用户名: 密码: 验证码:
黑碳对沉积物中疏水性有机物的生物富集、降解与基因毒性的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物对疏水性有机物的吸附是影响其在环境中迁移转化,生物可利用性和生态效应的主要因素之一。黑碳作为沉积物有机质中一种特殊组分,对一些疏水性有机物(如多环芳烃,多氯联苯等)有很强的吸附能力,其吸附能力可达沉积物中其他形式有机质吸附能力的10-1000倍。因此研究黑碳对沉积物中疏水性有机物的生物可利用性(如生物富集,微生物降解,亚急性毒性)的作用机制有助于准确评价疏水性污染物的生态风险,为沉积物环境标准的制定提供理论依据。
     本研究首先采用热氧化法从杭州西湖沉积物中提取黑碳,以多环芳烃物质-菲和芘,五氯苯酚以及拟除虫菊酯农药-氯菊酯为目标污染物,采用静态吸附实验和迭代计算法估算黑碳对沉积物中疏水性有机物吸附的贡献。再选取生物碳(biochar),木碳(charcoal)和单壁碳纳米管(single-walled carbon nanotube)三种黑碳材料,从生物富集,微生物降解,亚急性毒性(基因毒性)三个方面阐述黑碳对沉积物中上述四种疏水性有机物生物可利用性的作用。通过Tenax(多孔的高聚膜材料)解吸,固相微萃取-Polydimethylsiloxane (PDMS)纤维以及彗星实验等仿生手段表征生物可利用性,并结合模型构建,多元线性回归等数学统计手段对黑碳影响生物可利用性的机制进一步探讨。主要结论如下:
     采用热氧化法提取的沉积物黑碳对四种疏水性有机物的吸附能力差异明显。黑碳对菲,芘和五氯苯酚的吸附能力强于沉积物中其他形式的有机碳,KBC分别为KTOC的21.9,34.7,17.0倍。黑碳对氯菊酯的吸附能力与沉积物中其他有机碳的吸附能力类似,KBC仅为KTOC的1.2倍。随着污染物液相浓度的增加,黑碳表面吸附点位趋于饱和,其对沉积物中疏水性有机物吸附的贡献量下降。在液相浓度小于8.9μg/l和0.8μg/l时,黑碳对菲和芘的吸附贡献量高达50%,最大贡献量分别为84%和63%。黑碳对五氯苯酚的吸附呈相似趋势,最大吸附量为30%。黑碳对氯菊酯吸附的贡献量平均值为7.5±1.1%,说明黑碳对氯菊酯的吸附作用并没有明显强于沉积物中其他形式的有机碳。
     添加黑碳后,菲在沉积物中的解吸和生物富集趋势被显著抑制,而对氯菊酯却无显著影响。Tenax解吸实验表明添加黑碳可以显著减慢菲在沉积物中的解吸速率,解吸312小时后可被解吸的菲由未添加黑碳时的67.4%减低至28.6%,由三项动力学模型拟合得到的快速解吸组分(Frapid)也由未添加黑碳时的0.265减少至0.131。添加黑碳对氯菊酯的解吸速率并无显著影响。添加黑碳后,菲在底栖生物-摇蚊体内的生物富集趋势被显著抑制,较未添加黑碳时,生物富集系数下降了72%,而添加黑碳对氯菊酯在摇蚊体内的生物富集并无显著影响。通过构建模型和多元线性回归分析表明除快速解吸组分以外,存在于慢速解吸组分中的部分化合物也可被摇蚊富集,也说明与黑碳结合的化合物可被摇蚊主动吸收富集。
     沉积物中添加黑碳后,菲的微生物降解速率被减慢。其中新型黑碳材料-单壁碳纳米管(SWCNT)对菲的微生物降解的抑制作用强于传统型黑碳-生物碳和木碳。沉积物中添加生物碳和木碳后,固相微萃取法-PDMS纤维检测到的菲的自由溶解态浓度(Cfree)相对未添加组下降了10%-60%,添加SWCNT后,Cfree下降85-95%。说明黑碳对菲的强吸附能力降低菲的液相浓度,进而减缓微生物降解速率;并且SWCNT对菲的吸附能力强于生物碳和木碳。解吸-微生物降解耦合模型拟合结果表明降解菌可以直接降解与SWCNT结合的菲,这主要是因为SWCNT较生物碳和木碳有更大的表面积,表面可以吸附更多的降解菌。而且SWCNT颗粒较小,较易跨越降解菌的细胞膜,有助于降解菌直接利用与SWCNT结合的菲。SWCNT吸附可溶解性有机质后,表面积和微孔孔容下降,表面极性官能团增加,SWCNT对菲的吸附能力减弱,因此对菲的微生物降解速率的抑制作用减弱。
     沉积物不同粒径大小的各组分(沙粒,淤泥,粘土)中,黑碳也是决定疏水性有机物分布,微生物降解速率的主要因素。芘在沉积物各粒径组分上的分布与各组分中的黑碳含量,总有机碳含量显著正相关。芘在各个粒径组分上的微生物降解速率与黑碳含量,总有机碳含量,颗粒表面积均显著负相关。通过Tenax解吸-微生物降解耦合模型分析发现,降解菌可以直接降解和淤泥,粘土结合的芘,主要是因为淤泥和粘土组分中分布了较多的芘,降解菌因化学趋向性而较易富集在颗粒表面,从而直接降解结合态的芘。并且该两种组分的表面积较大,可吸附较多的降解菌,促进降解菌直接利用与固体颗粒结合的芘。
     沉积物中添加黑碳类物质-生物碳后,彗星实验结果表明芘和五氯苯酚对赤子爱胜蚓的基因毒性显著减弱。生物碳浓度从0%增加至5%时,芘/五氯苯酚的基因毒性分别减弱50%和80%。当生物碳含量增加为10%时,芘/五氯苯酚的基因毒性较5%时有所增加。赤子爱胜蚓活体暴露于添加生物碳的沉积物(未添加污染物)结果表明,含有10%生物碳的沉积物也可诱导显著的DNA损伤,说明生物碳自身也可能具有基因毒性,但仍需进一步实验研究证实。
Sorption of hydrophobic organic compounds (HOCs) by sediment plays an important role in their transportation, bioavailability and ecological effects. Black carbon, a special component in sediment organic matter (SOM), is considered as supersorbent for HOCs, and the sorptive capacity of black carbon could be 10-1000 times higher than those of other forms of SOM. Therefore, the study about the effect of black carbon on bioavailability (e.g. bioaccumulation, biodegradation, and subleathal toxicity) of HOCs in sediment will help us to make an accurate prediction for HOCs risk assessment as well as reasonable sediment quality criteria.
