用户名: 密码: 验证码:
利用臭氧及活性分子协同脱除多种污染物的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展我国一次性能源消费将不断上升,煤在一次能源中占了70%的比重。煤燃烧释放的各种污染物威胁着环境和人类的健康。利用一种技术或者两种技术结合同时脱除多种污染物可以以较低的成本获得较高的环境收益。本文对利用臭氧和活性分子实现多种污染物协同脱除的相关问题进行了实验和机理研究,主要研究内容包括可溶性NOx的湿法脱除,烟气整体催化氧化污染物研究及与臭氧氧化对比,若干未知速率和未明机理反应的量子化学研究,异相催化氧气产生活性分子氧化NO研究。
     将可溶性NOx湿法脱除是氧化性方法协同脱除污染物的最后也是重要的一步。采用臭氧喷射技术,NO2是O3/NO摩尔比较低时的产物。吸收液中S(Ⅳ)和pH值直接关系着NO2的脱除效率。NO2可与吸收液中的SO32-、HS03-反应,增大吸收速率,提高脱除效率。相同S(Ⅳ)浓度下,NO2脱除率随pH值升高而增大。在典型脱硫塔液相条件下,300ppm NO2的脱除效率约为70%,亚硝酸根是其主要的液相产物。NO2、SO2的相互影响为:SO2造成喷淋液中pH值下降和S(Ⅳ)上升,综合结果使NO2脱除率略有下降;NO2的吸收使喷淋液的pH值和SO2的脱除率下降,吸收液中硫酸根浓度上升。在O3/NO摩尔比大于1时,因气相生成NO3、N2O5,NOx脱除急剧上升,可以达90%以上,同时液相NO3-浓度上升。
     采用两种烟气整体催化方式(NTP、UV),分别氧化Hg0和NO。利用DBD-NTP对烟气整体催化产生活性分子氧化Hg0。O/O3是氧化Hg0的重要物质,氧化率与O3浓度直接相关。当模拟烟气中无O2单独水汽存在时,NTP中产生的OH会一定程度上氧化Hg0。当H2O与O2共存时少量水汽可促进Hg0氧化,超过一定浓度则阻碍氧化,原因是有O2存在OH对Hg氧化有两面性:一是OH自身可以氧化Hg0,二是OH能促进O、O3等的消耗。模拟烟气中的HCl可促进Hg氧化,生成可溶性Hg2+物质。利用UV光催化烟气产生活性分子氧化NO。UV催化烟气产生臭氧量与NO氧化量基本一致,水汽加入可以明显改善NO氧化。在UV下烟气O2不对SO2产生氧化作用,有水汽出现后氧化效果明显。与臭氧氧化对比:NTP与UV均可对烟气整体催化,产生O3、O、OH等多种活性分子有效氧化污染物但整体化催化方式更加耗能,就无机污染物处理方面臭氧喷射方式足可以实现高效低价脱除。
     所有涉及到O3、NO3的反应均为氧抽取转移反应。SO2与O3反应活化能量子化学计算结果为9.68 kcal/mol,为NO与O3的3.5倍,150℃下的反应速率常数为后者的105分之
     1,所以O3可以选择性氧化NO.H2O2与SO2反应速率同样很慢,SO2在气相中的转化比较困难。NO3可分别与O3和NO3发生反应,生成NO2、O2。NO3与O3反应活化能为8.85kcal/mol。NO3自身碰撞消耗反应可以通过两条路径实现,三重态路径活化能为34.6 kcal/mol,单重态路径上有两个过渡态、一个中间体,活化能依次为1.36 kcal/mol,2.38 kcal/mol,反应主要通过后一路径实现。反应动力学模拟表明,150℃下NO3自身碰撞分解反应是NO3消耗的主要反应,低温利于NO3的生存。N03与Hg共存的动力学模拟表明,NO3分解不会对NO3氧化Hg构成竞争,原因是NO3与Hg反应速率极快、Hg浓度远远低于烟气中NOx。
     本文提出了利用固体催化剂吸附活化烟气中的氧气,产生表面活性氧物种,氧化多种污染物,与湿法洗涤结合可实现协同脱除。O2分子本身反应活性很低,与催化剂表面作用后可提高反应活性。首先对固相催化O2氧化NO进行了试验研究和催化剂表征。采用的载体是具有优良储氧功能的CeO2,活性组分为钻和锰,溶胶凝胶法制备,最佳煅烧温度分别为400℃(CoCeOx),500℃(MnCeOx),掺杂金属与载体铈摩尔比约1∶2时,达到最好交互作用,催化效果最好,金属高度分散在载体中形成固溶。在200-300℃范围内可以达到50-90%的NO氧化率。La掺杂可提高MnCe氧化物催化剂的活性。催化机理可简述为,通过体相晶格氧和表面氧物种向表面氧空位迁移、气相O2分子向表面氧空位和吸附位吸附,诱导产生比O2更具有反应能力的活性的氧物种(Ox*),Ox*与被吸附的NO分子发生反应,NO分子结合一个氧原子生成中间体,中间体释放NO2分子,NO2从表面脱离后,遗留下氧空位和表面吸附位,以进行下一次O2分子吸附和催化剂表面或体相氧物种迁移。
Primary energy consumption is increasing continuously with country's economy development in which coal accounts for about 70%. Pollutants from coal combustion are endangering human health and global environment. High environmental benefits with relatively low cost can be obtained by using one technology or two combined to remove multi-pollutants simultaneously. Issues about multi-pollutants control using ozone and active molecule were investigated experimentally and theoretically in this work which included soluble NOx removal in wet scrubber, pollutants oxidation by catalytic flue gas integrally and comparation with ozone, quantum chemistry study on some reactions with unknown mechanism or reaction rate, NO oxidation by catalyzing O2 to produce active molecule heterogeneously.
     Soluble NOx removal is the last and most important step. When O3/NO molar ratio is low, NO2 is the main product. S(Ⅳ) concn and pH value of absorption solution directly affected removal efficiency. Reactions of NO2 with SO32-、HSO3- were favorable for NO2 removal by increasing absorption rate. NO2 removal increased with pH value at the same S(Ⅳ) concn. NO2 removal was around 70% in the typical wet FGD condition with initial concn 300ppm. NO2-was the main solution product. Mutual effects of NO2 and SO2 were that absorption of SO2 made pH value decline and S(Ⅳ) concn increase resulting in decrease of NO2 removal and that absorption of NO2 also resulted in both pH value and SO2 removal decreasing and the SO42-concn increasing. When O3/NO molar ratio was over 1, NO2 removal increased drastically even to 90% with NO3- concn increasing because of NO3 and N2O5 formed in gas.
     Oxidation of Hg0 and NO was studied by catalytic flue gas integrally (NTP and UV) separately. Active molecules were produced to oxidize Hg0 by catalytic flue gas using DBD-NTP. O/O3 affected the oxidation rate of Hg0 directly. Hg0 could be oxidized to some extent with OH produced by NTP when vapor existed in gas without oxygen. Small amount of vapor was favorable to Hg0 oxidation with oxygen coexisting, but it hindered the oxidation when concn was beyond a certain value because OH didn't only oxidize Hg0 but also increased the consumption of O and O3. HCl could promote the oxidation producing soluble Hg2+species. NO was oxidized by UV catalytic flue gas. Ozone produced was consistent with NO oxidized. Vapor favored NO oxidation. SO2 couldn't be oxidized by O2 in UV, but coexistence of vapor promoted the reaction apparently. NTP and UV could both catalyze flue gas to produce O3, O and OH et al active molecules oxidizing pollutants effectively. However, they consume much more energy than ozone injection which is enough to oxidize inorganic contaminations efficiently with low cost.
     Reactions involving O3 and NO3 are characterized by oxygen-extract and-transfer. The activation energy of SO2 reaction with O3 obtained by quantum chemistry calculations is 9.68 kcal/mol which is 3.5 times as high as NO with O3. Rate constant of the former is 1/105 of the latter at 150℃, so NO could be selectively oxidized by O3. The reaction rate of H2O2 with SO2 is also very low, which means SO2 conversion in gas is difficult. NO3 could react with O3 or itself producing NO2 and O2. Activation energy of reaction of NO3 with O3 is 8.85kcal/mol. Two paths were found for reaction of two NO3 molecules. The triplet path is one step reaction and activation energy is 34.6kcal/mol. There are two transition states and one intermediate in singlet path and energy barriers are 1.36kcal/mol,2.38kcal/mol, respectively. Reaction of two NO3 molecules mainly occurs through singlet pathway. It was found by kinetics analysis that two NO3 molecules reaction was the major cause for NO3 consumption at 150°C and low temperature benefited NO3 survival. NO3 consumption will not pose a competitive challenge to oxidation of Hg by NO3 because the rate of NO3 reaction with Hg is large and Hg concn is much lower than NOx in flue gas.
     This work proposed an idea that using solid catalyst to absorb and activate oxygen in flue gas oxidizing pollutants by combining with wet scrubber to achieve multi-pollutants control, during which active oxygen species could be produced on catalyst surface. Catalysts could enhance the reactivity of O2. Heterogeneous catalytic oxidation of NO and characterization of catalysts were investigated. An excellent oxygen storage material (CeO2) was chosen as support. Co and Mn were used as active components. Catalysts were made by sol-gel method. The optimum calcining temperature was 400℃for CoCeOx and 500℃for MnCeOx. The best catalytic activity was reached when the molar ratio of metal dopped and Ce was about 1:2. Metals dopped were highly dispersed in catalyst support forming solid solution phase. About 50%-90%of NO would be oxidized in 200-300℃. La-doping could hance MnCeOx activity. The catalytic mechanism was described as follows. Oxygen interacts with surface of catalyst to induce active oxygen species (Ox) that is more reactive than O2 molecule by bulk lattice oxygen and surface oxygen species migrating to surface lattice oxygen vacancy sites, gas O2 absorption on surface lattice oxygen vacancy sites or absorption sites. Intermediate is formed by integration of NO molecule and O atom of Ox*. After NO2 aparted from the intermediate lattice oxygen vacant sites and surface absorption sites are formed for further adsorption of O2 and migration of surface or bulk oxygen species.
引文
[1]中华人民共和国国家统计局.中国统计年鉴—2008.北京.2009.
    [2]环境保护部 国家质检总局.2009.火电厂大气污染物排放标准(征求意见稿).2010-3-1.http://www.mep.gov.cn/gkml/hbb/bgth/200910/t20091022 175021.htm
    [3]Karavaiko GI. Lobyreva L.B. An Overview Of The Bacteria And Archaea Involved In Removal Of Inorganic And Organic Sulfur-Compounds From Coal. Fuel Processing Technology,1994.40(2-3):167-182.
    [4]程军.炉内高温燃烧两段脱硫的机理研究.[博士学位论文]杭州.浙江大学.2002.
    [5]Mizuno A., Clements J.S., and Davis R.H. A Method For The Removal Of Sulfur-Dioxide From Exhaust-Gas Utilizing Pulsed Streamer Corona For Electron Energization. IEEE Transactions On Industry Applications, 1986.22(3):516-522.
    [6]刘彦O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究.[浙江大学.2004.
    [7]Gaur V., Asthana R., and Verma N. Removal of SO2 by activated carbon fibers in the presence of O-2 and H2O. Carbon,2006.44(1):46-60.
    [8]黎亚平,冯笙琴,吴丽萍et al.电子束辐照烟气脱硫脱氮反应器中的剂量分布的模拟计算.强激光与粒子束,2010.22(1):185-188.
    [9]Lind T., Hokkinen J., and Jokiniemi J.K. Fine particle and trace element emissions from waste combustion-Comparison of fluidized bed and grate firing. Fuel Processing Technology,2007.88(7):737-746.
    [10]Scala F. Salatino P. Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions: The influence of limestone attrition and fragmentation. Chemical Engineering Science,2010.65(1):556-561.
    [11]Bokotko R.P., Hupka J., and Miller J.D. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology. Environmental Science & Technology,2005.39(4):1184-1189.
    [12]Xu G, Guo Q., Kaneko T., et al. A new semi-dry desulfurization process using a powder-particle spouted bed. Advances in Environmental Research,2000.4(1):9-18.
    [13]杨立国,段钰峰,王运军et al.新式整体半干法烟气脱硫技术的脱汞实验研究.中国电机工程学报,2008.28(2):66-71.
    [14]毛键雄,毛键全,and赵树民.煤的清洁燃烧.北京:科学出版社.1998.
    [15]蔡建海,温广军,黄子俊,et al.烟气脱硫技术的现状与发展.矿业快报,2008.3:12-15.
    [16]Femandez J., Rico J.L., Garcia H., et al. Development of sorbents for SO2 capture prepared by hydration of fly ash and hydrated lime in seawater. Industrial & Engineering Chemistry Research,2006.45(2):856-862.
    [17]Tokumura M., Baba M., Znad H.T., et al. Neutralization of the acidified seawater effluent from the flue gas desulfurization "process:Experimental investigation, dynamic modeling, and simulation. Industrial & Engineering Chemistry Research,2006.45(18):6339-6348.
    [18]段振亚.锅炉烟气湿法脱硫理论与工业技术研究.[天津大学.2006.
