo L., Vila X., Abella C.A., Jesus Garcia-Gil L.. 2004. Use of the ammonia-oxidizing bacterial-specific phylogenetic probe Nsol225 as a primer for fingerprint analysis of ammonia-oxidizer communities. Applied Microbiological Biotechnology. 6:715-721
    
    Cbichester F.W. and Richardson C.W. 1992.Evaluation of ammonia volatilization [J].Environ qual., 21: 587-590
    
    DavidsonEA, HartSC, FirestoneMK. 1992. Internal cycling of nitrate in soils of amature coniferous forest. Ecology. 73:1148-1156
    
    DavidssonT4 StahlM. 2000: The influence of Organic carbon on nitrogen transformations in five wetland soils. Soil Science Society of American Journal. 64:1129-1136
    
    DeBeer D, VanDen Heuvel JC, Ottengraf SPP. 1993. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates[J]. Appl. Environ. Microbiol.. Scr:573-579
    
    Degrange V and Bardin R.1995. Detection and counting of Nitrobacter populations in soil by PCR[J].Appl. Environ. Microbiol.. 61:2093-2098
    
    Deming JW.1986.Ecological strategies of barophilic bacteria in the deep ocean. Microbiol Sci, 3(2): 205-211
    
    Dewes T.1999. Ammonia Emissions During the Initial Phase of Mucrobial Degradation of Solid and Liquid Cattle Manure. Bioresource Technology. 70(3): 245-248
    
    Dick,R.P.1992. A review: long-term effects of agricultural systerms on soil biochemical and microbial parameters[J].Agriculture,Ecosystems and Environment.(40):25--36
    
    Erb R W, Wagner. Dobler L.1993. Detection of Polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction. Appied and environmental microbial, 59(12): 4065-4073.
    
    Evans J., Fettell N.A., Conventry D.R, O'Connor, Walsgott D.N., Mahoney and E.L. 1991.Armstrong, Wheat response after temperate crop legumes in south-eastern Australia [J].Aust. Agris. Res. 42: 31-43
    
    Freney J R, Keerthisinghe D q Phongpan S,et al. 1995.Effect of urease, nitrification and algal inhibitors on ammonia loss and grain yield of flooded rice in Thailand. Fertilizer Research. 40:225-233
    
    Fruzer D W, McColl J G and Powers R F. 1990.Soil nitrogen mineralization in a clearcutting Chronosequence in Northern California conifer forest.Soil Science Society of America Journal, 54:1145-1152
    
    Groeneweg .J, Sellner.B.and Tappe.W. 1994. Ammonia oxidation in Nitrosomonas at NH_3 concentrations near Km: Effects of pH and temperature Wat. Res. 28:2561-2566
    
    GroffmanPM, HansonGC. 1997. Wetland denitrification: influence of site quality and relationships with wetland delineation protocols. Soil Science Society of America Journal. 61(1):323-329
    
    GroffmanPM, HansonGC, ErickK, etal.1996. Variation in microbial biomass and activity in four different wetland types.Soil Science Society of American Journal. 60:622-629
    
    HuSJ,van Bruggen AHC,Grunwald NJ. 1999.Dynamics of bacteria populations in relation to carbon availability in a resdue-amended soil. Appl Soil Ecol,13 (1):21 -30
    
    Ineson P, Benham D G, Poskitt J, et al. 1998. Effects of climate change on nitrogen dynamics in upland soils. 2. A soil wanning study[J]. Global Change Biology. 4:153-161
    
    IngwersenJ,K. Butterbach-Bahl,R. Gasche,O. Richter H.Papen. 1999. Barometric process separation:New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci.SocAm.J. 63:117-128
    
    Keeney,D.R.,and Bremner,J. M. 1964. Effect of cultivation on the nitrogen distribution is soils .Soil Sci.Soc.Am.Proc.28:653-656
    
    L. Y. Wyland etal,.1993.SoiI Sci.Soe.Am.J. 57:1208-1211
    MackRN,ThompsonJN.1982.Evolution insteppe with few large,hooved mammals[J].Arner.Nat.,119:757-773
    Mahendrappa M K,Smith R L and Christiansen A T.1966.Nitrifying organisms affected by climatic region in western United States[J].Soil Sci.Soc.Am.Proc.30:60-62
    Malhi SS,Mcgill W B.1982.Nitrification in three Alberta soils:effect of temperature.moisure and substrate concentration[J].Soil Biol.Biochem.14:393-399
    Okabe S,Satoh H,Watanabe Y.1999.In situ analysis of nitrifying bilfilms as determined by in situ hybridization and the use of microelectrodes[J].Appl.Environ.Microbiol.65:3185-3191
    OscarP,FlireIIIR,ShannonD,etal.2002.Nitrate Removal in a Riparian Wetland of the Appalachian Valley and Ridge Physiographic Province.Journal of Environmental Quality.30(1):254-261
    Painter,H.A.,1970.A review of literature on in organic nitrogen metabolism in microorganisms.Wat.Res.4:393-450
    Schramm A,Larsen LH,Revsbech NP,Ramsing NB.Amann R.Schleifer KH.1996.Structure and function of an itrifying biofilm as determined by in situ hybridization and the use of microelectrodes[J].Appl.Environ.Microbiol.62:4641-4647
    Schut F,Jansen M,Pedro GTM,et al.1995.Substrate uptake and utilization by a marine ultramicrobacterium.Microbiology,141(1):351-361
    SmithCK,CoyeaMR,MunsonAD.2000.Soil carbon,nitrogen,and phosphorus stocks and dynamics under disturbed black spruce Forests[J].Ecol.Appl..10:775-788
    Tada Y,Inour T.2000.Use of oligotrophic bacteria for the biological monitoring of heavy metals.J Appl Microbiol,88(1):154-160
    Tada Y,Kobata T,Nakaoka C.2001.A simple and easy method for the monitoring of environmental pollutants using oligotrophic bacteria.Lett Appl Microbial,32(1):12-15
    Talibudeen,O.1981.Canon exchange in soils.In Greenland D.J.& Hayes.115-117
    TaylorBR,ParkinsonD,ParsonsWFJ.1989.Nitrogen and lignin content as predictor of litter decay rates:a microcosm test[J].Ecology,70:97-104
    Wang K.1995.Effects of Manure on the Enzyme Activities in the Rhizosphere of Wheat [J].Journal of Zhejiang Agricultural University.21(2):111-115
    Wagner,M.,Rath,G.,Koops,H.-p.,Flood,J.and Amann,R.1996.In situ analysis of nitrifying bacteria in sewage treatment plants.Wat.Sci.Technol.,34(1/2),23 7-244
    ZhuQH,QuXR,LiXZ.2000.Biological cycles of nutrients in Reed field.Chinese Journal of Ecology.19(6):21-23
    ZhuWX,EhrenfelcJG.1999.Nitrogen mineralization and nitrification in suburban and undeveloped Atlantic White Cedarwetlands.Journal of Environmental Quality.28(2):523-529
    Zlatkin IV,Vishnevetskaia O,Nikitin DI.1991.Some aspects ofantibiotic resistance of oligotrophic bacteria.Antibiot Khimioter,36(1):34-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700