     In the first part of this research, black carbon was isolated by thermal oxidation method from West Lake sediment, and four typical HOCs, including two PAHs (phenanthrene (PHE) and pyrene (PYE)), pentachlorophenol (PCP), and one pyrethroid (permethrin (PM)), were selected as the target contaminants. Equilibrium batch sorption experiment and a three-step iterative calculation were used to evaluate the contribution from black carbon to the sorption of HOCs by sediment. In the second part of this research, the effect of black carbon (biochar, charcoal, and single-walled carbon nanotube) on the bioavailability of HOCs has been investigated from three aspects of bioaccumulation, biodegradation, and sublethal toxicity (genotoxicity). Some mimic methods, i.e. Tenax desorption, solid phase micro-extraction (SPME)-disposal Polydimethylsiloxane (PDMS) fiber, and comet assay, were employed to quantify the bioavailability. Some models also have been modified and some statistical methods (such as multivariable linear regression) were adopted, which would provide further understanding about the underlying mechanism.
     The sorption capacity of black carbon toward PHE, PYE, and PCP was much stronger than those of other forms of sediment organic carbon, and the values of KBC were 21.9,34.7, and 17.0 times of KTOC values. The sorption capacity of black carbon toward PM was comparable to that of other forms of sediment organic carbon, and the value of KBC was only 1.2 times of KTOC value. As the surface sorption sites of black carbon became saturated, the contribution from black carbon to the sorption of HOCs in sediment decreased with the increase of aqueous concentrations of sorbates. When the aqueous concentrations of PHE and PYE were less than 8.9μg/l and 0.8μg/l, the contribution from black carbon to sorption were higher than 50%, with the highest values of 84% and 63%, respectively. Sorption toward PCP showed a similar trend with the highest contribution of 30%. The averaged contribution from black carbon to PM sorption was 7.5±1.1%, indicating the sorption capacity of black carbon toward PM was not so significant as that toward PAH compounds.
     The desorption rate of PHE in the Tenax desorption test was significantly reduced when the sediment was amended with black carbon. The desorbed fraction of PHE decreased from 67.4% to 28.6% after black carbon amendment, and the rapid desorption pool (Frapid) derived from three-phase kinetic model also dropped from 0.265 to 0.131. In contrast, there is no significant effect on PM desorption rate after black carbon addition. The bioaccumulation of PHE in Chironomus tentans was decreased after black carbon addition, and the biota-sediment accumulation factor (BSAF) decreased 72%, but there is no significant influence observed on the PM bioaccumulation. A multivariate linear regression model was developed, and model analysis result showed that, besides chemicals (PHE and PM) in the rapid desorption pool, part of chemicals in slow desorption pool were also available to Chironomus tentans, which meant chemicals, even associated with black carbon particles, could also be accumulated by Chironomus tentans.
     The biodegradation of PHE by Mycobacterium vanbaalenii PYR-1 was inhibited by addition of black carbons (single-walled carbon nanotube (SWCNT), biochar, and charcoal), and the inhibitory effect of SWCNT was stronger than those of biochar and charcoal. The inhibitory effect of black carbons observed was partly due to their suppression on the bioavailability of PHE, as revealed by measurement of the freely dissolved concentration (Cfree) in the sediment using solid-phase microextraction (disposal PDMS fiber). The Cfree dropped 10%-60% after the addition of biochar and charcoal, and about 85%-95% decrease was observed when SWCNT was amended into sediment. A desorption-biodegradation coupled model was used to investigate the microbial availability of black carbon-associated PHE. Model analysis showed that the PHE sorbed with SWCNT could be directly utilized by PYR-1, which could be attributed to the relatively larger surface area and smaller particle size of SWCNT. The surface area and micropore volume of SWCNT were decreased when coated with dissolved organic matters, which also introduced polar fuctional groups onto SWCNT surface, resulting in the reduction of sorption capacity toward PHE, and the inhibitory effect on the biodegradation rate of PHE.
     On the sediment particle-size scale (sand, silt, and clay), the distributions of PYE and biodegradation rates of PYE were mainly driven by black carbon contents. The distributions of PYE were significantly positively correlated with black carbon and total organic carbon content in various sized fractions. The biodegradation rate of PYE were significantly negatively correlated with black carbon content, total organic carbon content, and surface areas of various sized fractions. A biodegradation model was modified by imbedding a two-phase desorption relationship describing sequential Tenax extractions. Model analysis showed that PYE sorbed on silt and clay aggregates was directly utilized by the degrading bacteria. The enhanced bioavailability was attributed to the higher PYE concentration, or larger surface area in the silt and clay fractions, which appeared to overcome the reduced bioavailability of PYE due to sorption, making PYE on the silt and clay particles readily available to degrading microbes.
     The genotoxicity induced by PYE and PCP in Eisenia fetida, which was quatified by comet assay, was inhibited after addition of black carbon-biochar. The genotoxicity of PYE and PCP was decreased 50% and 80%, respectively, when the biochar content increased from 0% to 5%. However, the 10% biochar treatment had a higher genotoxic effect than that in the 5% biochar-added exposure. This may have been caused by the genotoxic compounds and high alkalinity contained in the biochar, which means that the biochar probably could induce genotoxic effect.
引文
Abrego J, Arauzo J, Sanchez JL, Gonzalo A, Cordero T, Rodriguez-Mirasol J,2009. Structural Changes of Sewage Sludge Char during Fixed-Bed Pyrolysis. Ind Eng Chem Res 48,3211-3221.
    Accardi-dey A, Gschwend PM,2002. Assessing the Combined Roles of Natural Organic Matter and Black Carbon as Sorbents in Sediments. Environ Sci Technol 36,21-29.
    Accardi-Dey AM,2003. Black Carbon in marine sediments:quantification and implications for the sorption of polycyclic aromatic hydrocarbons. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
    Ahlborg UG, Lindgren JE, Mercier M,1974. Metabolism of pentachlorophenol. Arch Toxicol 32, 271-281.
    Alexander M,1995. How toxic are toxic-chemicals in soil. Environ Sci Technol 29,2713-2717.
    Alexander M,2000. Aging, bioavailability, and overestimation of risk from environmental contaminants. Environ Sci Technol 34,4259-4265.
    Allan IJ, Semple KT, Hare R, Reid BJ,2006. Prediction of mono-and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ Pollut 144, 562-571.
    Amellal N, Portal JM, Vogel T, Berthelin J,2001. Distribution and location of polycyclic aromatic hydrocarbons (PAHs) and PAH-degrading bacteria within polluted soil aggregates. Biodegradation 12,49-57.
    American Society for Testing and Materials (ASTM). Preparing coal samples for microscopical analysis by reflected light. In Annual book of ASTM Standards, Part 26, D2979, Gaseous Fuels:Coal and Coke; ASTM:West Conshohocken, PA,1996; p 270.
    Ames BN, Durston WE, Yamasaki E, Lee FD,1973. Carcinogens are mutagens:a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70-2281-2285.
    Arthur CL, Pawliszyn J,1990. Solid-Phase microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62,2145-2148.
    Augustijn-Beckers PWM, Hornsby AG, Wauchope RD,1994. SCS/ARS/CES pesticide properties database for environmental decision making. II. Additional compounds. Rev Environ Contain Toxicol 137,6-16.