    [19]Ribeirete A. Costa M. Detailed measurements in a pulverized-coal-fired large-scale laboratory furnace with air staging. Fuel,2009.88(1):40-45.
    [20]Li S., Xu T.M., Hui S., et al. NOx emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging. Applied Energy,2009.86(9):1797-1803.
    [21]Zabetta E.C., Hupa M., and Saviharju K. Reducing NOx emissions using fuel staging, air staging, and selective noncatalytic reduction in synergy. Industrial & Engineering Chemistry Research,2005.44(13): 4552-4561.
    [22]Luan T., Wang X.D., Hao Y.Z., et al. Control of NO emission during coal reburning. Applied Energy,2009. 86(9):1783-1787.
    [23]Smoot L.D., Hill S.C., and Xu H. NOx control through reburning. Progress In Energy and Combustion Science, 1998.24(5):385-408.
    [24]Wan H.-P., Yang C.-S., Adams B.R., et al. Controlling LOI from coal reburning in a coal-fired boiler. Fuel, 2008.87(3):290-296.
    [25]Park J., Hwang D.J., Chung J.O., et al. Comparative study of flame structures and NOx emission characteristics in fuel injection recirculation and fuel gas recirculation combustion system. International Journal Of Energy Research,2004.28(10):861-885.
    [26]Kim H.K., Kim Y., Lee S.M., et al. NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology. Proceedings of the Combustion Institute,2007.31:3377-3384.
    [27]Evulet A.T., Elkady A.M., Branda A.R., et al. On the Performance and Operability of GE's Dry Low NOx Combustors utilizing Exhaust Gas Recirculation for PostCombustion Carbon Capture. Energy Procedia,2009. 1(1):3809-3816.
    [28]Rortveit G.J., Zepter K., Skreiberg O., et al. A comparison of low-NOx burners for combustion of methane and hydrogen mixtures. Proceedings of the Combustion Institute,2002.29:1123-1129.
    [29]Bebar L., Kermes V., Stehlik P., et al. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling. Waste Management,2002.22(4):443-451.
    [30]Tang Q., Denison M., Adams B., et al. Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry. Proceedings of the Combustion Institute,2009.32:2649-2657.
    [31]Gao X., Jiang Y., Zhong Y., et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal Of Hazardous Materials,2010. 174(1-3):734-739.
    [32]Boyano A., Lazaro M.J., Cristiani C., et al. A comparative study Of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3. Chemical Engineering Journal,2009.149(1-3):173-182.
    [33]Burch R., Breen J.P., and Meunier F.C. A review of the selective reduction of NOx, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B-Environmental,2002.39(4):283-303.
    [34]Hu Y., Griffiths K., and Norton P.R. Surface science studies of selective catalytic reduction of NO:Progress in the last ten years. Surface Science,2009.603(10-12):1740-1750.
    [35]Tayyeb Javed M., Irfan N., and Gibbs B.M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal Of Environmental Management,2007.83(3):251-289.
    [36]Muzio L.J. Quartucy G.C. Implementing NOx control:Research to application. Progress in Energy and Combustion Science,1997.23(3):233-266.
    [37]Zamansky V.M., Maly P.M., and Seeker W.R. Byproducts emissions in reburning and advanced reburning technologies. Combustion Science and Technology,1998.134(1-6):389-405.
    [38]Hwang I.-H., Minoya H., Matsuto T., et al. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators. Chemosphere,2009.74(10):1379-1384.
    [39]张文祥,贾明君,吴通好,et al.金属离子交换分子筛的NO吸附性能.高等学校化学学报,1997.18(12):1999-2003.
    [40]Martinez A. Cabezas J. Emission Control System for Nitrogen Oxides Using Enhanced Oxidation, Scrubbing, and Biofiltration. Environmental Engineering Science,2009.26(5):883-890.
    [41]徐姣,张卫江,胡金榜et al.工业废气生物法脱硫脱氮的研究进展.现代化工,2007.27(S2):103-107.
    [42]Carpi A. Mercury from combustion sources:A review of the chemical species emitted and their transport in the atmosphere. Water Air and Soil Pollution,1997.98(3-4):241-254.
    [43]Pavlish J.H., Sondreal E.A., Mann M.D., et al. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology,2003.82(2-3):89-165.
    [44]Bool L.E. Helble J.J. A Laboratory Study of the Partitioning of Trace-Elements During Pulverized Coal Combustion. Energy & Fuels,1995.9(5):880-887.
    [45]Pflughoeft-Hassett D.F., Hassett D.J., Buckley T.D., et al. Activated carbon for mercury control:Implications for fly ash management Fuel Processing Technology,2009.90(11):1430-1434.
    [46]Pavlish J.H., Holmes M.J., Benson S.A., et al. Application of sorbents for mercury control for utilities burning lignite coal. Fuel Processing Technology,2004.85(6-7):563-576.
    [47]Pavlish J.H., Thompson J.S., Martin C.L., et al. Fabric filter bag investigation following field testing of sorbent injection for mercury control at TXU's Big Brown Station Fuel Processing Technology,2009.90(11): 1424-1429.
    [48]O'Dowd W.J., Pennline H.W., Freeman M.C., et al. A technique to control mercury from flue gas:The Thief Process. Fuel Processing Technology,2006.87(12):1071-1084.
    [49]Bustard J., Durham M., Starns T., et al. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants. Fuel Processing Technology,2004.85(6-7):549-562.
    [50]Li Y., Murphy P., and Wu C.-Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology,2008.89(6):567-573.
    [51]Korpiel J.A. Vidic R.D. Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-Phase Mercury. Environmental Science & Technology,1997.31 (8):2319-2325.
    [52]Hsi H.-C., Rood M.J., Rostam-Abadi M., et al. Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (ACFs). Environmental Science & Technology, 2001.35(13):2785-2791.
    [53]Lee S.S., Lee J.Y., and Keener T.C. Bench-Scale Studies of In-Duct Mercury Capture Using Cupric Chloride-impregnated Carbons. Environmental Science & Technology,2009.43(8):2957-2962.
    [54]Ghorishi S.B., Keeney R.M., Serre.S.D., et al. Development of a Cl-Impregnated Activated Carbon for Entrained-Flow Capture of Elemental Mercury. Environmental Science & Technology,2002.36(20): 4454-4459.
    [55]Lee S.J., Seo Y.-C., Jurng J., et al. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons. Atmospheric Environment,2004.38(29):4887-4893.
    [56]Ji L., Thiel S.W., and Pinto N.G. Room Temperature Ionic Liquids for Mercury Capture from Flue Gas. Industrial & Engineering Chemistry Research,2008.47(21):8396-8400.
    [57]Cao Y., Wang Q.-H., Li J., et al. Enhancement of Mercury Capture by the Simultaneous Addition of Hydrogen Bromide (HBr) and Fly Ashes in a Slipstream Facility. Environmental Science & Technology,2009.43(8): 2812-2817.
    [58]Liu S.H., Yan N.Q., Liu Z.R., et al. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. Environmental Science & Technology,2007.41(4):1405-1412.
    [59]Li Y., Daukoru M., Suriyawong A., et al. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide:Bench-Scale and Pilot-Scale Studies. Energy & Fuels,2009.23(1):236-243.
    [60]Bao J.J., Yang L.J., and Yan J.P. Experimental Study on Demercurization Performance of Wet Flue Gas Desulfurization System. Chinese Journal Of Chemistry,2009.27(11):2242-2248.
    [61]Nolan P.S., Redinger K.E., Amrhein G.T., et al. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems. Fuel Processing Technology,2004.85(6-7):587-600.
    [62]Hutson N.D., Krzyzynska R., and Srivastava R.K. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Industrial & Engineering Chemistry Research,2008.47(16): 5825-5831.
    [63]Filimonova E.A., Amirov R.H., Kim H.T., et al. Comparative modelling of NOx and SO2 removal from pollutant gases using pulsed-corona and silent discharges. Journal Of Physics D-applied Physics,2000.33(14): 1716-1727.
    [64]Kuroki T., Takahashi M., Okubo M., et al. Single-stage plasma-chemical process for particulates, NOx, and SOx simultaneous removal. IEEE Transactions On Industry Applications,2002.38(5):1204-1209.
    [65]Yamamoto T., Okubo M., Nagaoka T., et al. Simultaneous removal of NOx, SOx, and CO2 at elevated temperature using a plasma-chemical hybrid process. IEEE Transactions On Industry Applications,2002.38(5): 1168-1173.
    [66]Kim Y.S., Paek M.S., Yoo J.S., et al. Development of demonstration plant using non-thermal plasma process to remove SO2 and NOx from flue gas. Journal of Advanced Oxidation Technologies,2003.6(1):35-40.
    [67]Mok Y.S. Lee H.-J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Processing Technology,2006.87(7):591-597.
    [68]Wang Z., Zhou J., Zhu Y., et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection:Experimental results. Fuel Processing Technology,2007.88(8):817-823.
    [69]Wang Y.H., Lin C.E., and Chang-Chien GP. Characteristics of PCDD/Fs in a Particles Filtration Device with Activated Carbon Injection. Aerosol and Air Quality Research,2009.9(3):317-322.
    [70]Kawashima A., Watanabe S., Iwakiri R., et al. Removal of dioxins and dioxin-like PCBs from fish oil by countercurrent supercritical CO2 extraction and activated carbon treatment Chemosphere,2009.75(6): 788-794.
    [71]Hsi H.C., Wang L.C., Yu T.H., et al. Quasi-dynamic leaching characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from raw and solidified waste incineration residues. Chemosphere,2008. 71(2):284-293.
    [72]Takaoka M., Yokokawa H., and Takeda N. The effect of treatment of activated carbon by H2O2 or HNO3 on the decomposition of pentachlorobenzene. Applied Catalysis B-Environmental,2007.74(3-4):179-186.
    [73]Hsi H.C., Wang L.C., and Yu T.H. Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration. Chemosphere,2007.67(7):1394-1402.
    [74]Chi K.H., Chang S.H., Huang C.H., et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption Chemosphere,2006.64(9):1489-1498.
    [75]Furubayashi M. Nagai K. Estimation of dioxins removal efficiency by activated carbon Kagaku Kogaku Ronbunshu,2004.30(1):54-64.
    [76]Furubayashi M., Shinohara R., and Nagai K. Study on dioxin removal efficiency of various adsorbents. Kagaku Kogaku Ronbunshu,2002.28(3):273-279.
    [77]Furubayashi M., Shinohara R., and Nagai K. Study of dioxin removal by activated carbon. Kagaku Kogaku Ronbunshu,2001.27(2):236-242.
    [78]Kilgroe J.D. Control of dioxin, furan, and mercury emissions from municipal waste combustors. Journal Of Hazardous Materials,1996.47(1-3):163-194.
    [79]Lee W.J., Shih S.I., Chang C.Y., et al. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. Journal Of Hazardous Materials,2008.160(1):220-227.
    [80]Song G.J., Kim S.H., Seo Y.C., et al. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment Chemosphere,2008.71(2):248-257.
    [81]lshikawa Y., Noma Y., Yamamoto T., et al. PCB decomposition and formation in thermal treatment plant equipment Chemosphere,2007.67(7):1383-1393.
    [82]Lundin L. Marklund S. Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere,2007.67(3):474-481.
    [83]Lundin L. Marklund S. Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environmental Science & Technology,2005.39(10):3872-3877.
    [84]Behnisch P.A., Hosoe K., Shiozaki K., et al. Low-temperature thermal decomposition of dioxin-like compounds in fly ash:Combination of chemical analysis with in vitro bioassays (EROD and DR-CALUX). Environmental Science & Technology,2002.36(23):5211-5217.
    [85]Sommer S., Kamps R., and Kleinermanns K. Photooxidation of exhaust pollutants-Photooxidation and photoreduction of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly-ash. Chemosphere,1996.33(11): 2221-2227.
    [86]Zhang L.H., Li P.J., Gong Z.Q., et al. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal Of Hazardous Materials,2008.158(2-3):478-484.
    [87]Wu C.H. Ng H.Y. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. Journal Of Hazardous Materials,2008.151(2-3):507-514.
    [88]Krauss M. Wilcke W. Photochemical oxidation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils-a tool to assess their degradability? Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde,2002.165(2):173-178.
    [89]Liu Y., Wei Z.B., Feng Z.C., et al. Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst:MnOx/TiO2-A12O3. Journal Of Catalysis,2001.202(1):200-204.
    [90]Hilmi A., Luong J.H.T., and Nguyen A.L. Applicability of micellar electrokinetic chromatography to kinetic studies of photocatalytic oxidation of dibenzo-p-dioxin. Chemosphere,1998.36(15):3113-3117.
    [91]Komatsu T. Ooshima R. Catalytic Combustion of Dioxin Analogue Compounds on Pt Supported Zeolite. Journal of the Japan Petroleum Institute,2009.52(6):332-340.
    [92]Marie-Rose S.C., Belin T., Mijoin J., et al. Destruction of PAH and dioxin precursors using selective oxidation over zeolite catalysts. Influence of the presence of ammonia in the flue gas. Applied Catalysis B-Environmental, 2009.93(1-2):106-111.