    Barring H, Bucheli TD, Broman D, Gustafsson O,2002. Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenyl ethers determined with the soot cosolvency-column method. Chemosphere 49,515-523.
    Barthe M, Pelletier E,2007. Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ Chem 4,271-283.
    Beckles DM, Chen W, Hughes JB,2007. Bioavailability of polycylic aromatic hydrocarbons sequestered in sediment:microbial study and model prediction. Environ Toxicol Chem 26, 878-883.
    Bird MI, Cali JA,1998. A million-year record of fire in sub-Saharan Africa, Nature 394,767-769.
    Bird ML, Grocke DR,1997. Determination of the abundnce and carbon isotope composition of elemental carbon in sediments. Geochim Cosmochim Acta 61,3413-3423.
    Bjorklund E, Bfwadt S, Mathiasson L, Hawthorne SB,1999. Determining PCB sorption/desorption behaviour on sediments using selective supercritical fluid extraction.1. Desorption from historically contaminated samples. Environ Sci Technol 33,2193-2203.
    Bogan BW, Sullican WR,2003. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52, 1717-1726.
    Booij K, Hoedemaker JR, Bakker JF,2003. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ Sci Technol 37,4213-4220.
    Bornholdt J, Saber AT, Sharma AK, Savolainen K, Vogel U, Wallin H,2007. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549. Mutat Res 632,78-88.
    Breedveld GD, Pelletier E, St Louis R, Cornelissen G,2007. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues. Environ Sci Technol 41, 2542-2547.
    Breese MH,1977. The potential for pyrethroids as agricultural, veterinary and industrial insecticides. Pestie Sci 8,264-269.
    Briggs GG, Elliott M, Farnham AW, Janes NF,1974. Structural aspects of the knockdown of pyrethroids. Pestic Sci 5,643-649.
    Brooke LT, Ankley GT, Call DJ, Cook PM,1996. Gut content weight and clearance rate for three species of freshwater invertebrates. Environ Toxicol Chem 15,223-228.
    Bucheli TD, Gustafsson O,2000. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34,5144-5151.
    Bucheli TD, Gustafsson R,2003. Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere 53,515-522.
    Cady JG, Wilding LP, Dreefs LR,1986. Petrographic microscop techniques, in Methods of Soil Analysis edited by A.Klute, pp.185-218, Am. Soc. Agron., Madison, Wis.
    Cassee FR, Boere AJF, Bos J, Fokkens PHB, Dormans JAMA, van Loveren H,2002. Effects of diesel exhaust enriched concentrated PM2.5 in ozone preexposed or monocrotaline-treated rats. Inhal Toxicol 14,721-743.
    Chai YZ, Davis JW, Saghir SA, Qiu XJ, Budinsky RA, Bartels MJ,2008. Effects of aging and sediment composition on hexachlorobenzene desorption resistance compared to oral bioavailability in rats. Chemosphere 72,432-441.
    Chen BL, Xuan XD, Zhu LZ, Wang J, Gao YZ, Yang K, Shen XY, Lou BF,2004. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38,3558-3568.
    Chen J, Pawliszyn JB,1995. Solid-phase microextraction coupled to high-performance liquid-chromatography. Anal Chem 67,2530-2533.
    Chen YX, Chen HL, Xu YT, Shen MW,2004. Irreversible sorption of pentachlorophenol to sediments:experimental observations. Environ Inter 30,31-37.
    Ching EWK, Siu WHL, Lam PKS, Xu L, Zhang Y, Richardson BJ, Wu RSS,2001. DNA adduct formation and DNA strand breaks in green lipped mussels (Perna viridis) exposed to benzo[a]pyrene:dose and time dependent relationships. Mar Pollut Bull 42,603-610.
    Chiou CT, Kile DE,1998. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative coneentrations. Environ Sci Technol 32,338-343.
    Chiou CT, Kile DE, Rutherford DW,2000. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions. Environ Sci Technol 34,1254-1258.
    Chiou CT, Lee JF, Boyd SA,1990 The surface area of soil organic matter. Environ Sci Technol 24,1164-1166.
    Chiou CT, Peters LJ, Fried VH,1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206,831-832.
    Chiou CT, Rutherford DW, Manes M,1993. Sorption of NZ and EGBE vapors on some soils, clays, and of sorption data. Environ Sci Technol 27,1587-1594.
    Chun Y, Sheng G, Chiou CT,2004. Evaluation of Current Techniques for Isolation of Chars as Natural Adsorbents. Environ Sci Technol 38,4227-4232.
    Chung NH, Alexander M,1998. Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ Sci Technol 32,855-860.
    Comber SDW, Rule KL, Conrad AU, Hoss S, Webb SF, Marshall S,2008. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates. Environ Pollut 153,184-191.
    Conrad AU, Comber SD, Simkiss K,2002. Pyrene bioavailability; effect of sediment chemical contact time on routes of uptake in an oligochaete worm. Chemosphere 49,447-454.
    Cornelissen G, Breedveld GD, Naes K, Oen AMP, Ruus A,2006. Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod:Freely dissolved concentrations and activated carbon amendment. Environ Toxicol Chem 25,2349-2355.
    Cornelissen G, Elmquist M, Groth I, Gustafsson O,2004. Effect of sorbate planarity on environmental black carbon sorption. Environ Sci Technol 38,3574-3580.
    Cornelissen G, Gustafsson O,2004. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ Sci Technol 38,148-155.
    Cornelissen G, Gustafsson O,2005. The importance of unburned coal carbon, black carbon and amorphous organic carbon to phenanthrene sorption in sediments. Environ Sci Technol 39, 764-769.
    Cornelissen G, Gustafsson O,2006. Effects of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental black carbon. Environ Pollut 141,526-531.
    Cornelissen G, Gustafsson O, Buchell TD, Jonker MTO, Koelmans AA, van Noort PCM,2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39,6881-6895.
    Cornelissen G, Rigterink H, Ferdinandy MMA, Van Noort PCM,1998. Rapidly desorbing fraction of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32,966-970.
    Cornelissen G, Rigterink H, ten Hulscher DEM, Vrind BA, van Noort PCM,2001. A simple Tenax (R) extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20,706-711.
    Cornelissen G, van Zuilen H, van Noort PCM,1999. Particle size dependence of slow desorption of in situ PAHs from sediments. Chemosphere 38,2369-2380.
    Cornelissen G, vanNoort PCM, Govers HAJ,1997. Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls:sediment extraction with Tenax(R) and effects of contact time and solute hydrophobicity. Environ Toxicol Chemi 16, 1351-1357.
    Cornelissen G, Wiberg K, Broman D, Arp HPH, Persson Y, Sundqvist K, Jonsson P,2008. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ Sci Technol 42,8733-8739.
    Currie LA, Benner BA, Kessler JD, Klindinst DB, Kloda GA,2000. Critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649. J Res Natl Inst Stan 107,279-298.
    Cuypers C, Pancras T, Grotenhuis T, Rulkens W,2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46,1235-1245.
    Dean JR,2007. Bioavailability, bioaccessibility and mobility of environmental contaminants. Chichester, John Wiley & Sons Ltd.
    Doick KJ, Dew NM, Semple KT,2005. Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ Sci Technol 39,8858-8864.
    Doick KJ, Semple KT,2003. The effect of soil:water ratios on the mineralization of phenanthrene:LNAPL mixtures in soil. FEMS Microbiol Lett 220,29-33.
    Ehlers LJ, Luthy RG,2003. Contaminant bioavailability in soil and sediment. Environ Sci Technol 37,295-302.
    Elias VO, Simoneit BRT, Cordeiro RC, Turcq B,2001. Evaluating levoglucosan as an indicator of biomass burning in Carajas, Amazonia:A comparison to the charcoal record. Geochim Cosmochim Acta 65,265-272.
    Elliott M,1977. Synthetic pyrethroids. In Synthetic pyrethroids, ACS Symp. Ser. No.42, ed. M. Elliott, pp.1-28. Washington, DC:Am. Chen. Soc.229 pp.
    Feng YC, Park JH, Voice TC, Boyd SA,2000. Bioavailability of soil-sorbed biphenyl to bacteria. Environ Sci Technol 34,1977-1984.
    Feng YP, Fang YQ, Yang Y, Fu WS, Song YK,1995. Environmental contamination of pentachlorophenol and resident health research. Sichuan Environ (China) 14,34-38.
    Ferguson PL, Chandler GT, Templeton RC, Demarco A, Scrivens WA, Englehart BA,2008. Influence of sediment amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42,3879-3885.
    Gelinas Y, Prentice KM, Baldock JA,2001. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in the sediments and soils. Environ Sci Technol 35,3519-3525.
    Ghosh U, Gillette JS, Luthy RG, Zare RN,2000. Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol 34,1729-1736.
    Glaser B, Haumaier L, Guggenberger G, Zech W,1997. Black carbon in soils:The use of benzenecarboxylic acids as specific markers, Org Geochem 29,811-819.
    Gobas FAPC, Zhang X, Wells R,1993. Gastrointestinal magnification:The mechanism of biomagnification and food chain accumulation of organic chemicals. Environ Sci Technol 27, 2855-2863.
    Goldberg ED. Black Carbon in the Environment,198 pp., John Wiley, New York,1985.
    Goldman R, Enewold L, Pellizzari E, Beach JB, Bowman ED, Krishnan SS, Shields PG,2001. Smoking increase carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res.61,6367-6371.
    Guerin WF, Boyd SA,1997. Bioavailability of naphthalene associated with natural and synthetic sorbents.Wat Res 31,1504-1512.
    Gustafsson O, Bucheli TD, Kukulska Z, Andersson M, Largeau C, Rouzard JN, Reddy CM, Eglinton TI,2001. Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochem Cycles 15,881-890.
    Gustafsson O, Gschwend PM,1997. Soot as a strong partition medium for polycyclic aromatic hydrocarbons in aquatic systems, In Molecular Markers in Environmental Geochemistry; Eganhouse, R. P., Ed.; ACS Symposium Series 671; American Chemical Society: Washington, DC, p 365.
    Gustafsson O, Haghseta F, Chan C, MacFarlane J, Gschwend PM,1997. Quantification of the dilute sedimentary soot phase:Implications for PAH speciation and bioavailability. Environ Sci Technol 31,203-209.
    Hartnik T, Jensen J, Hermens JLM,2008. Nonexhaustive beta-Cyclodextrin extraction as a chemical tool to estimate bioavailability of hydrophobic pesticides for earthworms. Environ Sci Technol 42,8419-8425.
    Hawthorne SB, Grabanski CB,2000. Correlating selective supercritical fluid extraction with bioremediation behaviour of PAHs in a field treatment plot. Environ Sci Technol 34,4103-4110.
    Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC,2002. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests.1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36,4795-4803.
    He Y, Xu JM, Wang H, Ma ZH, Chen J,2006. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environ Res 101,362-372.
    Hellmann H,2003. A Recent Contamination Trend:Polycylic Aromatic Hydrocarbons (PAHs) in Aquatic and Terrestrial Sediments. Acta hydrochim. hydrobiol 31,85-96.
    Hickman ZA, Reid BJ,2005. Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ Pollut 138,299-306.
    Hiller E, Fargasova A, Zemanova L, Bartal M,2008. Influence of wheat ash on the MCPA immobilization in agricultural soils. Bull Environ Contam Toxicol 81,285-288.
    Hilton HW, Yuen QIH,1963. Adsorption of several pre-emergence herbicides by Hawaiian sugar cane soils. J Agric Food Chem 11,230-234.
    Hinga KR,2003. Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediment. Mar Pollut Bull 46,466-474.
    Hong HC, Zhou HY, Luan TG, Lan CY,2005. Residue of pentachlorophenol in freshwater sediments and human breast milk collected from the Pearl River Delta, China. Environ Int 31,643-649.
    Huang J, Yu G, Qian Y,2001. The problems of persistent organic pollutants in China and their research countermeasures. Environ Prot (China) 11,3-6.
    Huesemann MH, Hausmann TS, Fortman TJ,2001. Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ Toxicol Chem 22,2853-2860.
    Huesemann MH, Hausmann TS, Fortman TJ,2004. Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15,261-274.
    Hunter W, Xu YP, Spurlock F, Gan J,2008. Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment. Environ Toxicol Chem 27,568-575.
    Hyung H, Fortner JD, Hughes JB, Kim JH,2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41,179-184.
    Ismail I, Rodgers SL,1992. Comparisons between fullerene and forms of well-known carbons. Carbon 30,229-239.
    Jager T, Sanchez FAA, Muijs B, van der Velde EG, Posthuma L,2000. Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) using spiked soil. Environ Toxicol Chem 19,953-961.
    Jenkins BM, Jones AD, Turn SQ, Williams RB,1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ Sci Technol 30,2462-2469.
    Johnsen AR, Wick LY, Harms H,2005. Principles of microbial PAH-degradation in soil. Environ Pollut 133,71-84.
    Jonker MTO, Hawthorne SB, Koelmans AA,2005. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials:Evidence by supercritical fluid extraction. Environ Sci Technol 39,7889-7895.
    Jonker MTO, Hoenderboom AM, Koelmans AA,2004. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environ Toxicol Chem 23, 2563-2570.
    Jonker MTO, Koelmans AA,2001. Polyoxymethylene solid-phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35. 3742-3748.
    Jonker MTO, Koelmans AA,2002. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment. Mechanistic Considerations. Environ Sci Technol 36,3725-3734.
    Jonker MTO, Smedes F,2000. Preferential Sorption of Planar Contaminants in Sediments from Lake Ketelmeer, The Netherlands. Environ Sci Technol 34,1620-1626.