    [93]Quinn A.M., Harvey R.G., and Penning T.M. Oxidation of PAH trans-Dihydrodiols by Human Aldo-Keto Reductase AKR1B10. Chemical Research In Toxicology,2008.21(11):2207-2215.
    [94]Yang C.C., Chang S.H., Hong B.Z., et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts. Chemosphere, 2008.73(6):890-895.
    [95]Debecker D.P., Delaigle R., Eloy P., et al. Abatement of model molecules for dioxin total oxidation on V2O5-WO3/TiO2 catalysts:The case of substituted oxygen-containing VOC. Journal Of Molecular Catalysis A-chemical,2008.289(1-2):38-43.
    [96]Lee J.E. Jurng J. Catalytic conversions of polychlorinated benzenes and dioxins with low-chlorine using V2O5/TiO2. Catalysis Letters,2008.120(3-4):294-298.
    [97]Taralunga A., Innocent B., Mijoin J., et al. Catalytic combustion of benzofuran and of a benzofuran/1,2-dichlorobenzene binary mixture over zeolite catalysts. Applied Catalysis B-Environmental, 2007.75(1-2):139-146.
    [98]Wielgosinski G., Grochowalski A., Machej T., et al. Catalytic destruction of 1,2-dichlorobenzene on V205-WO3/Al2O3-TiO2 catalyst Chemosphere,2007.67(9):S150-S154.
    [99]Bertinchamps F., Treinen M., Eloy P., et al. Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs. Applied Catalysis B-Environmental,2007.70(1-4):360-369.
    [100]Finocchio E., Busca G., and Notaro M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Applied Catalysis B-Environmental,2006.62(1-2):12-20.
    [101]Shie J.L., Chang C.Y., Chen J.H., et al. Catalytic oxidation of naphthalene using a Pt/A12O3 catalyst Applied Catalysis B-Environmental,2005.58(3-4):289-297.
    [102]Everaert K. Baeyens J. Catalytic combustion of volatile organic compounds. Journal Of Hazardous Materials, 2004.109(1-3):113-139.
    [103]Lomnicki S., Lichtenberger J., Xu Z.T., et al. Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Applied Catalysis B-Environmental,2003.46(1):105-119.
    [104]Zarczynski A., Gorzka Z., Paryjczak T., et al., Oxidation of 1,2-dichloropropane in the presence of copper-zinc catalyst TMC 3/1, in Ⅴth National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering.2001. p.561-571.
    [105]Wey M.Y., Yang W.Y., Huang H.C., et al. Catalytic oxidation of organic compounds in incineration flue gas by a commercial palladium catalyst. Journal Of The Air & Waste Management Association,2002.52(2): 198-207.
    [106]Weber R. Sakurai T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst:evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics. Applied Catalysis B-Environmental,2001.34(2):113-127.
    [107]Weber R., Sakurai T., and Hagenmaier H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Applied Catalysis B-Environmental,1999.20(4):249-256.
    [108]Ntainjua E. Taylor S.H. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Topics In Catalysis,2009.52(5):528-541.
    [109]Leichsenring S., Lenoir D., May H.G., et al. Catalytic oxidation of chloroaromatic trace contaminants adsorbed on Wessalith DAY by ozone. Chemosphere,1996.33(2):343-352.
    [110]Wang H.C., Chang S.H., Hung P.C., et al. Synergistic effect of transition metal oxides and ozone on PCDD/F destruction. Journal Of Hazardous Materials,2009.164(2-3):1452-1459.
    [111]Wang H.C., Chang S.H., Hung P.C., et al. Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts. Chemosphere,2008.71(2):388-397.
    [112]Hirota K. Kojima T. Decomposition behavior of PCDD/F isomers in incinerator gases under electron-beam irradiation. Bulletin Of The Chemical Society Of Japan,2005.78(9):1685-1690.
    [113]Wang Q., Yan J.H., Tu X., et al. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel,2009.88(5):955-958.
    [114]Morsing P., Topsoe H., Borio D.C., et al. High Nox Removal from Power-Plant Flue-Gases by the Snox Process. Abstracts of Papers of the American Chemical Society,1993.205:45-CATL.
    [115]Borio D.C., Collins D.J., and Vohtz E. Conversion of SO2 to Sulfuric-Acid Via the Snox Process. Abstracts of Papers of the American Chemical Society,1992.204:14-FERT.
    [116]Blumrich S. Engler B. The DESONOX/REDOX-process for flue gas cleaning:A flue gas purification process for the simultaneous removal of NOx and SO2 resp. CO and UHC. Catalysis Today,1993.17(1-2): 301-310.
    [117]Liu Q.Y., Liu Z.Y., and Wu W.Z. Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst Catalysis Today,2009.147:S285-S289.
    [118]Xie G.Y., Liu Z.Y., Zhu Z.P., et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent Ⅰ. Deactivation of SCR activity by SO2 at low temperatures. Journal Of Catalysis,2004.224(1): 36-41.
    [119]Xie G.Y., Liu Z.Y., Zhu Z.P., et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent Ⅱ. Promotion of SCR activity by SO2 at high temperatures. Journal Of Catalysis,2004.224(1): 42-49.
    [120]Xie G.Y., Liu Z.Y., Zhu Z.P., et al. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia Applied Catalysis B-Environmental,2003.45(3):213-221.
    [121]Jeong S.M. Kim S.D. Removal of NOx and SO2 by CuO/gamma-Al2O3 sorbent/catalyst in a fluidized-bed reactor. Industrial & Engineering Chemistry Research,2000.39(6):1911-1916.
    [122]Macken C. Hodnett B.K. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbents in hydrogen, methane and steam. Industrial & Engineering Chemistry Research,1998.37(7):2611-2617.
    [123]Kiel J.H.A., Prins W., and Vanswaaij W.P.M. Performance of Silica-Supported Copper-Oxide Sorbents for Sox/Nox-Removal from Flue-Gas.1. Sulfur-Dioxide Absorption and Regeneration Kinetics. Applied Catalysis B-Environmental,1992.1(1):13-39.
    [124]Kamata H., Ueno S., Sato N., et al. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Processing Technology,2009.90(7-8):947-951.
    [125]Yamaguchi A., Akiho H., and Ito S. Mercury oxidation by copper oxides in combustion flue gases. Powder Technology,2008.180(1-2):222-226.
    [126]Jin Z.N. Song Y.P. Preparation of a novel monolithic catalyst CuO-CeO2 and its catalytic property in VOC oxidation. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry,2009.48(6):793-796.
    [127]Delimaris D. Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method Applied Catalysis B-Environmental,2009.89(1-2):295-302.
    [128]Pan H.Y., Li Z., Xia Q.B., et al. Catalytic activity of copper based catalysts pretreated with H-2 reduction for catalytic combustion of styrene. Catalysis Communications,2009.10(8):1166-1169.
    [129]Saqer S.M., Kondarides D.I., and Verykios X.E. Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation. Topics In Catalysis,2009.52(5):517-527.
    [130]Wang C.H., Lin S.S., Chen C.L., et al. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere,2006.64(3):503-509.
    [131]Sumathi S., Bhatia S., Lee K.T., et al. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx Journal Of Hazardous Materials,2010.176(1-3):1093-1096.
    [132]Sumathi S., Bhatia S., Lee K.T., et al. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOx and NOx of flue gas at low temperature. Science In China Series E-technological Sciences,2009.52(1):198-203.
    [133]Lee Y.W., Kim H.J., Park J.W., et al. Adsorption and reaction behavior for the simultaneous adsorption of NO-NO2 and SO2 on activated carbon impregnated with KOH. Carbon,2003.41(10):1881-1888.
    [134]Davini P. Flue gas desulphurization by activated carbon fibers obtained from polyacrylonitrile by-product Carbon,2003.41(2):277-284.
    [135]Lee Y.W., Park J.W., Yun J.H., et al. Studies on the surface chemistry based on competitive adsorption of NOx-SO2 onto a KOH impregnated activated carbon in excess O-2. Environmental Science & Technology, 2002.36(22):4928-4935.
    [136]Davini P. Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon,2002.40(11): 1973-1979.
    [137]Kisamori S., Kawano S., and Mochida I. So2 and Nox Removal at Ambient-Temperatures Using Activated Carbon-Fibers. Abstracts of Papers of the American Chemical Society,1993.205:63-FUEL.
    [138]Begona Rubio M.T.I. Low cost adsorbents for low temperature cleaning of flue gases. Fuel,1998.77(6):631.
    [139]Mochida I., Korai Y., Shirahama M., et al. Removal of SOx and NOx over activated carbon fibers. Carbon, 2000.38(2):227-239.
    [140]Nelli C.H. Rochelle GT. Simultaneous sulfur dioxide and nitrogen dioxide removal by calcium hydroxide and calcium silicate solids. Journal Of The Air & Waste Management Association,1998.48(9):819-828.
    [141]Ishizuka T., Kabashima H., Yamaguchi T., et al. Initial step of flue gas desulfurization-An IR study of the reaction of SO2 with NOx on CaO. Environmental Science & Technology,2000.34(13):2799-2803.
    [142]Zhang H., Tong H.L., Wang S.J., et al. Simultaneous removal of SO2 and NO from flue gas with calcium-based sorbent at low temperature. Industrial & Engineering Chemistry Research,2006.45(18): 6099-6103.
    [143]Zhao Y., Xu P.Y., Sun X.J., et al. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed. Science In China Series B-chemistry, 2007.50(1):135-144.
    [144]Dahlan I., Lee K.T., Kamaruddin A.H., et al. Rice Husk Ash/Calcium Oxide/Ceria Sorbent for Simultaneous Removal of Sulfur Dioxide and Nitric Oxide from Flue Gas at Low Temperature. Environmental Engineering Science,2009.26(7):1257-1265.
    [145]Dahlan I., Lee K.T., Kamaruddin A.H., et al. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. Journal Of Hazardous Materials,2009.166(2-3): 1556-1559.
    [146]Zhao Y., Xu P.Y., and Wang L.D. Simultaneous Removal of SO2 and NO by Highly Reactive Absorbent Containing Calcium Hypochlorite. Environmental Progress,2008.27(4):460-468.
    [147]Li Y.Z., Tong H.L., Zhuo Y.Q., et al. Simultaneous removal of SO2 and trace SeO2 from flue gas:Effect of product layer on mass transfer. Environmental Science & Technology,2006.40(13):4306-4311.
    [148]Ghorishi S.B., Singer C.F., Jozewicz W.S., et al. Simultaneous control of Hg-0, SO2, and NOx by novel oxidized calcium-based sorbents. Journal Of The Air & Waste Management Association,2002.52(3):273-278.
    [149]Kuropka J. Simultaneous Desulphfurisation and Denitrification of Flue Gases. Environment Protection Engineering,2008.34(4):187-195.
    [150]Yang H.Q., Xu Z.H., Fan M.H., et al. Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal Of Hazardous Materials,2007.146(1-2):1-11.
    [151]Ghorishi B. Gullett B.K. Sorption of mercury species by activated carbons and calcium-based sorbents:effect of temperature, mercury concentration and acid gases. Waste Management & Research,1998.16(6):582-593.
    [152]Chien T.W., Hsueh H.T., Chu B.Y., et al. Absorption kinetics of NO from simulated flue gas using Fe(II)EDTA solutions. Process Safety and Environmental Protection,2009.87(5):300-306.
    [153]Mi X.H., Gao L., Zhang S.H., et al. A new approach for Fe(III)EDTA reduction in NOx scrubber solution using bio-electro reactor. Bioresource Technology,2009.100(12):2940-2944.
    [154]van der Maas P., van den Brink P., Klapwijk B., et al. Acceleration of the Fe(Ⅲ)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds. Chemosphere,2009.75(2):243-249.
    [155]Zhang S.H., Cai L.L., Liu Y., et al. Effects of NO2 (-) and NO3 (-) on the Fe(Ⅲ)EDTA reduction in a chemical absorption-biological reduction integrated NO (x) removal system. Applied Microbiology and Biotechnology,2009.82(3):557-563.
    [156]Maigut J., Meier-R., and van Eldik R. Influence of fluoride on the reversible binding of NO by [Fe-II(EDTA)(H2O)]2(-). Inhibition of autoxidation of [Fe-II(EDTA)(H2O)](2-). Inorganic Chemistry,2008. 47(14):6314-6321.
    [157]Jin H.F., Santiago D.E.O., Park J., et al. Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp. Biotechnology and Bioprocess Engineering,2008.13(1):48-52.
    [158]Zhang S.H., Li W., Wu C.Z., et al. Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp strain DN-2 in NOx scrubber solution. Applied Microbiology and Biotechnology,2007.76(5):1181-1187.
    [159]Wang L., Zhao W.R., and Wu Z.B. Simultaneous absorption of NO and SO2 by Fe(II)EDTA combined with Na2SO3 solution. Chemical Engineering Journal,2007.132(1-3):227-232.
    [160]Li W., Wu C.Z., Zhang S.H., et al. Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system. Environmental Science & Technology,2007. 41(2):639-644.