    Jonker MTO, van der Heijden SA, Kreitinger JP, Hawthorne SB,2007. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ Sci Technol 41,7472-7478.
    Kao HJ, Chen KS, Tsai CH, Li HW, Chang-Chien GP,2007. Effects of burnings of wax apple stubble and rice straw on polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in air and soil. J Air Waste Manage Assoc 57,457-464.
    Karickhoff S W,1984. Organic pollutant sorption in aquatic systems. J. Hydraul Eng 110,707-735.
    Karickhoff SW,1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10,833-846.
    Karickhoff SW, Brown DS, Scott TA,1979. Sorption of hydrophobic pollutants on natural sediments. Water Res 13,241-248.
    Kelsey JW, Kottler BD, Alexander M,1997. Selective chemical extractions to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31,214-217.
    Kleineidam S, Schuth C, Grathwohl P,2002. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants. Environ Sci Technol 36,4689-4697.
    Knauer K, Sobek A, Bucheli TD,2007. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. Aquatic Toxicol 83,143-148.
    Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PC, Gustafsson O,2006. Black carbon:The reverse of its dark side. Chemosphere 63,365-377.
    Kraaij R, Seinen W, Tolls J,2002. Direct evidence of sequestration in sediments affecting the bioavailability of hydrophobic organic chemicals to benthic deposit feeders. Environ Sci Technol 36,3525-3529.
    Krauss M, Wilcke W, Zech W,2000. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in soils. Environ Sci Technol 34, 4335-4340.
    Kuhlbusch TAJ,1998. Black carbon and the carbon cycle, Science,280,1903-1904.
    Kuhlbusch TAJ, Andrese MO, Caehier H,1996. Black formation by Savanna fires: Measurements and implications for the global carbon cycles. J Geophys Res 101,13651-13665.
    Kukkonen JVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarson J, Weston D,2003. Sediment characteristics affecting desorption kinetics of select PAH and PCB congeners for seven laboratory spiked sediments. Environ Sci Technol 37,4656-4663.
    Kukkonen JVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarsson J, Weston D,2004. The role of desorption for describing the bioavailability of select polycyclic aromatic hydrocarbon and polychlorinated biphenyl congeners for seven laboratory spiked sediments. Environ Toxicol Chem 23,1842-1851.
    Kulikova NA, Perminova IV,2002. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ Sci Technol 36,3720-3724.
    Kwon S, Pignatello JJ,2005. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Pseudo pore blockage by model lipid components and its implications for N-2-probed surface properties of natural sorbents. Environ Sci Technol 39,7932-7939.
    Lahlou M, Harms H, Springael D, Ortega-Calvo JJ,2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environ Sci Technol 34,3649-3656.
    Lahlou M, Ortega-calvo JJ,1999. Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions. Environ Toxicol Chem 18,2729-2735.
    Lamoureux, EM, Brownawell BJ,2004. Influence of soot on hydrophobic organic contaminant desorption and assimilation efficiency. Environ Toxicol Chem 23,2571-2577.
    Landrum PF, Lotufo GR, Gossiaux DC, Gedeon ML, Lee JH,2003. Bioaccumulation and critical body residue of PAHs in the amphipod, Diporeia spp.:Additional evidence to support toxicity additivity for PAH mixtures. Chemosphere 51,481-489.
    Landrum PF, Robbins JA,1990. Bioavailability of sediment-associated contaminants to benthic invertebrates, in:Baudo, R., Giesy, J.P., Muntau, H. (Eds.), Sediments:Chemistry and Toxicity of In place Pollutants. Lewis, Boca Raton., FL, pp.237-263.
    Laskowski DA,2001. Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174,49-170.
    LeBoeuf EJ, Weber JrWJ,1997. A distributed reactivity model for sorption by soils and sediments:8. Identification of a humic acid glass transition and a logic for invoking polymer sorption theory. Environ Sci Technol 3,1697-1702.
    Lee CH, Ito Y, Yanagiba Y, Yamanoshita O, Kim H, Zhang SY, Kamijima M, Gonzalez FJ, Nakajima T,2007. Pyrene-induced CYP1A2 and SULT1A1 may be regulated by CAR and not by AhR. Toxicology 238,147-156.
    Lee SJ, Pardue JH, Moe WM, Kim DJ,2009. Effect of sorption and desorption-resistance on biodegradation of chlorobenzene in two wetland soils. J Hazard Mater 161,492-498.
    Leglize P, Saada A, Berthelin J, Leyval C,2008. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria. J Hazard Mater 151,339-347.
    Lei L, Bagchi R, Khodadoust AP, Suidan MT, Tabak HH,2006. Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions. J Environ Eng-ASCE 132,384-391.
    Lekas D,2005. Analysis of nanotechnology from an industrial ecology perspective. Part Ⅱ: Substance flow analysis of carbon nanotubes. Project on Emerging Nanotechnologies Report. Woodrow Wilson International Centre for Scholars, Washington, DC.
    Leppanen MT, Kukkonen JVK,1998. Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Muller). Environ Sci Technol 32,1503-1508.
    Leppanen MT, Kukkonen JVK,2006. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction. Environ Pollut 140,150-163.
    Leppanen MT, Landrum PF, Kukkonen JVK, Greenberg MS, Burton GA, Robinson SD, Gossiaux DC,2003. Investigating the role of desorption on the bioavailability of sediment associated 3,4,3',4'-tetrachlorobiphenyl in benthic invertebrates. Environ Toxicol Chem 22, 2861-2871.
    Li HL, Chen JJ, Wu W, Piao XS,2009. Distribution of polycyclic aromatic hydrocarbons in different size fractions of soil from a coke oven plant and its relationship to organic carbon content. J Hazard Mater 176,729-734.
    Li RJ, Wen B, Zhang SZ, Pei ZG, Shan XQ,2009. Influence of organic amendments on the sorption of pentachlorophenol on soils. Journal of Environmental Sciences-China 21,474-480.
    Lin XM, Liu WX, Chen JL, Xu SS, Tao S,2005. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from Bohai Sea, China. Acta Scientiae Circumstantiae 25,70-75.
    Liste HH, Alexander M,2002. Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46,1011-1017.
    Long H, Shi T, Borm PJ, Maatta J, Husgafvel-Pursiainen K, Savolainen K,2004. ROS-mediated TNF-alpha and MIP-2 gene expression in alveolar macrophages exposed to pine dust. Part Fibre Toxicol 1,3-10.
    Long RQ, Yang RT,2001. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123,2058-2059.
    Lu HD, Huang XY, Lin YZ, Wang MF, Lin Z,1996. Pentachlorophenol detection in environment and its accumulation in human being. Fujian Environ (China).13,23-25.
    Lundegaard PD, Sweeney RE, Corona V,2003. Supercritical fluid extraction for forensic analysis of hydrocarbons in soil. Environ Forensics 4,313-317.
    Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC,1997. Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31,3341-3347.
    MacDonald GM, Larsen CPS, Szeicz JM, Moser KA,1991. The reconstruction of boreal forest fire history from lake sediments:A comparison of charcoal, pollen, sedimentological and geochemical indices, Quat Sci Rev 10,53-71.
    Mackay D, Shiu W, Ma K,1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Volume Ⅱ:59-245, FL:Lewis Publishers.
    Macleod CJA, Semple KT,2003. Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils. Soil Biol Biochem 35, 1443-1450.
    Marx RB, Aitken MD,2000. Bacterial chemotaxis enhances naphthalene degradation in a heterogeneous aqueous system. Environ Sci Technol 34,3379-3383.
    Mastral AM, Garcia T, Callen MS, Lopez JM, Navarro MV, Murillo R, Galban J,2002. Three-ring PAH removal from waste hot gas by sorbents:influence of the sorbent characteristics. Environ Sci Technol 36,1821-1826.
    Mauck WL, Olson LE, Marking LL,1976. Toxicity of natural pyrethrins and pyrethroids to fish. Arch Environ Contam Toxicol 4,18-29.
    Mayer LM, Weston DP, Bock MJ,2001. Benzo[a]pyrene and zinc solubilization by digestive fluids of benthic invertebrates-A cross-phyletic study. Environ Toxicol Chem 20,1890-1900.
    Mayer P, Tolls J, Hermens JLM, Mackay D,2003. Equilibrium sampling devices. Environ Sci Technol 37,270-276.
    McLeod PB, Van den Heuvel-Greve MJ, Allen-King RM, Luoma SN, Luthy RG,2004. Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and 2,2',5,5'-tetrachlorobiphenyl to the clam, Macomabalthic. Environ Sci Technol 38,4549-4556.
    Means JC, Wood SG, Hassett JJ, et al,1980. Sorption of polynuclear hydrocarbons by sediments and soils. Environ Sci Technol 14,1524-1528.
    Menon S, Hansen J, Nazarenko L, Luo Y,2002. Climate effects of black carbon aerosols in China and India. Science 297,2250-2253.
    Miura T, Takahashi RM,1976 Effects of a synthetic pyrethroid SD43775, on nontarget organisms when utilized as a mosquito larvicide. Mosq News 36,322-326.
    Moermond CTA, Zwolsman JJG, Koelmans AA,2005. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic coumpounds in flood plain lakes. Environ Sci Technol 39,3101-3109.
    Moody JD, Doerge DR, Freeman JP, Cerniglia CE,2002. Degradation of biphenyl by Mycobacterium sp strain PYR-1. Appl Microbiol Biotechnol 58,364-369.
    Morillo E, Romero AS, Madrid L, Villaverde J, Maqueda C,2008. Characterization and sources of PAHs and potentially toxic metals in urban environments of sevilla (Southern Spain). Water Air Soil Pollut 187,41-51.
    Muir J, Eduljee G,1999. PCP in the freshwater and marine environment of the European Union. Sci Total Environ 236,41-56.
    Nam K, Chung N, Alexander M,1998. Relationship between organic matter content of soil and the sequestration of phenanthrene. Environ Sci Technol 32,3785-3788.
    Narahashi T,1976. Insecticide Biochemistry and Physiology, ed. C. F. Wilkinson. New York: Plenum.768 pp.
    National Research Council,2003. Bioavailability of contaminants in soils and seidments: processes, tools, and applications. Washington, D.C., The National Academies Press.
    Nguyen TH, Cho HH, Poster DL, Poster DL, Ball WP,2007. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sci Technol 41,1212-1217.
    Noordman WH, Janssen DB,2002. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68,4502-4508.
    OECD,1984. Earthworm Acute Toxicity Tests. Chemicals Testing Guideline 207. Organization for Economic Cooperation and Development (OECD) Publications, Paris, France.
    Oen AMR, Breedveld GD, Kalaitzidis S, Christanis K, Cornelissen G,2006. How quality and quantity of organic matter affect polycyclic aromatic hydrocarbon desorption from Norwegian harbor sediments. Environ Toxicol Chem 25,1258-1267.
    Ouyang GF, Pawliszyn J,2006. SPME in environmental analysis. Anal Bioanal Chem 386, 1059-1073.
    Pandey AK, Bajpayee M, Parmar D, Rastogi SK, Mathur N, Seth PK,2005. DNA damage in lymphocytes of rural Indian women exposed to biomass fuel smoke as assessed by the comet assay. Environ Mol Mutagen 45,435-441.
    Pandrangi R, Petras M, Ralph S, Vrzoc M,1995. Alkaline single cell gel (comet) assay and genotoxicity monitoring using bullheads and carp. Environ Mol Mutagen 26,345-356.
    Park JH, Feng YC, Ji PS, Voice TC, Boyd SA,2003. Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microb 69,3288-3298.
    Park SK, Bielefeldt AR,2003. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil. Water Research 37,4663-4672.
    Pendleton P, Wong SH, Schumann R, Levay G, Denoyel R, Rouquero J,1997. Properties of activated carbon controlling 2-methylisoborneol adsorption. Carbon 35,1141-1149.
    Persson NJ, Gustafsson O, Bucheli TD, Ishaq R, Naes K, Broman D,2005. Distribution of PCNs, PCBs, and other POPS together with soot and other organic matter in the marine environment of the Grenlandsfjords, Norway. Chemosphere 60,274-283.
    Persson NJ, Gustafsson O, Bucheli TD, Ishaq R, Naes K, Broman D,2002. Soot-carbon influenced distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway. Environ Sci Technol 36,4968-4974.
    Potter DW, Pawliszyn J,1994. Rapid-determination of polyaromatic hydrocarbons and polychlorinated-biphenyls in water using solid-phase microextraction and GCMS. Environ Sci Technol 28,298-305.
    Puglisi E, Murk AJ, van den Bergt HJ, Grotenhuis T,2007. Extraction and bioanalysis of the ecotoxicologically relevant fraction of contaminants in sediments. Environ Toxicol Chem 26, 2122-2128.
    Raison RJ,1979. Modifications of the soil environment by vegetation fires:A review, Plant Soil 51,73-108.
    Rajaguru P, Suba S, Palanivel M, Kalaiselvi K,2003. Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ Mol Mutagen 41,85-91.
    Ran Y, Xing B, Rao PSC, Fu J,2004. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate. Environ Sci Technol 38, 4340-4348.
    Reed MD, Blair LF, Burling K, Daly I, Gigliotti AP, Gudi R, Mercieca MD, McDonald JD, Naas DJ, O'Callaghan JP, Seilkop SK, Ronsko NL, Wagner VO, Kraska RC,2005. Health effects of subchronic exposure to diesel-water emulsion emission. Inhal Toxicol 14,851-870.
    Reichenberg F, Mayer P,2006. Two complementary sides of bioavailability:Accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25, 1239-1245.
    Reid BJ, Jones KC, Semple KT,2000. Bioavailability of persistent organic pollutants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environ Pollut 108,103-112.
    Reid BJ, Semple KT, Macleod CJ, Weitz HJ, Paton GI,1998.. Feasibility of using prokaryote biosensors to assess acute toxicity of polycyclic aromatic hydrocarbons. FEMS Microbiol Lett 169,227-233.
    Renberg I, Wik M,1985. Soot particle counting in recent lake sediments:an indirect dating method. Ecol Bull 37,53-57.
    Rhodes AH, Carlin A, Semple KT,2008. Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ Sci Technol 42,740-745.
    Rockne KJ, Kosson DS, Young LY, Taghon GL,1999. Sequestration of PAHs in size-and density-fractionated estuarine sediments. In Situ and On Site Bioremediation 5,191-196.
    Ruscoe CNE,1977. The new NRDC pyrethroids as agricultural insecticides. Pestic Sci 8,236-242.
    Saiyed HN, Patel TS, Gokani VN,2001. Indoor air pollution in India:a major environmental and public health concern. CMR Bull 31,1-9.
    Sander M, Pignatello JJ,2005. Characterization of charcoal adsorption sites for aromatic compounds:insights drawn from single-solute and bi-solute competitive experiments. Environ Sci Technol 39,1606-1615.
    Sayles GD, Acheson CM, Kupferle MJ, Shan Y, Zhou Q, Meier JR, Chang L, Brenner R,1999. Land treatment of PAH contaminated soil:performance measured by chemical and toxicity assays. Environ Sci Technol 33,4310-4317.
    Schmidt MWI,2000. Black carbon in soils and sediments:Analysis, distribution, implication, and challenges. J Global Biogeochemical Cycles 14,777-793.
    Schnitzer, M.1982. Organic matter characterization. In Methods of Soil Analysis, Part 2; Page, A. L., Miller, R. H., Keeney, D. R., Eds.; Am. Soc. Agron.-Soil Sci. Soc. Am.:adison, WI, pp 581-594.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B, 2006. The challenge of micropollutants in aquatic systems. Science 313,1072-1077.
    Schwarzenbach RP, Gschwend PM, Imboden DM,1993. Environmental Organic Chemistry. John Wiley & Sons, New York.
    Scott AC,1989. Observations on the nature and origin of fusain, Int J Coal Geol 12,443-475.
    Seiler W, Crutzen PJ,1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim Change 2,207-247.
    Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H,2004. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38,228-231.
    Sergides CA, Jassim JA, Chugbrai AR, Smith DM,1987. The structuroe f hexane soot, part III, Ozonation studies Appl. Spectrosc 41,482-492.
    Shafizadeh F.1984. The chemistry of pyrolysis and combustion, in The Chemistry of Solid Wood, edited by R.M. Rowell, pp.481-529, Am. Chem. Soc., Washington, D. C.
    Sheng GY, Yang YN, Huang MS, Yang K,2005. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ Pollut 134,457-463.
    Shieh WJ, Hedges AR,1996. Properties and applications of cyclodextrins. J Macromol Sci Pure 33,673-683.
    Shor LM, Rockne KJ, Taghon GL, Young LY, Kosson DS,2003. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environ Sci Technol 37,1535-1544.
    Sijm D, Kraaij R, Belfroid A,2000. Bioavailability in soil or sediment:Exposure of different organisms and approaches to study it. Environ Pollut 108,113-119.
    Simoneit B,2002. Biomass burning-a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17,129-162.
    Singh HP, Batish DR, Pandher JK, Kohli RK,2003. Assessment of allelopathic properties of Parthenium hysterophorus residues. Agric Eco Environ 95,537-541.
    Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG,1996. The chemistry and nature of the protected carbon in soil. Aust J Soil Res 34,251-271.
    Smith DM, Chughtai AR,1995. The surface structure and reactivity of black carbon, Colloids Surf A 105,47-77.
    Song JZ, Peng PA, Huang WL,2002. Black carbon and kerogen in soils and sediments.1. Quantification and characterization. Environ Sci Technol 36,3960-3967.
    Stegeman JJ, Schlezinger JJ, Craddock KE, Tillitt DE,2001. Cytochrome P450 1A expression in mid water fishes:potential effects of chemical contaminants in remote oceanic zones. Environ Sci Technol 35,54-62
    Stemmer M, Gerzabeki MH, Kandeler E,1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem 30,9-17.
    Streets DG, Yarber KF, Woo JH, Carmichael GR,2003. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions. Global Biogeochem Cy 17,1099-1118.
    Sundelin B, Wiklund AKE, Lithner G, Gustafsson O,2004. Evaluation of the role of black carbon in attenuating bioaccumulation of polycyclic aromatic hydrocarbons from field-contaminated sediments. Environ Toxicol Chem 23,2611-2617.
    Sung-Kil P, Angela RB,2003. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil. Water Res 37,4663-4672.
    Talley JW, Gosh U, Tucker SG, Furey JS, Luthy RG,2002. Particle-scale understanding of the bioavailability of PAHs in sediment. Environ Sci Technol 36,477-483.
    Tang J, Alexander M,1999. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 18,2711-2714.
    Tang J, Roberston KB, Alexander M,1999. Chemical-extraction methods to estimate bioavailability of DDT, DDE and DDD in soil. Environ Sci Technol 33,4346-4351.
    Tao S, Cao HY, Liu WX, Li BG, Cao J, Xu FL, Wang XJ, Coveney RM, Shen WR, Qin BP, Sun R,2003. Fate modeling of phenanthrene with regional variation in Tianjin, China. Environ Sci Technol 37,2453-2459.
    Ten Hulscher TEM, Postma J, Den Besten PJ, Stroomberg GJ, Belfroid A, Wegener JW, Faber JH, Van der Pol JJC, Hendriks AJ, Van Noort PCM,2003. Tenax extraction mimics benthic and terrestrial bioavailability of organic compounds. Environ Toxicol Chem 22,2258-2265.
    Ter Laak TL, Barendregt A, Hermens JLM,2006. Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked aged, and field-contaminated soils. Environ Sci Technol 40,2184-2190.
    Thorsen WA, Cope WG, Shea D,2004. Bioavailability of PAHs:effects of soot carbon and PAH source. Environ Sci Technol 38,2029-2037.
    Timmermann K, Andersen O,2003. Bioavailability of pyrene to the deposit-feeding polychaete Arenicola marina:importance of sediment versus water uptake routes. Mar Ecol Prog Ser 246,163-172.
    Tungittiplakorn W, Cohen C, Lion LW,2005. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39,1354-1358.
    USEPA,2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, second ed. EPA 600/R-99/064, U.S. EPA, Washington, D.C.
    Uyttebroek M, Ortega-Calvo JJ, Breugelmans P, Springael D,2006. Comparison of mineralization of solid-sorbed phenanthrene by polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium spp. and Sphingomonas spp. Appl Microbiol Biotechnol 72,829-836.