    [161]van der Maas P., van den Brink P., Utomo S., et al. NO removal in continuous BioDeNOx reactors: Fe(II)EDTA(2-) regeneration, biomass growth, and EDTA degradation. Biotechnology and Bioengineering, 2006.94(3):575-584.
    [162]Jing G.H., Li W., Shi Y., et al., Microbial reduction of Fe-Ⅱ(EDTA)NO in nitric oxide removal with ferrous chelate absorption, in Energy & Environment-a World of Challenges and Opportunities, Proceedings, G.M. Zeng, G. Huang, Z.Yang, et al., Editors.2003. p.655-659.
    [163]van der Maas P., Harmsen L., Weelink S., et al. Denitrification in aqueous FeEDTA solutions. Journal Of Chemical Technology and Biotechnology,2004.79(8):835-841.
    [164]van der Maas P., van de Sandt T., Klapwijk B., et al. Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnology Progress,2003.19(4):1323-1328.
    [165]马碧瑶.络合吸收NO传质——反应动力学及FeⅢ生物还原研究.[杭州.浙江大学.2004.
    [166]Chang S.G., Littlejohn D., and Liu D.K. Use of Ferrous Chelates of Sh-Containing Amino-Acids and Peptides for the Removal of Nox and So2 from Flue-Gas. Industrial & Engineering Chemistry Research,1988.27(11): 2156-2161.
    [167]Thomas D., Colle S., and Vanderschuren J. Designing wet scrubbers for SO2 absorption into fairly concentrated sulfuric acid solutions containing hydrogen peroxide. Chemical Engineering & Technology,2003. 26(4):497-502.
    [168]de Paiva J.L. Kachan G.C. Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column. Chemical Engineering and Processing,2004.43(7):941-948.
    [169]Haywood J.M. Cooper C.D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases. Journal Of The Air & Waste Management Association,1998.48(3):238-246.
    [170]Limvoranusorn P., Cooper C.D., Dietz J.D., et al. Kinetic modeling of the gas-phase oxidation of nitric oxide using hydrogen peroxide. Journal Of Environmental Engineering-asce,2005.131(4):518-525.
    [171]Thomas D., Colle S., and Vanderschuren J. Kinetics of SO2 absorption into fairly concentrated sulphuric acid solutions containing hydrogen peroxide. Chemical Engineering and Processing,2003.42(6):487-494.
    [172]Cooper C.D., Clausen C.A., Pettey L., et al. Investigation of ultraviolet light-enhanced H2O2 oxidation of NOx emissions. Journal Of Environmental Engineering-asce,2002.128(1):68-72.
    [173]de Paiva J.L. Kachan G.C. Modeling and simulation of a packed column for NOx absorption with hydrogen peroxide. Industrial & Engineering Chemistry Research,1998.37(2):609-614.
    [174]Thomas D., Brohez S., and Vanderschuren J. Absorption of dilute NOx into nitric acid solutions containing hydrogen peroxide. Process Safety and Environmental Protection,1996.74(B1):52-58.
    [175]Kasper J.M., Clausen C.A., and Cooper C.D. Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas-phase oxidation of nitric oxide. Journal Of The Air & Waste Management Association, 1996.46(2):127-133.
    [176]Biard P.F., Couvert A., Renner C., et al. Assessment and optimisation of VOC mass transfer enhancement by advanced oxidation process in a compact wet scrubber. Chemosphere,2009.77(2):182-187.
    [177]Milan-Segovia N., Wang Y.J., Cannon F.S., et al. Comparison of hydroxyl radical generation for various advanced oxidation combinations as applied to foundries. Ozone-science & Engineering,2007.29(6):461-471.
    [178]Beltran F.J., Gonzalez M., Rivas J., et al. Aqueous degradation of VOCs in the ozone combined with hydrogen peroxide or UV radiation processes-1. Experimental results. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,1999.34(3):649-671.
    [179]Martinez A.I. Deshpande B.K. Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury. Fuel Processing Technology,2007.88(10):982-987.
    [180]Chu H., Chien T.W., and Li S.Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions. The Science of the Total Environment,2001.275(1-3):127-135.
    [181]Chu H., Li S.Y., and Chien T.W. The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO4/NaOH solutions. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,1998.33(5):801-827.
    [182]Brogren C., Karlsson H.T., and Bjerle I. Absorption of NO in an alkaline solution of KMnO4. Chemical Engineering & Technology,1997.20(6):396-402.
    [183]Chien T.W. Chu H. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaC102 solution. Journal Of Hazardous Materials,2000.80(1-3):43-57.
    [184]Chu H., Chien T.-W., and Twu B.-W. The absorption kinetics of NO in NaClO2/NaOH solutions. Journal Of Hazardous Materials,2001.84(2-3):241-252.
    [185]Deshwal B.R., Lee S.H., Jung J.H., et al. Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution. Journal of Environmental Sciences-China,2008.20(1):33-38.
    [186]Chien T.W., Chu H., and Li Y.C. Absorption kinetics of nitrogen oxides using sodium chlorite solutions in twin spray columns. Water Air and Soil Pollution,2005.166(1-4):237-250.
    [187]Adewuyi Y.G., He X.D., Shaw H., et al. Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite. Chemical Engineering Communications,1999.174:21-51.
    [188]Zhao Y., Liu F., Guo T.X., et al. Experiments and reaction characteristics of liquid phase simultaneous removal of SO2 and NO. Science In China Series E-technological Sciences,2009.52(6):1768-1775.
    [189]Zhao Y.; Ma X.Y., Liu S.T., et al. Experiments on and mechanism of simultaneous removal of Hg-0, SO2 and NO from flus gas using NaClO2 solution. Environmental Technology,2009.30(3):277-282.
    [190]Deshwal B.R., Jin D.S., Lee S.H., et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor. Journal Of Hazardous Materials,2008.150(3):649-655.
    [191]Jung S.H., Jeong G.T., Lee G.Y., et al. Simultaneous removal of SO2, NO and particulate by pilot-scale scrubber system. Korean Journal Of Chemical Engineering,2007.24(6):1064-1069.
    [192]Jin D.S., Deshwal B.R., Park Y.S., et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. Journal Of Hazardous Materials,2006.135(1-3):412-417.
    [193]Lee H.K., Deshwal B.R., and Yoo K.S. Simultaneous removal of SO2 and NO by sodium chlorite solution in wetted-wall column. Korean Journal Of Chemical Engineering,2005.22(2):208-213.
    [194]Chien T.W., Chu H., and Hsueh H.T. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column. Journal Of Environmental Engineering-asce,2003.129(11):967-974.
    [195]Chu H., Chien T.W., and Twu B.W. Simultaneous absorption of SO2 and no in a stirred tank reactor with NACLO(2)/NAOH solutions. Water Air and Soil Pollution,2003.143(1-4):337-350.
    [196]Hsu H.W., Lee C.J., and Chou K.S. Absorption of NO by NaClO2 solution:Performance characteristics. Chemical Engineering Communications,1998.170:67-81.
    [197]Long X.L., Xin Z.L., Chen M.B., et al. Nitric oxide absorption into cobalt ethylenediamine solution. Separation and Purification Technology,2007.55(2):226-231.
    [198]Wei J.C., Yu P., Cai B., et al. Removal of Dilute Nitric Oxide using Cobalt Diethylenetriamine Solution under Aerobic Condition. Separation Science and Technology,2009.44(7):1590-1603.
    [199]Long X.L., Xin Z.L., Chen M.B., et al. Kinetics for the simultaneous removal of NO and SO2 with cobalt ethylenediamine solution. Separation and Purification Technology,2008.58(3):328-334.
    [200]Long X.L., Xiao W.D., and Yuan W.K. Kinetics of gas-liquid reaction between NO and Co(en)(3)(3+). Industrial & Engineering Chemistry Research,2005.44(12):4200-4205.
    [201]Long X.L., Xiao W.D., and Yuan W.K. Removal of sulfur dioxide and nitric oxide using cobalt ethylenediamine solution. Industrial & Engineering Chemistry Research,2005.44(4):686-691.
    [202]Zhou C.Q., Deng X.H., and Pan Z.Q. Simultaneous removing SO2 and NO by a new system containing cobalt complex. Journal of Environmental Sciences-China,2006.18(3):567-571.
    [203]Raju T. A sustainable mediated electrochemical process for the abatement of NOx from simulated flue gas by using Ag(I)/Ag(II) redox mediators. Electrochimica Acta,2009.54(12):3467-3472.
    [204]Raju T., Chung S.J., Pillai K.C., et al. Simultaneous removal of NOx and SO2:A promising Ag(II)/Ag(II) based mediated electrochemical oxidation system. Clean-Soil Air Water,2008.36(5-6):476-481.
    [205]Raju T., Chung S.J., and Moon I.S. Novel process for simultaneous removal of NOx and SO2 from simulated flue gas by using a sustainable Ag(Ⅰ)/Ag(Ⅱ) redox mediator. Environmental Science & Technology,2008. 42(19):7464-7469.
    [206]Scott K., Taama W., and Cheng H. Towards an electrochemical process for recovering sulphur dioxide. Chemical Engineering Journal,1999.73(2):101-111.
    [207]Balaji S., Chung S.J., Matheswaran M., et al. Cerium(Ⅳ)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor. Korean Journal Of Chemical Engineering,2007.24(6):1009-1016.
    [208]Balaji S., Chung S.J., Thiruvenkatachari R., et al. Mediated electrochemical oxidation process: Electro-oxidation of cerium(Ⅲ) to cerium(Ⅳ) in nitric acid medium and a study on phenol degradation by cerium(Ⅳ) oxidant Chemical Engineering Journal,2007.126(1):51-57.
    [209]Aurousseau M., Roizard C., Storck A., et al. Scrubbing of sulfur dioxide using a cerium(Ⅳ)-containing acidic solution:A kinetic investigation. Industrial & Engineering Chemistry Research,1996.35(4):1243-1250.
    [210]Aurousseau M., Lapicque F., and Storck A. Simulation of Nox Scrubbing by Ceric Solutions-Oxidation of Nitrous-Acid by Ce(Ⅰⅴ) Species in Acidic Solutions. Industrial & Engineering Chemistry Research,1994.33(2): 191-196.
    [211]Hoffmann P., Roizard C., Lapicque F., et al. A process for the simultaneous removal of SO2 and NOx using Ce(Ⅳ) redox catalysis. Process Safety and Environmental Protection,1997.75(B1):43-53.
    [212]Bringmann J., Ebert K., Galla U., et al. Electrochemical Mediators for Total Oxidation of Chlorinated Hydrocarbons-Formation Kinetics of Ag(Ⅰⅰ), Co(Ⅰⅱ), and Ce(Ⅰⅴ). Journal Of Applied Electrochemistry,1995. 25(9):846-851.
    [213]Liu D.K., Shen D.X., and Chang S.G. Removal of NOx and SO2 from Flue-Gas Using Aqueous Emulsions of Yellow Phosphorus and Alkali. Environmental Science & Technology,1991.25(1):55-60.
    [214]Chang S.G. Lee G.C. Lbl Phosnox Process for Combined Removal of So2 and Nox from Flue-Gas. Environmental Progress,1992.11(1):66-73.
    [215]Zhao Y., Han J., Shao Y., et al. Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation. Environmental Technology,2009.30(14):1555-1563.
    [216]Wu Z.B., Sheng Z.Y., Wang H.Q., et al. Relationship between Pd oxidation states on TiO2 and the photocatalytic oxidation behaviors of nitric oxide. Chemosphere,2009.77(2): 264-268.
    [217]Poulston S., Twigg M.V., and Walker A.P. The Effect of nitric oxide on the photocatalytic oxidation of small hydrocarbons over titania. Applied Catalysis B-Environmental,2009.89(3-4):335-341.
    [218]Wu Z.B., Sheng Z.Y., Liu Y., et al. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. Journal Of Hazardous Materials,2009.164(2-3):542-548.
    [219]Wang H.Q., Wu Z.B., Liu Y., et al. Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere,2009.74(6):773-778.
    [220]Zhao L., Zhao Y., Han J., et al. Removal of high concentration NO through photocatalytic oxidation. Acta Chimica Sinica,2008.66(17):2001-2005.
    [221]Vincent G., Marquaire P.M., and Zahraa O. Abatement of volatile organic compounds using an annular photocatalytic reactor:Study of gaseous acetone. Journal Of Photochemistry and Photobiology A-chemistry, 2008.197(2-3):177-189.
    [222]Jeong J., Jurng J., Jin S., et al. Optimization of the removal efficiency of nitrogen oxides in the air using a low-pressure Hg lamp. Journal Of Photochemistry and Photobiology A-chemistry,2008.197(1):50-54.
    [223]Sheng Z.Y., Wu Z.B., Liu Y., et al. Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catalysis Communications,2008.9(9):1941-1944.
    [224]Shelimov B.N., Tolkachev N.N., Tkachenko O.P., et al. Enhancement effect of TiO2 dispersion over alumina on the photocatalytic removal of NOx admixtures from O-2-N-2 flow. Journal Of Photochemistry and Photobiology A-chemistry,2008.195(1):81-88.
    [225]Bouazza N., Lillo-Rodenas M.A., and Linares-Solano A. Enhancement of the photocatalytic activity of pelletized TiO2 for the oxidation of propene at low concentration. Applied Catalysis B-Environmental,2008. 77(3-4):284-293.
    [226]Maggos T., Leva P., Bartzis J.G., et al., Gas phase photocatalytic oxidation of VOC using Ti02-containing paint:influence of NO and relative humidity, in Air Pollution XV, C.A. Borrego and C.A. Brebbia, Editors. 2007. p.585-593.
    [227]Wang H.Q., Wu Z.B., Zhao W.R., et al. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere,2007.66(1):185-190.
    [228]Bowering N., Walker G.S., and Harrison P.G. Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25. Applied Catalysis B-Environmental,2006.62(3-4):208-216.
    [229]Li F.B., Li X.Z., Ao C.H., et al. Photocatalytic conversion of NO using TiO2-NH3 catalysts in ambient air environment. Applied Catalysis B-Environmental,2004.54(4):275-283.
    [230]Inagaki M., Imai T., Yoshikawa T., et al. Photocatalytic activity of anatase powders for oxidation of methylene blue in water and diluted NO gas. Applied Catalysis B-Environmental,2004.51 (4):247-254.
    [231]Li Y., Murphy P.D., Wu C.Y., et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environmental Science & Technology,2008.42(14):5304-5309.
    [232]Li Y., Murphy P., and Wua C.Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology,2008.89(6):567-573.
    [233]Li Y. Wu C.Y. Kinetic study for photocatalytic oxidation of elemental mercury on aSiO(2)-TiO2 nanocomposite. Environmental Engineering Science,2007.24(1):3-12.
    [234]Li Y. Wu C.Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environmental Science & Technology,2006.40(20):6444-6448.
    [235]Pitoniak E., Wu C.Y, Londeree D., et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control. Journal of Nanoparticle Research,2003.5(3-4):281-292.
    [236]Deng X.Y., Yue Y.H., and Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. Applied Catalysis B-Environmental,2002.39(2):135-147.
    [237]Sitkiewitz S. Heller A. Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass. New Journal Of Chemistry,1996.20(2):233-241.
    [238]Ao C.H., Lee S.C., Mak C.L., et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2:promotion versus inhibition effect of NO. Applied Catalysis B-Environmental,2003.42(2):119-129.
    [239]Keller V., Bernhardt P., and Garin F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal Of Catalysis,2003.215(1):129-138.
    [240]Guo T., Bai Z.P., Wu C., et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers:PCO rate and intermediates accumulation Applied Catalysis B-Environmental,2008.79(2):171-178.
    [241]Adewuyi Y.G. Owusu S.O. Aqueous absorption and oxidation of nitric oxide with oxone for the treatment of tail gases:Process feasibility, stoichiometry, reaction pathways, and absorption rate. Industrial & Engineering Chemistry Research,2003.42(17):4084-4100.
    [242]Chmielewski A.G. Licki J. Electron beam flue gas treatment process for purification of exhaust gases with high SO2 concentrations. Nukleonika,2008.53:S61-S66.
    [243]Kikuchi R. Pelovski Y. Low-dose irradiation by electron beam for the treatment of high-SOx flue gas on a semi-pilot scale-Consideration of by-product quality and approach to clean technology. Process Safety and Environmental Protection,2009.87(2):135-143.
    [244]Ostapczuk A., Licki J., and Chmielewski A.G. Polycyclic aromatic hydrocarbons in coal combustion flue gas under electron beam irradiation. Radiation Physics and Chemistry,2008.77(4):490-496.
    [245]Basfar A.A., Fageeha O.I., Kunnummal N., et al. Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels Fuel,2008.87(8-9):1446-1452.
    [246]Lazaroiu G., Zissulescu E., Sanduc M., et al. Electron beam non-thermal plasma hybrid system for reduction of NO, and SO, emissions from power plants. Energy,2007.32(12):2412-2419.
    [247]Callen M.S., de la Cruz M.T., Marinov S., et al. Flue gas cleaning in power stations by using electron beam technology. Influence on PAH emissions. Fuel Processing Technology,2007.88(3):251-258.
    [248]Callen M.S., de la Cruz M.T., Marinov S., et al. Hot gas cleaning in power stations by using Electron Beam Technology. Influence on PAH emissions. Fuel Processing Technology,2007.88(3):273-280.
    [249]Imada G. Yatsui K. Characteristics of treatment of diesel flue gas by irradiation of pulsed, intense relativistic electron beam. IEEE Transactions On Plasma Science,2006.34(1):88-94.
    [250]Chmielewski A.G., Licki J., Pawelec A., et al. Operational experience of the industrial plant for electron beam flue gas treatment. Radiation Physics and Chemistry,2004.71(1-2):441-444.
    [251]Licki J., Chmielewski A.G., Iller E., et al. Electron-beam flue-gas treatment for multicomponent air-pollution control. Applied Energy,2003.75(3-4):145-154.
    [252]Chmielewski A.G., Sun Y.X., Licki J., et al. NOx and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition. Radiation Physics and Chemistry,2003.67(3-4):555-560.
    [253]Chmielewski A.G., Sun Y.X., Zimek Z., et al. Mechanism of NOx removal by electron beam process in the presence ot scavengers. Radiation Physics and Chemistry,2002.65(4-5):397-403.
    [254]Penetrante B.M. Simultaneous removal of NOx and SO2 from combustion flue gas by pulsed electron beams. Combustion Science and Technology,1998.133(1-3):135-150.
    [255]Radoiu M., Martin D., Georgescu, Ⅱ, et al. A laboratory test unit for exhausted gas cleaning by electron beam and combined electron beam-microwave irradiation. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,1998.139(1-4):506-510.
    [256]Matzing H., Namba H., and Tokunaga 0. Kinetics of So2 Removal from Flue-Gas by Electron-Beam Technique. Radiation Physics and Chemistry,1993.42(4-6):673-677.
    [257]Yang J.X., Chi X.C., and Dong L.M. Effect of water on sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas in a direct current corona discharge reactor. Journal Of Applied Physics,2007.101(10).
    [258]Vinogradov J., Rivin B., and Sher E. NOx reduction from compression ignition engines with DC corona discharge-An experimental study. Energy,2007.32(3):174-186.
    [259]Yan K., Winands G.J.J., Liu Z., et al., Comparison of two-type corona plasma energization techniques: ultra-short and DC/AC power sources, in Conference Record of the 2005 IEEE Industry Applications Conference, Vols 1-4.2005. p.1840-1844.
    [260]Wu Z.L., Gao X., Luo Z.Y., et al. NOx treatment by DC corona radical shower with different geometric nozzle electrodes. Energy & Fuels,2005.19(6):2279-2286.
    [261]Sano N., Fukuoka M., Kanki T., et al. Temperature effect on removal of sulfur dioxide and benzene in humid air by DC corona discbarge. Chemical Engineering & Technology,2004.27(2):171-175.
    [262]Mizeraczyk J., Kanazawa S., and Ohkubo T. Progress in the visualization of filamentary gas discharges. Part 2:Visualization of DC positive corona discharges. Journal of Advanced Oxidation Technologies,2004.7(1): 20-30.
    [263]Chang J.S., Urashima K., Tong Y.X., et al. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests. Journal Of Electrostatics, 2003.57(3-4):313-323.
    [264]Guan P.H., Hayashi N., Satoh S., et al. NOx treatment by DC streamer corona discharge with series gap. Vacuum,2002.65(3-4):469-474.
    [265]Fujii T., Aoki Y., Yoshioka N., et al. Removal of NOx by DC corona reactor with water. Journal Of Electrostatics,2001.51:8-14.
    [266]Yang C.L. Chen L. Oxidation of nitric oxide in a two-stage chemical scrubber using dc corona discharge. Journal Of Hazardous Materials,2000.80(1-3):135-146.
    [267]Gasparik R., Ihara S., Yamabe C., et al. Effect of CO2 and water vapors on NOx removal efficiency under conditions of DC corona discharge in cylindrical discharge reactor. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2000.39(1):306-309.
    [268]Dors M., Mizeraczyk J., Czech T., et al. Removal of NOx by DC and pulsed corona discharges in a wet electrostatic precipitator model. Journal Of Electrostatics,1998.45(1):25-36.
    [269]Xu F., Luo Z.Y., Cao W., et al. Simultaneous oxidation of NO, SO2 and Hg-0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences-China,2009.21(3):328-332.
    [270]Onda K., Kusunoki H., Ito K., et al.Numerical analysis of repetitive pulsed-discharge de-NOx process with ammonia injection. Journal Of Applied Physics,2004.95(8):3928-3936.
    [271]Yankelevich Y. Pokryvailo A. High-plower short-pulsed corona:Investigation of electrical performance, SO2 removal, and ozone generation. IEEE Transactions On Plasma Science,2002.30(5):1975-1981.
    [272]Nakagawa Y., Mannami A., Natsuno H., et al. NOx removal by pulsed high current electron beam in combination with photocatalyst. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2002.41(3A):1602-1607.
    [273]Yan P., Fujiwara M., Zhou Y.X., et al. Investigation on luminescence and NOx removal by pulse corona discharges. Journal Of Electrostatics,2001.51:266-271.
    [274]Tsukamoto S., Namihira T., Wang D.Y., et al. Pollution control of actual flue gas using pulsed power at a thermal power plant Electrical Engineering In Japan,2001.134(4):28-35.
    [275]Mok Y.S. Nam I.S. Positive pulsed corona discharge process for simultaneous removal of SO2 and NOx from iron-ore sintering flue gas. IEEE Transactions On Plasma Science,1999.27(4):1188-1196.
    [276]Onda K., Kasuga Y., Kato K., et al. Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge. Energy Conversion and Management,1997.38(10-13):1377-1387.
    [277]Bai M.D., Zhang Z.T., Bai M.D., et al. Removal of SO2 by Gas-Phase Oxidation Using DBD Micro-gap Discharge Plasma Journal of Advanced Oxidation Technologies,2009.12(2):220-225.
    [278]Jeong J. Jurng J. Removal of gaseous elemental mercury by dielectric barrier discharge. Chemosphere,2007. 68(10):2007-2010.
    [279]Ko K.B., Byun Y., Cho M., et al. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process. Chemosphere,2008.71(9):1674-1682.
    [280]Mok Y.S. Combined removal of SO2 and NOx from exhaust gas by using dielectric barrier discharge and absorption-reduction techniques. Journal Of Industrial and Engineering Chemistry,2005.11(6):826-833.
    [281]Jani M.A., Toda K., Takaki K., et al. An experimental comparison between electrode shapes for NOx treatment using a dielectric barrier discharge. Journal Of Physics D-applied Physics,2000.33(23):3078-3082.
    [282]Dhali S.K. Sardja I. Dielectric-Barrier Discharge for Processing of So2/Nox. Journal Of Applied Physics, 1991.69(9):6319-6324.
    [283]Chang M.B., Balbach J.H., Rood M.J., et al. Removal of SO[sub 2] from gas streams using a dielectric barrier discharge and combined plasma photolysis. Journal Of Applied Physics,1991.69(8):4409-4417.
    [284]Khacef A. Cormier J.M. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas:removal of SO2 and NOx. Journal Of Physics D-applied Physics,2006.39(6): 1078-1083.
    [285]Yamamoto T., Fujishima H., Okubo M., et al. Pilot-scale NOx and SOx removal from boiler emission using indirect plasma and chemical hybrid process. in Conference Record of the 2005 Ieee Industry Applications Conference, Vols 1-4.2005.
    [286]Yan K.P., Li R.N., Zhu T.L., et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale. Chemical Engineering Journal,2006.116(2):139-147.
    [287]Dong L.M., Wang P., and Yang J.X. The role of H2O in nitric oxide removal by wet-type corona discharge plasma reactor. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2006.45(5A):4222-4223.
    [288]He Y.J., Dong L.M., and Yang J.X. Removal of NO and SO2 in corona discharge plasma reactor with water film. Plasma Science & Technology,2004.6(2):2250-2254.
    [289]Dong L.M., Sheng S.G., Liu L.T., et al., Removal of NOx and SO2 in flue gas by corona discharge reactor with water film, in 2002 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.2002, Ieee:New York. p.774-777.
    [290]Dong L.M., Sheng S.G., Liu L.T., et al., Removal of NOx and SO2 in plasma reactor with water film, in Isdeiv:Xxth International Symposium on Discharges and Electrical Insulation in Vacuum, Proceedings.2002, Ieee:New York. p.423-426.
    [291]Huang L.W. Matsuda H. Removal of NO by a pulsed-corona reactor combined with in situ absorption. Aiche Journal,2004.50(11):2676-2681.
    [292]Dors M. Mizeraczyk J. NOx removal from a flue gas in a corona discharge-catalyst hybrid system. Catalysis Today,2004.89(1-2):127-133.
    [293]Li J.H., Ke R., Li.W., et al. Mechanism of selective catalytic reduction of NO over Ag/A12O3 with the aid of non-thermal plasma. Catalysis Today,2008.139(1-2):49-58.
    [294]Park S.Y., Deshwal B.R., and Moon S.H. NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system. Fuel Processing Technology,2008.89(5):540-548.