    Vaes WHJ, Ramos EU, Verhaar HJM, Seinen W, Hermens JLM,1996. Measurement of the free concentration using solid-phase microextraction:Binding to protein. Anal Chem 68,4463-4467.
    Van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB,1990. Influence of interfaces on microbial activity. Microbiol Rev 54,75-87.
    Van Noort PCM,2003. A thermodynamics-based estimation model for adsorption of organic compounds by carbonaceous materials in environmental sorbents. Environ Toxicol Chem 22, 1179-1188.
    Van Noort PCM, Jonker MTO, Koelmans AA,2004. Modeling maximum adsorption capacities of soot and soot like materials for PAHs and PCBs. Environ Sci Technol 38,3305-3309.
    Vukovic G, Marinkovic A, Obradovic M, Radmilovic V, Colic M, Aleksic R, Uskokovic PS, 2009. Synthesis, characterization and cytotoxicity of surface amino functionalized water-dispersible multi-walled carbon nanotubes. Appl Surf Sci 255,8067-8075.
    Wang XL, Lu JL, Xing BS,2008. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environ Sci Technol 42,3207-3212.
    Ward DE,1990. Factors influencing the emissions of gases and particulate matter from biomass burning, in Fire in the Tropical Biota:Ecosystem Processes and Global Challenges, edited by J.G. Goldammer, pp.418-436, Springer-Verlag, New York.
    Warrington GE, Skogley EO,1997. Plants and soil organisms take up only those nutrients (and other elements) that are available to them in the soil solution. WECSA Natural Resource Analysis, On-line Reference:Bioavailability. http://www.wecsa.com/Refrence/soilsltn.htm
    Weber WJJr, MeGinley PM, Katz LE,1992. A distributed reactivity model for sorption by soils and sediments.l.Conceptual basis and equilibrium assessments. Environ Sci Technol 26, 1955-1962.
    Weissenfels WD, Klewer HJ, Langhoff J,1992. Adsorption of polycyclic aromatic aromatic-hydrocarooons (PAHs) by soil particles-Influence on biodegradability and biotoxicity. Appl Microb Biotech 36,689-696.
    White J, Kelsey JW, Hatzinger PB, Alexander M,1997. Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16,2040-2045.
    White JC, Alexander M, Pignatello JJ,1999. Enhancing the bioavailability of organic compounds sequestered in soil and aquifer solids. Environ Toxicol Chem 18,182-187.
    Wick LY, Colangelo T, Harms H,2001. Kinetics of mass transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35,354-361.
    Wu Q, Blume HP, Rexilius L, Folschow M, Scheluss U,2000. Sorption of atrazine,2,4-D, nitrobenzene and pentachlorophenol by urban and industrial wastes. Eur J Soil Sci 51,335-344.
    Xia X, Wang R,2008. Effect of sediment particle size on polycylic aromatic hydrocarbon biodegradation:Importance of the sediment-water interface. Environ Toxicol Chem 27, 119-125.
    Xiao BH, Yu ZQ, Huang WL,2004. Black carbon and kerogen in soils and sediments.2. Their roles in equilibrium sorption of less-polar organic pollutants. Environ Sci Technol 39,5842- 5852.
    Xing B, Pignatello JJ,1997. Dual-mode sorption of low-polarity compounds in glassy poly (Vinyl chloride) and soil organic matter[J]. Environ Sci Technol 31,792-799.
    Xu J, Yu Y, Wang P, Guo W, Dai S, Sun H,2007. Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemsphere 67,1408-1414.
    Xu Y, Spurlock F, Wang Z, Gan J,2007. Comparison of five methods for measuring sediment toxicity of hydrophobic contaminants. Environ Sci Technol 41,8394-8399.
    Xu YP, Gan J, Wang ZJ, Spurlock F,2008. Effect of aging on desorption kinetics of sediment-associated pyrethroids. Environ Toxicol Chem 27,1293-1301.
    Yang K, Zhu LZ, Xing BS,2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40,1855-1861.
    Yang WC, Hunter W, Spurlock F, Gan J,2007. Bioavailability of permethrin and cyfluthrin in surface waters with low levels of dissolved organic matter. J Environ Qual 36,1678-1685.
    Yang Y, Hunter W, Tao S, Gan J,2008a. Relationships between desorption intervals and availability of sediment-associated hydrophobic contaminants. Environ Sci Technol 42, 8446-8451.
    Yang Y, Hunter W, Tao S, Gan J,2009b. Effects of black carbon on pyrethroid availability in sediment. J Agric Food Chem 57,232-238.
    Yang Y, Ligouis B, Pies C, Achten C, Hofmann T,2008b. Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere 71, 2158-2167.
    Yang Y, Sheng GY,2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37,3635-3639.
    Yang Y, Sheng GY, Huang MS,2006. Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354,170-178.
    Yang Y, Shu L, Wang XL, Tao S,2009a. Impact of chemical constructions on the microbial availability of phenanthrene sorbed on biopolymers. Geochimica et Cosmochimica Aata 73, A1480-A1480.
    Yang ZY, Zhao YY, Tao FM, Ran Y, Mai BX, Zeng EY,2007. Physical origin for the nonlinear sorption of very hydrophobic organic chemicals in a membrane-like polymer film. Chemosphere 69,1518-1524.
    You J, Landrum PF, Lydy MJ,2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40,6348-6353.
    You J, Pehkonen S, Landrum PF, Lydy MJ,2007. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by tenax absorbent and matrix solid-phase microextraction. Environ Sci Technol 41,5672-5678.
    Yu XY, Ying GG, Kookana RS,2006b. Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agricul Food Chem 54,8545-8550.
    Yu YL, Wu XM, Li SN, Fang H, Zhan HY, Yu JQ,2006a. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environ Pollut 141,428-433.
    Zhang B, Zheng MH, Liu PY, Bao ZC, Xu XB,2001. Distribution of pentachlorophenol in Dongting Lake environmental medium. China Environ Sci (China).21,165-167.
    Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G,2007. Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinatedbiphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemoshpere 66,1057-1069.
    Zhou HY, Hong HC, Lan CY,2004. Effect of ambient pentachlorophenol on electrolytical element levels and morphological changes of Tilapia (Oreochromis mossambicus) gills. Chin J Appl Environ Biol 10,84-87.
    Zimmerman JR, Ghosh U, Millward RN, Bridges TS, Luthy RG,2004. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments:Physicochemical tests. Environ Sci Technol 38,5458-5464.
    韩永明,曹军骥.环境中碳黑及其全球生物地球化学循环[J].海洋地质与第四纪地质2005,25,125-132。
    刘敏,侯立军,邹惠仙,杨毅,陆隽鹤,王晓蓉.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科学2001,21,343-346。
    麦碧娴,林峥,张干,盛国英,康跃惠,彭平安.珠江三角洲沉积物中毒害有机物的污染现状及评价[J].环境科学研究2001,14,19-23。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700