    [295]Mok Y.S., Koh D.J., Kim K.T., et al. Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V2O5/TiO2 and Cr2O3/TiO2. Industrial & Engineering Chemistry Research,2003.42(13):2960-2967.
    [296]王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究.[博士学位论文]杭州.浙江大学.2005.
    [297]魏林生.等离子体臭氧产生的实验与理论研究.[博士学位论文]杭州.浙江大学.2008.
    [298]张国平.高频介质阻挡放电产生臭氧的实验研究.[硕士学位论文]杭州.浙江大.2007.
    [299]王静.臭氧烟气多脱技术中S02氧化脱除的试验研兖.[硕士学位论文]杭州.浙江大学.2008.
    [300]温正城.臭氧在烟气中氧化降解多种污染物的机理研究.[博士学位论文]杭州.浙江大学.2009.
    [301]Byun Y., Ko K.B., Cho M., et al. Oxidation of elemental mercury using atmospheric pressure non-thermal plasma. Chemosphere,2008.72(4):652-658.
    [302]Galbreath K.C. Zygarlicke C.J. Mercury Speciation in Coal Combustion and Gasification Flue Gases. Environmental Science & Technology,1996.30(8):2421-2426.
    [303]徐光宪,黎乐民,and王德民.量子化学基本原理和从头算法(第二版),北京:科学出版社.2007.
    [304]唐敖庆,杨忠志,and李前树.量子化学.北京:科学出版社.1982.
    [305]陈飞武.量子化学中的计算方法.北京:科学出版社.2008.
    [306]Hehre W.J., Radom L., and Schleyer P.V.R. Ab Initio Molecular Orbital Theory. John Wiley&Sons, Inc.1986.
    [307]Becke A.D. Density-Functional Thermochemistry.1. the Effect of the Exchange-Only Gradient Correction. Journal of Chemical Physics,1992.96(3):2155-2160.
    [308]Becke A.D. Density-Functional Thermochemistry.2. the Effect of the Perdew-Wang Generalized-Gradient Correlation Correction. Journal of Chemical Physics,1992.97(12):9173-9177.
    [309]Becke A.D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. Journal Of. Chemical Physics,1993.98(7):5648-5852.
    [310]Hohenberg P. Kohn W. Inhomogeneous Electron Gas. Physical Review,1964.136(3B):B864.
    [311]Kohn W. Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965.140(4A):1133-&.
    [312]Labanowski J.K. Andzelm J.W. Density functional methods in chemistry. New York:Springer-Verlag.1991.
    [313]Parr R.G. Yang W. Density functional theory of atoms and molecules. Oxford:Oxford Univ.1989.
    [314]Salahub D.R. Zerner M.C. The challenge of d and f electrons. Washingtion, D. C.: ACS.1989.
    [315]Foresman J.B. Frisch A. Exploring Chemistry with Electronic Structure Methods,2nd ed. Gaussian, Pittsburgh, PA.1996.
    [316]Gonzalez C. Schlegel H.B. Reaction-Path Following in Mass-Weighted Internal Coordinates. Journal of Physical chemistry,1990.94(14):5523-5527.
    [317]傅献彩,沈文霞,and姚天扬.物理化学(第五版,下册).北京:高等教育出版社.2006.
    [318]赵学庄,罗渝然,and臧雅茹.化学反应动力学原理(下册).北京:高等教育出版社.1990.
    [319]Chameides W.L. The Photochemistry of a Remote Marine Stratiform Cloud. Journal of Geophysical Research-Atmospheres,1984.89(ND3):4739-4755.
    [320]Lide D.R. Frederikse H.P.R. CRC Handbook of Chemistry and Physics. CRC Press.76 ed.1995.
    [321]Hupen B. Kenig E.Y. Rigorous modelling of NOx absorption in tray and packed columns. Chemical Engineering Science,2005.60(22):6462-6471.
    [322]Jethani K.R., Suchak N.J., and Joshi J.B. Modeling and Simulation of a Spray Column for Nox Absorption. Computers & Chemical Engineering,1992.16(1):11-25.
    [323]Pradhan M.P., Suchak N.J., Walse P.R., et al. Multicomponent gas absorption with multiple reactions: modelling and simulation of NOx absorption in nitric acid manufacture. Chemical Engineering Science,1997. 52(24):4569-4591.
    [324]Ramanand S.B. Rao D.P. Modelling and simulation of NOx absorption into water in a countercurrent flow packed column. Computers & Chemical Engineering,1996.20(8):1059-1063.
    [325]Counce R.M. Perona J.J. Scrubbing of Gaseous Nitrogen-Oxides in Packed Towers. Aiche Journal,1983. 29(1):26-32.
    [326]Suchak N.J., Jethani K.R., and Joshi J.B. Absorption of Nitrogen-Oxides in Alkaline-Solutions-Selective Manufacture of Sodium-Nitrite. Industrial & Engineering Chemistry Research,1990.29(7):1492-1502.
    [327]Pradhan M.P. Joshi J.B. Absorption of NOx gases in aqueous NaOH solutions:Selectivity and optimization. Aiche Journal,1999.45(1):38-50.
    [328]Pradhan M.P. Joshi J.B. Absorption of NOx gases in plate column:Selective manufacture of sodium nitrite. Chemical Engineering Science,2000.55(7):1269-1282.
    [329]Durham J.L., Overton J.H., and Aneja V.P. Influence of Gaseous Nitric-Acid on Sulfate Production and Acidity in Rain. Atmospheric Environment,1981.15(6):1059-1068.
    [330]Dasgupta P.K. Effect of Nitrogen-Dioxide and of Some Transition-Metals on the Oxidation of Dilute Bisulfite Solutions. Atmospheric Environment,1980.14(2):271-271.
    [331]Wu Z.B., Wang H.Q., Liu Y., et al. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides. Chemical Engineering Journal,2008.144(2):221-226.
    [332]Shen C.H. Rochelle G.T. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environmental Science & Technology,1998.32(13):1994-2003.
    [333]张成芳.气液反应和反应器.北京:化学工业出版社.1985.
    [334]Thomas D. Vanderschuren J. Nitrogen oxides scrubbing with alkaline solutions. Chemical Engineering & Technology,2000.23(5):449-455.
    [335]Patwardhan J.A. Joshi J.B. Unified model for NOX absorption in aqueous alkaline and dilute acidic solutions. Aiche Journal,2003.49(11):2728-2748.
    [336]Kameoka Y. Pigford R.L. Absorption of Nitrogen-Dioxide into Water, Sulfuric-Acid, Sodium-Hydroxide, and Alkaline Sodium-Sulfite Aqueous-Solutions. Industrial & Engineering Chemistry Fundamentals,1977.16(1): 163-169.
    [337]Park J.Y. Lee Y.N. Solubility and Decomposition Kinetics of Nitrous-Acid in Aqueous-Solution. Journal of Physical chemistry,1988.92(22):6294-6302.
    [338]朱世勇.环境与工业气体净化.北京:化学工业出版社2001.
    [339]李广超.大气污染控制技术北京:化学工业出版社.2001.
    [340]Takeuchi H., Ando M., and Kizawa N. Absorption of Nitrogen-Oxides in Aqueous Sodium-Sulfite and Bisulfite Solutions. Industrial & Engineering Chemistry Process Design and Development,1977.16(3): 303-308.
    [341]Hoffinann M.R. On the kinetics and mechanism of oxidation of aquated sulfur dioxide by ozone. Atmospheric Environment,1986.20(6):1145-1154.
    [342]Botha C.F., Hahn J., Pienaar J.J., et al. Kinetics and mechanism of the oxidation of sulfur(IV) by ozone in aqueous solutions. Atmospheric Environment,1994.28(20):3207-3212.
    [343]王智化,白云峰,岑可法et al.臭氧氧化结合双洗涤塔对烟气同时脱硫脱硝的装置及方法.中国.A.200910095344.4.2009.7.22
    [344]姜树栋,王智化,周俊虎et al.臭氧氧化烟气脱硝制硝酸的试验研究.燃烧科学与技术,2010.16(1):57-61.
    [345]徐飞.脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究.[博士学位论文]杭州.浙江大学.2009.
    [346]Chen Z., Mannava D.P., and Mathur V.K. Mercury Oxidization in Dielectric Barrier Discharge Plasma System. Industrial & Engineering Chemistry Research,2006.45(17):6050-6055.
    [347]Calvert J.G. Lindberg S.E. Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Environment,2005.39(18):3355-3367.
    [348]莫一平刘美星.臭氧技术现状与应用.医疗设备信息,2001(4):70.
    [349]王跃球唐杰.臭氧发生技术的现状和发展趋势.邵阳学院学报(自然科学版),2006.3(1):48-51.
    [350]Ye Z.L., Cao C.Q., He J.C., et al. Photolysis of organic pollutants in wastewater with 206nm UV irradiation. Chinese Chemical Letters,2009.20(6):706-710.
    [351]Luth H., Rubloff G.W., and Grobman W.D. Chemisorption and decomposition reactions of oxygen-containing organic molecules on clean Pd surfaces studied by UV photoemission. Surface Science,1977.63:325-338.
    [352]Puddu V., Choi H., Dionysiou D.D., et al. TiO2 photocatalyst for indoor air remediation:Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation Applied Catalysis B-Environmental.94(3-4):211-218.
    [353]Yan T.J., Long J.L., Shi X.C., et al. Efficient Photocatalytic Degradation of Volatile Organic Compounds by Porous Indium Hydroxide Nanocrystals. Environmental Science & Technology.44(4):1380-1385.
    [354]Sun L., Li G.Y., Wan S.G., et al. Mechanistic study and mutagenicity assessment of intermediates in photocatalytic degradation of gaseous toluene. Chemosphere.78(3):313-318.
    [355]Zhong J.B., Ma D., He X.Y., et al. Preparation, characterization and photocatalytic performance of TiO2/CexZrl-xO2 toward the oxidation of gaseous benzene. Applied Surface Science.256(9):2859-2862.
    [356]Canonica S., Meunier L., and von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research,2008.42(1-2):121-128.
    [357]Graham J.L., Striebich R., Patterson C.L., et al. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere,2004.54(7):1011-1016.
    [358]Toor R. Mohseni M. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere,2007.66(11):2087-2095.
    [359]Hijnen W.A.M., Beerendonk E.F., and Medema G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water:A review. Water Research,2006.40(1):3-22.
    [360]Sanches S., Barreto Crespo M.T., and Pereira V.J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research.44(6):1809-1818.
    [361]Chen P.-J., Kullman S.W., Hinton D.E., et al. Comparisons of polychromatic and monochromatic UV-based treatments of bisphenol-A in water via toxicity assessments. Chemosphere,2007.68(6):1041-1049.
    [362]Parkinson A., Barry M.J., Roddick F.A., et al. Preliminary toxicity assessment of water after treatment with uv-irradiation and UVC/H2O2. Water Research,2001.35(15):3656-3664.
    [363]Kim I. Tanaka H. Photodegradation characteristics of PPCPs in water with UV treatment Environment International,2009.35(5):793-802.
    [364]Sharma N. Tripathi A. Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C and Hyptis suaveolens (L.) Poit. essential oil. Postharvest Biology and Technology,2008.47(2): 246-254.
    [365]Gentile A.C. Kushner M.J. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. Journal Of Applied Physics,1995.78(3):2074-2085.
    [366]McLarnon C.R. Mathur V.K. Nitrogen Oxide Decomposition by Barrier Discharge. Industrial & Engineering Chemistry Research,2000.39(8):2779-2787.
    [367]Chen Z. Mathur V.K. Nonthermal Plasma for Gaseous Pollution Control. Industrial & Engineering Chemistry Research,2002.41(9):2082-2089.
    [368]Goodsite M.E., Plane J.M.C., and Skov H. A Theoretical Study of the Oxidation of HgO to HgBr2 in the Troposphere. Environmental Science & Technology,2004.38(6):1772-1776.
    [369]Shon Z.-H., Kim K.-H., Kim M.-Y., et al. Modeling study of reactive gaseous mercury in the urban air. Atmospheric Environment,2005.39(4):749-761.
    [370]Davis D.D., Prusazcy J., Dwyer M., et al. A Stop-Flow Time-of-Flight Mass Spectrometry Kinetics Study. Reaction of Ozone with Nitrogen Dioxide and Sulfur Dioxide. Journal of Physical chemistry,1974.78(18): 1775-1779.
    [371]Naidoo J., Goumri A., and Marshall P. A kinetic study of the reaction of atomic oxygen with SO2. Proceedings of the Combustion Institute,2005.30(1):1219-1225.
    [372]Van Durme J., Dewulf J., Leys C., et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review. Applied Catalysis B:Environmental,2008.78(3-4):324-333.
    [373]Nair S.A., Pemen A.J.M., Yan K., et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges. Fuel Processing Technology,2003.84(1-3):161-173.
    [374]Van Durme J., Dewulf J., Demeestere K., et al. Post-plasma catalytic technology for the removal of toluene from indoor air:Effect of humidity. Applied Catalysis B:Environmental,2009.87(1-2):78-83.
    [375]Van Durme J., Dewulf J., Sysmans W., et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B:Environmental,2007.74(1-2):161-169.
    [376]Oda T., Kumada A., Tanaka K., et al. Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds. Journal Of Electrostatics,1995.35(1):93-101.
    [377]Futamura S., Zhang A.H., and Yamamoto T. The dependence of nonthermal plasma behavior of VOCs on their chemical structures. Journal Of Electrostatics,1997.42(1-2):51-62.
    [378]Peiro-Garcia J. Nebot-Gil I. Ab Initio Study of the Mechanism and Thermochemistry of the Atmospheric Reaction NO+O3→NO2+O2. Journal Of Physical Chemistry A,2002.106(43):10302-10310.
    [379]Zheng C., Liu J., Liu Z., et al. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel,2005.84(10):1215-1220.
    [380]Urone P. Schroeder W.H. SO2 in the atmosphere:a wealth of monitoring data, but few reaction rate studies. Environmental Science & Technology,1969.3(5):436-445.
    [381]Eggleton A.E.J. Cox R.A. Homogeneous oxidation of sulphur compounds in the atmosphere. Atmospheric Environment,1978.12(1-3):227.
    [382]Moller D. Kinetic model of atmospheric SO2 oxidation based on published data Atmospheric Environment, 1980.14(9):1067-1076.
    [383]Becke A.D. Density-functional thermochemistry. Ⅰ. The effect of the exchange-only gradient correction. Journal Of Chemical Physics,1992.96(3):2155-2160.
    [384]Becke A.D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-wang generalized-gradient correlation correction. Journal Of Chemical Physics,1992.97(12):9173-9177.
    [385]Lee C., Yang W., and Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B,1988.37(2):785-789.
    [386]Gonzalez C. Schlegel H.B. An improved algorithm for reaction path following. Journal Of Chemical Physics, 1989.90(4):2154-2161.
    [387]Mebel A.M., Morokuma K., and Lin M.C. Modification of the GAUSSIAN-2 theoretical model:The use of coupled-cluster energies density-functional geometries and frequencies. Journal Of Chemical Physics,1995. 103(17):7414.
    [388]Matsumura K., Lovas F.J., and Suenram R.D. The microwave spectrum and structure of the H2O-SO2 complex. Journal Of Chemical Physics,1989.91(10):5887-5894.
    [389]Larson L.J. Tao F.-M. Interactions and Reactions of Sulfur Trioxide, Water, and Ammonia:An ab Initio and Density Functional Theory Study. Journal Of Physical Chemistry A,2001.105(17):4344-4350.
    [390]Natsheh A.A., Nadykto A.B., Mikkelsen K.V., et al. Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase:A DFT Investigation. Journal Of Physical Chemistry A,2004.108(41):8914-8929.
    [391]Fournier R. DePristo A.E. Predicted bond energies in peroxides and disulfides by density functional methods. The Journal of Chemical Physics,1992.96(2):1183-1193.
    [392]Lu X., Park J., and Lin M.C. Gas Phase Reactions of HONO with NO2,O3, and HCl:Ab Initio and TST Study. Journal Of Physical Chemistry A,2000.104(38):8730-8738.
    [393]Chen T.S. Plummer P.L.M. Ab Initio MO Investigation of the Gas-Phase Reaction SO3+H2O→H2SO4. Journal Of Physical Chemistry A,1985.89(17):3689-3693.
    [394]Bishenden E. Donaldson D.J. Ab Initio Study of SO2+H2O. Journal Of Physical Chemistry A,1998. 102(24):4638-4642.
    [395]Ignatov S.K. Ab-initio and DFT Study of the Molecular Mechanisms of SO3 and SOCl2 Reactions with Water in the Gas Phase. Journal Of Physical Chemistry A,2004.108(16):3642-3649.
    [396]Barrow G.M. PHYSICAL CHEMISTRY. New York:McGRAW-HILL. second ed.1966.
    [397]Lippmann H.H., Jesser B., and Schurath U. The Rate-Constant of No+O3-]No2+O2 in the Temperature-Range of 283-443 K. International Journal Of Chemical Kinetics,1980.12(8):547-554.
    [398]Graham R.A. Johnston H.S. Photochemistry of No3 and Kinetics of N2o5-O3 System. Journal of Physical chemistry,1978.82(3):254-268.
    [399]Stoyanova M., Konova P., Nikolov P., et al. Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chemical Engineering Journal,2006. 122(1-2):41-46.
    [400]Matheswaran M., Balaji S., Chung S.J., et al. Studies on cerium oxidation in catalytic ozonation process:A novel approach for organic mineralization. Catalysis Communications,2007.8(10):1497-1501.
    [401]Einaga H. Futamura S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. Journal Of Catalysis,2004.227(2):304-312.
    [402]Konova P., Stoyanova M., Naydenov A., et al. Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Applied Catalysis A:General,2006.298:109-114.
    [403]Einaga H. Futamura S. Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides. Journal Of Catalysis,2006.243(2):446-450.
    [404]Einaga H. Futamura S. Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone. Applied Catalysis B:Environmental,2005.60(1-2):49-55.
    [405]Naoki Takahashi H.S., Tomoko Iijima, Tadashi Suzuki. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst. Catalysis Today,1996.27:63.
    [406]Erik Fridell M.S., Bjorn Westerberg,Stefan Johansson and Gudmund Smedler. NOx Storage in Barium-Containing Catalysts. Journal Of Catalysis,1999.183:196.
    [407]Kromer B.R., Cao L., Cumaranatunge L., et al. Modeling of NO oxidation and NOx storage on Pt/BaO/Al2O3 NOx traps. Catalysis Today,2008.136(1-2):93-103.
    [408]Olsson L., Persson H., Fridell E., et al. Kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal Of Physical Chemistry B,2001.105(29):6895-6906.
    [409]Scotti A., Nova l., Tronconi E., et al. Kinetic study of lean NOx storage over the Pt-Ba/A12O3 system. Industrial & Engineering Chemistry Research,2004.43(16):4522-4534.
    [410]Lesage T., Saussey J., Malo S., et al. Operando FTIR study of NOx storage over a Pt/K/Mn/Al2O3-CeO2 catalyst. Applied Catalysis B-Environmental,2007.72(1-2):166-177.
    [411]Bentrup U., Bruckner A., Richter M., et al. NOx adsorption on MnO2/NaY composite:an in situ FTIR and EPR study. Applied Catalysis B-Environmental,2001.32(4):229-241.
    [412]Liang Q., Wu X., Weng D., et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today,2008.139(1-2):113-118.
    [413]Krishna K., Bueno-Lopez A., Makkee M., et al. Potential rare-earth modified CeO2 catalysts for soot oxidation part Ⅱ:Characterisation and catalytic activity with NO+O-2. Applied Catalysis B-Environmental, 2007.75:201-209.
    [414]Krishna K., Bueno-Lopez A., Makkee M., et al. Potential rare-earth modified CeO2 catalysts for soot oxidation Part Ⅲ. Effect of dopant loading and calcination temperature on catalytic activity with O-2 and NO+O-2. Applied Catalysis B-Environmental,2007.75:210-220.
    [415]Wu X.D., Liang Q., Weng D., et al. The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O-2 mixture. Catalysis Communications,2007.8:2110-2114.
    [416]Harrison P.G., Ball I.K., Daniell W., et al. Cobalt catalysts for the oxidation of diesel soot particulate. Chemical Engineering Journal,2003.95(1-3):47-55.
    [417]Liu J., Zhao Z., Wang J., et al. The highly active catalysts of nanometric Ce02-supported cobalt oxides for soot combustion. Applied Catalysis B:Environmental,2008.84(1-2):185-195.
    [418]Shan W.J., Ma N., Yang J.L., et al. Catalytic oxidation of soot particulates over MnOx-CeO2 oxides prepared by complexation-combustion method. Journal of Natural Gas Chemistry.19(1):86-90.
    [419]Tikhomirov K., Krocher O., Elsener M., et al. MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot Applied Catalysis B-Environmental,2006.64(1-2):72-78.
    [420]Choi B.C. Foster D.E. Overview of the effect of catalyst formulation and exhaust gas compositions on soot oxidation in DPF. Journal of Mechanical Science and Technology,2006.20(1):1-12.
    [421]Gross M.S., Ulla M.A., and Querini C.A. Catalytic oxidation of diesel soot:New characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst. Applied Catalysis a-General,2009.360(1): 81-88.
    [422]Krishna K., Bueno-Lopez A., Makkee M., et al. Potential rare earth modified CeO2 catalysts for soot oxidation I. Characterisation and catalytic activity with O-2. Applied Catalysis B-Environmental,2007.75(3-4): 189-200.
    [423]Castoldi L., Matarrese R., Lietti L., et al. Simultaneous removal of NOx and soot on Pt-Ba/A12O3 NSR catalysts. Applied Catalysis B:Environmental,2006.64(1-2):25-34.
    [424]Balle P., Bockhorn H., Geiger B., et al. A novel laboratory bench for practical evaluation of catalysts useful for simultaneous conversion of NOx and soot in diesel exhaust. Chemical Engineering and Processing,2006. 45(12):1065-1073.
    [425]Irfan M.F., Goo J.H., Kim S.D., et al. Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process. Chemosphere,2007.66(1):54-59.
    [426]Madia G., Koebel M., Elsener M., et al. The Effect of an Oxidation Precatalyst on the NOx Reduction by Ammonia SCR Industrial & Engineering Chemistry Research,2002.41(15):3512-3517.
    [427]Zhao Q.S., Xiang J., Sun L.S., et al. Adsorption and Oxidation of NH3 and NO over Sol-Gel-Derived CuO-CeO2-MnOx/gamma-Al2O3 Catalysts. Energy & Fuels,2009.23:1539-1544.
    [428]Irfan M.F., Goo J.H., and Kim S.D. Co3O4 based catalysts for NO oxidation and NO, reduction in fast SCR process. Applied Catalysis B-Environmental,2008.78(3-4):267-274.
    [429]Irfan M.F., Goo J.H., and Kim S.D. Effects of NO2, CO, O-2, and SO2 on oxidation kinetics of NO over Pt-WO3/TiO2 catalyst for fast selective catalytic reduction process. International Journal Of Chemical Kinetics, 2006.38(10):613-620.
    [430]Mochida I., Kora Y., Shirahamaa M., et al. Removal of SOx and NOx over activated carbon fibers. Carbon, 2000.38:227.
    [431]Klose W. Rincon S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour. Fuel,2007.86:203.
    [432]Mochida I., Kawabuchi Y., Kawano S., et al. High catalytic activity of pitchbased activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature. Fuel,1997.76(6):543.
    [433]Mochida I., Shirahama N., Kawano S., et al. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area. Fuel,2000.79(14):1713-1723.
    [434]NEATHERY J.K., RUBEL A.M., and STENCEL J.M. UPTAKE OF NOx BY ACTIVATED CARBONS: BENCH-SCALE AND PILOT-PLANT TESTING. Carbon,1997.35(9):1321.
    [435]Adapa S., Gaur V., and Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF). Chemical Engineering Journal,2006.116(1):25-37.
    [436]Guo Z.C., Xie Y.S., Hong I.Y., et al. Catalytic oxidation of NO to NO2 on activated carbon. Energy Conversion and Management,2001.42(15-17):2005-2018.
    [437]Isao Mochida S.K., Motohiro Hironaka, Shizuo Kawano,Yuji Matsumura, Masaaki Yoshikawa. Oxidation of NO into NO2 over Active Carbon Fibers. Energy & Fuels,1994.8(6):1342.
    [438]Koichi Eguchi M.W., Masato Machida, Hiromichi Arai. Selective removal of NO by absorption in mixed oxide catalysts. Catalysis Today,1996.27:297.
    [439]KONG Y. CHA C.Y. NOx ADSORPTION ON CHAR IN PRESENCE OF OXYGEN AND MOISTURE. Carbon,1996.34(8):1027.
    [440]Despres J., Elsener M., Koebel M., et al. Catalytic oxidation of nitrogen monoxide over Pt/SiO2. Applied Catalysis B-Environmental,2004.50(2):73-82.
    [441]Bhatia D., McCabe R.W., Harold M.P., et al. Experimental and kinetic study of NO oxidation on model Pt catalysts. Journal Of Catalysis,2009.266(1):106-119.
    [442]Wallman P.H. Carlsson R.C.J. NOx reduction by ammonia The effects of pressure and mineral surfaces. Fuel, 1993.72(2):187-192.
    [443]Radtke F., Koeppel R., and Baiker A. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5. Applied Catalysis A:General,1994.107(2):L125-L132.
    [444]Ashmore P.G., Burnett M.G., and Tyler B.J. Reaction of Nitric Oxide and Oxygen. Transactions of the Faraday Society,1962.58(472):685-&.
    [445]Olbregts J. Termolecular Reaction of Nitrogen Monoxide and Oxygen-a Still Unsolved Problem. International Journal Of Chemical Kinetics,1985.17(8):835-848.
    [446]Baidya T., Gupta A., Deshpandey P. A., et al. High Oxygen Storage Capacity and High Rates of CO Oxidation and NO Reduction Catalytic Properties of Cel-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-delta. Journal of Physical Chemistry C,2009.113(10):4059-4068.
    [447]Yao H.C. Yao Y.F.Y. Ceria in automotive exhaust catalysts:I. Oxygen storage. Journal Of Catalysis,1984. 86(2):254-265.
    [448]Hatanaka M., Takahashi N., Takahashi N., et al. Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt Journal Of Catalysis,2009.266(2):182-190.
    [449]Nagai Y., Hirabayashi T., Dohmae K., et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. Journal Of Catalysis,2006.242(1):103-109.
    [450]Wang X., Kang Q., and Li D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catalysis Communications,2008.9(13):2158-2162.
    [451]Xiao L.H., Sun K.P., Xu X.L., et al. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method. Catalysis Communications,2005.6(12):796-801.
    [452]Pengpanich S., Meeyoo V., Rirksomboon T., et al. Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis. Applied Catalysis a-General,2002.234(1-2): 221-233.
    [453]Bampenrat A., Meeyoo V., Kitiyanan B., et al. Catalytic oxidation of naphthalene over CeO2-ZrO2 mixed oxide catalysts. Catalysis Communications,2008.9(14):2349-2352.
    [454]Tang X.F., Chen J.L., Li Y.G., et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chemical Engineering Journal,2006.118(1-2):119-125.
    [455]Yang X.Z., Shen Y.N., Bao L.L., et al. Oxidation of lean formaldehyde in air over an Au/CeO2 catalyst and its kinetics. Reaction Kinetics and Catalysis Letters,2008.93(1):19-25.
    [456]Liu J.L., Zhan E.S., Cai W.J., et al. Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts. Catalysis Letters,2008.120(3-4):274-280.
    [457]Luo J.Y., Meng M., Yao J.S., et al. One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO2 (M= Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation. Applied Catalysis B-Environmental,2009. 87(1-2):92-103.
    [458]Chang D.J., Lin S.S., Chen C.L., et al. Catalytic wet air oxidation of phenol using CeO2 as the catalyst. Kinetic study and mechanism development Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2002.37(7):1241-1252.
    [459]Silva A.M., Costa L.O.O., Barandas A., et al. Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts. Catalysis Today,2008.133:755-761.
    [460]Sheng P.Y., Bowmaker G.A., and Idriss H. The reactions of ethanol over Au/CeO2. Applied Catalysis a-General,2004.261(2):171-181.
    [461]Hu C.Q., Zhu Q.S., Jiang Z., et al. Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs. Microporous and Mesoporous Materials, 2008.113(1-3):427-434.
    [462]Haneda M., Kintaichi Y., Bion N., et al. Alkali metal-doped cobalt oxide catalysts for NO decomposition. Applied Catalysis B:Environmental,2003.46(3):473-482.
    [463]Tang C.W., Kuo C.C., Kuo M.C., et al. Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over Ce02/Co304 catalysts. Applied Catalysis a-General,2006.309(1):37-43.
    [464]Natile M.M. Glisenti A. CoOx/CeO2 Nanocomposite Powders:Synthesis, Characterization, and Reactivity. Chemistry Of Materials,2005.17(13):3403-3414.
    [465]Lin S.S.Y., Kim D.H., and Ha S.Y. Metallic phases of cobalt-based catalysts in ethanol steam reforming:The effect of cerium oxide. Applied Catalysis A:General,2009.355(1-2):69-77.
    [466]Luo J.Y., Meng M., Zha Y.Q., et al. Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO2 and Co3O4-CeO2 catalysts. Journal of Physical Chemistry C,2008.112(23): 8694-8701.
    [467]Luo J.Y., Meng M., Li X., et al. Mesoporous Co304-Ce02 and Pd/Co304-Ce02 catalysts:Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. Journal Of Catalysis,2008.254(2):310-324.
    [468]Wagner C.D., Riggs W.M., Davis L.E., et al. Hand book of X-ray Photoelectron Spectroscopy,Physical Electronics Division. Perkin-Elmer Corporation.1979.
    [469]Xue L., Zhang C., He H., et al. Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst. Catalysis Today,2007.126(3-4):449-455.
    [470]Wang X.Y., Kang Q., and Li D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Applied Catalysis B-Environmental,2009.86(3-4):166-175.
    [471]Tang X.F., Li Y.G., Huang X.M., et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature. Applied Catalysis B-Environmental, 2006.62(3-4):265-273.
    [472]Lee K.H., Kwon K., Roev V., et al. Synthesis and characterization of nanostructured PtCo-CeOx/C for oxygen reduction reaction. Journal Of Power Sources,2008.185(2):871-875.
    [473]Smirnov M.Y., Kalinkin A.V., Pashis A.V., et al. Interaction of A12O3 and CeO2 Surfaces with SO2 and SO2 +O2 Studied by X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry B,2005.109(23): 11712-11719.
    [474]Jia L., Shen M., Hao J., et al. Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization. Journal Of Alloys and Compounds, 2008.454(1-2):321-326.
    [475]Jia L., Shen M., Wang J., et al. Redox behaviors and structural characteristics of MnO.1Ce0.90x and MnO.1Ce0.6Zr0.30x. Journal Of Rare Earths,2008.26(4):523-527.
    [476]Carja G., Kameshima Y., Okada K., et al. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Applied Catalysis B:Environmental,2007.73(1-2):60-64.
    [477]Wu Z., Jin R., Wang H.,, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications,2009.10(6):935-939.
    [478]Eigenmann F., Maciejewski M., and Baiker A. Selective reduction of NO by NH3 over manganese-cerium mixed oxides:Relation between adsorption, redox and catalytic behavior. Applied Catalysis B:Environmental, 2006.62(3-4):311-318.
    [479]Qi G., Yang R.T., and Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B:Environmentalm2004.51(2): 93-106.
    [480]Qi G. Yang R.T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-Ce02 catalyst. Journal Of Catalysis,2003.217(2):434-441.
    [481]Qi G.S. Yang R.T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. Journal Of Physical Chemistry B,2004.108(40):15738-15747.
    [482]Jin R., Liu Y, Wu Z., et al. Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO2 and A12O3:A comparative study. Chemosphere,2010.78(9):1160-1166.
    [483]Yu J., Guo F., Wang Y., et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3. Applied Catalysis B:Environmental. In Press, Corrected Proof.
    [484]Rao T., Shen M., Jia L., et al. Oxidation of ethanol over Mn-Ce-O and Mn-Ce-Zr-O complex compounds synthesized by sol-gel method Catalysis Communications,2007.8(11):1743-1747.
    [485]Wu X., Liang Q., Weng D., et al. Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today,2007.126(3-4):430-435.
    [486]Delimaris D. Ioannides T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method Applied Catalysis B-Environmental,2008.84(1-2):303-312.
    [487]Liang Y, Guo H., Chen H., et al. Effect of Doping Cerium in the Support of Catalyst Pd-Co/Cu-Co-Mn Mixed Oxides on the Oxidative Carbonylation of Phenol. Chinese Journal Of Chemical Engineering,2009. 17(3):401-406.
    [488]Carn J., Ferrandon M., Bjornbom E., et al. Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers. Applied Catalysis A:General,1997.155(2):265-281.
    [489]Trawczynski J., Bielak B., and Mista W. Oxidation of ethanol over supported manganese catalysts--effect of the carrier. Applied Catalysis B:Environmental,2005.55(4):277-285.
    [490]Arena F., Torre T., Raimondo C., et al. Structure and redox properties of bulk and supported manganese oxide catalysts. Physical Chemistry Chemical Physics,2001.3(10):1911-1917.
    [491]Dula R., Janik R., Machej T., et al. Mn-containing catalytic materials for the total combustion of toluene:The role of Mn localisation in the structure of LDH precursor. Catalysis Today,2007.119(1-4):327-331.
    [492]Avila P., Montes M., and Mir? Eduardo E. Monolithic reactors for environmental applications:A review on preparation technologies. Chemical Engineering Journal,2005.109(1-3):11-36.
    [493]Cheng Z., Wu Q., Li J., et al. Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/A1203 catalyst Catalysis Today,1996.30(1-3):147-155.
    [494]Choudhary V.R., Rane V.H., and Chaudhari S.T. Surface properties of rare earth promoted MgO catalysts and their catalytic activity/selectivity in oxidative coupling of methane. Applied Catalysis A:General,1997. 158(1-2):121-136.
    [495]Chen C.X., Xu C.H., Feng L.R., et al. Effect of rare earth doping on the catalytic activity of copper-containing hydrotalcites in phenol hydroxylation. Advanced Synthesis & Catalysis,2005.347(14): 1848-1854.
    [496]Wang F. Lu G.X. High performance rare earth oxides LnO(x) (Ln= La, Ce, Nd, Sm and Dy)-modified Pt/SiO2 catalysts for CO oxidation in the presence of H-2. Journal Of Power Sources,2008.181(1):120-126.
    [497]Wang X.H., Lu G.Z., Guo Y., et al. Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2-ZrO2 solid solution for methane combustion. Journal Of Materials Science,2009.44(5):1294-1301.
    [498]Stagg-Williams S.M., Noronha F.B., Fendley G., et al. CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides. Journal Of Catalysis,2000.194(2):240-249.
    [499]Alifanti M., Kirchnerova J., and Delmon B. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion. Applied Catalysis a-General,2003.245(2):231-243.
    [500]Zhang-Steenwinkel Y., Beckers J., and Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides. Applied Catalysis A:General,2002.235(1-2):79-92.
    [501]Liu Y, Wen C., Guo Y, et al. Effects of surface area and oxygen vacancies on ceria in CO oxidation: Differences and relationships. Journal Of Molecular Catalysis A-chemical.316(1-2):59-64.
    [502]Liu H., Kozlov A.I., Kozlova A.P., et al. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and As-precipitated titanium hydroxide. Journal Of Catalysis,1999.185(2):252-264.
    [503]Liu H.C., Kozlov A.I., Kozlova A.P., et al. Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide. Physical Chemistry Chemical Physics,1999.1(11):2851-2860.
    [504]Khan K.M. Albano E. Catalytic oxidation of carbon monoxide:a lattice gas non-thermal Langmuir-Hinshelwood mechanism. Chemical Physics,2002.276(2):129-137.
    [505]Wang G.C., Jiao J., and Bu X.H. Detailed mechanism for CO oxidation on AuNi3(111) extended surface:A density functional theory study. Journal of Physical Chemistry C,2007.111(33):12335-12339.
    [506]Wang C.B., Tang C.W., Tsai H.C., et al. In situ FT-IR spectroscopic studies on the mechanism of the catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catalysis Letters,2006.107(1-2):31-37.
    [507]Iizuka Y, Sanada M., Tsunetoshi J., et al. Mechanism of the catalytic oxidation of CO with O-2 on an Mo catalyst supported on silica and on bulk MoO3. Journal of the Chemical Society-Faraday Transactions,1996. 92(7):1249-1256.
    [508]Derekaya F. Guldur C. The CO Oxidation Mechanism Over Ag-Co And Co-Ce Mixed Oxide Catalysts. International Journal of Chemical Reactor Engineering.8.
    [509]Kobayash.M Kobayash.H. Application of Transient-Response Method to Study of Heterogeneous Catalysis.2. Mechanism of Catalytic-Oxidation of Carbon-Monoxide on Manganese-Dioxide. Journal Of Catalysis,1972. 27(1):108-&.
    [510]Uddin M.A., Komatsu T., and Yashima T. Catalytic Properties of Framework Fe3+in Mfi-Type Ferrisilicate-Reaction-Mechanism Studies of Co Oxidation Using an Isotopic Tracer Technique. Journal Of Catalysis,1994. 146(2):468-475.
    [511]Sedmak G., Hocevar S., and Levec J. Kinetics of selective CO oxidation in excess of H-2 over the nanostructured Cu0.1Ce0.9O2-(y) catalyst. Journal Of Catalysis,2003.213(2):135-150.
    [512]Zhang J.H., Yang Y.Q., Shen J.M., et al. Mesostructured CeO2 and Pd/CeO2 nanophases:Templated synthesis, crystalline structure and catalytic properties. Journal Of Molecular Catalysis A-chemical,2005. 237(1-2):182-190.
    [513]Liu X.S., Lu J.Q., Qian K., et al. A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts. Journal Of Rare Earths,2009.27(3):418-424.
    [514]Zhang-Steenwinkel Y., van der Zande L.M., Castricum H.L., et al. Step response and transient isotopic labelling studies into the mechanism of CO oxidation over La0.8Ce0.2MnO3 perovskite. Applied Catalysis B-Environmental,2004.54(2):93-103.
    [515]Hughes M.F. Hill G.R. Rate Law and Mechanism for the Oxidation of Carbon Monoxide over a Vanadium Oxide Catalyst. Journal of Physical chemistry,1955.59(5):388-391.
    [516]Pozdnyakova O., Teschner D., Wootsch A., et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part Ⅱ:Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. Journal Of Catalysis,2006.237(1):17-28.
    [517]Aghalayam P., Park Y.K., and Vlachos D.G. A detailed surface reaction mechanism for CO oxidation on Pt. Proceedings of the Combustion Institute,2000.28:1331-1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700