用户名: 密码: 验证码:
小麦(Triticum aestivum L.)铝毒害以及钙对铝毒害的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al毒害是酸性土壤上作物生长的主要限制因素。本实验以Al耐性不同的三个小麦品种Atlas 66、Scout 66以及一个江苏省推广品种扬麦9号为实验材料,研究了不同浓度Al处理对小麦的毒害作用。结果显示:0.5mmol·L~(-1)CaCl_2溶液中,40、10和5μmol·L~(-1)Al处理24小时分别抑制了Atlas 66、Scout 66和扬麦9号根系伸长的50%左右,表明三个小麦品种Al耐性Atlas 66>Scout 66>扬麦9号。铬化青R染色可以原位显示0-80μmol·L~(-1)Al处理后根尖表面Al的吸附量与根尖伸长受抑制程度具有很好的一致性。5mmol·L~(-1) CaCl_2溶液可以有效洗脱10和40μmol·L~(-1)Al处理24小时后小麦根尖质外体和共质体中可交换态Al。洗脱实验显示,10和40μmol·L~(-1)Al处理24小时后三个品种小麦根尖交换态Al主要累积在质外体。与对照相比,10μmol·L~(-1)Al处理24小时显著增加了三个品种根尖质外体以及两个敏感品种根尖共质体交换态Al含量。10和40Alμmol·L~(-1)Al处理下,Atlas 66根尖质外体和共质体交换态Al含量都显著低于两个敏感品种,因此阻遏Al吸收是Atlas 66Al耐性较高的一个重要机制。
     与对照相比,10μmol·L~(-1)Al处理7天后扬麦9号根系形态发生了很大变化,根系伸长受到严重抑制,根尖变粗并且呈棕色,侧根发育受到抑制,在初生根侧形成瘤状突起。通过石蜡组织切片技术我们发现Al处理后根尖分生组织细胞和侧根发生原基外侧都包围了1到几层高度木质化的细胞,这些木质化细胞可能在保护内层具有分化能力的细胞中具有作用,但同时它们也阻止了根系的伸长以及侧根的发育,在Al毒害引起的珊瑚形根系形成中具有重要作用。5μmol·L~(-1)Al处理24小时即可引起了扬麦9号和Scout 66根尖伸长区细胞活力的降低,而20μmol·L~(-1)Al处理才可以引起Atlas 66根尖细胞细胞活力的降低。三个品种小麦根尖细胞活力随着处理Al浓度的增加而降低。此外Al处理还引起了三个品种根尖细胞质膜完整性的降低以及根尖细胞ROS的累积,它们可能在Al诱导的小麦根尖死亡中具有重要作用。Atlas 66、Scout 66和扬麦9号分别在40、10和5μmol·L~(-1)Al胁迫下处理0-12小时没有发现根尖细胞基因组DNA梯形带的出现,因此Al诱导的小麦根尖死亡可能不是功能性的程序化细胞死亡,而是毒害引起的细胞坏死。
     氧化胁迫是许多生物和非生物因素引起植物伤害的普遍途径之一。我们以Scout66和Atlas 66为材料,比较了两者短期和长期Al处理下抗氧化能力的变化。我们的实验结果显示,Al处理6小时后Al敏感品种Scout 66根系四种抗氧化酶的活力没有显著差异,而相近Al毒害程度下耐性品种Atlas 66根系GR活力显著升高。处理时间延长到12小时,Scout 66根系APX和SOD活力降低,CAT活力显著升高,而Atlas66根系则APX、SOD和GR活力均明显升高。我们推断短期Al毒害下,Atlas 66根系抗氧化酶系统介导的抗氧化能力高于Scout 66,这可能是其Al耐性较高的一个重要原因。5-80μmol·L~(-1)Al处理24小时显著降低了Scout 66根系APX和sOD的活力,CAT和GR的活力未受影响。与Scout 66不同,Atlas 66根系抗氧化酶活力在较高浓度Al处理下显著高于较低浓度Al处理。表明抗氧化酶系统在较长时间内仍然在Atlas66Al耐性中具有重要作用。5-80μmol·L~(-1)Al处理48小时,特别是较高浓度Al处理下,Scout 66根系质外体ASA和总抗坏血酸含量显著低于对照,而Atlas 66则显著高于对照。Al处理显著降低了Atlas 66和Scout 66根系共质体ASA和总抗坏血酸的含量,但是Atlas 66的降低幅度显著小于Scout 66。同时我们还发现高浓度Al处理下Atlas 66根系质外体和共质体APX和AO活力没有发生显著变化,而Scout 66则有大幅度降低。因此Al胁迫下Atlas 66根系质外体抗坏血酸含量的升高和共质体抗坏血酸含量的维持以及严重Al毒害下抗坏血酸利用率的保持可能是其Al耐性的一个重要机制。5-80μmol·L~(-1)Al处理48小时Scout 66根系可溶性、细胞壁离子和共价结合POD活力都显著升高。同样处理下Atlas 66根系细胞壁离子结合POD活力没有发生显著变化,共价结合POD活力则显著低于对照,可溶性POD活力虽然高于对照,但是升高幅度显著小于Scout 66。结果表明Al处理下Atlas 66根系低POD活力降低了Al引起的根系细胞壁硬化,从而保证Atlas 66根系保持较高的伸长生长速率。
     添加高浓度外源CaCl_2显著降低了10和40μmol·L~(-1)Al处理下三个品种小麦根系伸长生长的受抑制程度。高浓度外源CaCl_2提高了Al处理下三个品种小麦根尖的细胞活力,降低了Al毒害引起的根尖细胞质膜受破坏程度以及根尖细胞ROS的累积。2.5-8.5 mmol·L~(-1) CaCl_2预处理显著改善了Atlas 66和Scout 66随后Al处理中的根系伸长生长,而预处理对扬麦9号没有显著影响。这可能与不同植物根系对Ca、Al的相对吸附能力不同有关。在分根实验中,三个品种小麦根系一侧的高浓度CaCl_2供应并没有显著改善另一侧Al毒害下根系的伸长生长,因此小麦幼苗不能通过提高Ca吸收而缓解Al毒害,表明Ca没有参与小麦幼苗的体内解毒机制。添加2和4 mmol·L~(-1) MgCl_2也可以显著改善三个品种小麦幼苗10和40μmol·L~(-1)Al处理下的根系伸长生长,并且在0.5 mmol·L~(-1) CaCl_2存在时具有与添加相同浓度CaCl_2同近的缓解效果,但是在将0.5 mmol·L~(-1)CaCl_2等摩尔替换为MgCl_2时,MgCl_2的缓解效果消失,这可能与根系伸长对培养液Ca~(2+)的绝对需求有关。8 mmol·L~(-1) MgCl_2预处理显著提高了Atlas 66和扬麦9号40μmol·L~(-1)Al处理中根系的伸长生长,同时经过预处理的小麦幼苗在Al处理后保持了较高的根系和地上部Mg含量,说明两个品种小麦幼苗在Mg处理过程中吸附吸收了较多的Mg,从而缓解了随后的Al毒害。扬麦9号在Ca预处理和Mg预处理后对Al毒害的反应不同,说明扬麦9号对Ca和Mg的选择性吸附吸收能力不同。通过上面的实验进一步确定了Ca对小麦Al毒害的缓解作用是通过降低根系表面Al~(3+)活度,从而降低根尖对Al的吸附和吸收实现的。
     Ca~(2+)信号紊乱是植物细胞Al毒害的早期现象。本实验以扬麦9号为材料,研究了Al诱导的完整小麦根尖细胞[Ca~(2+)]_(cyt)变化。结果发现40μmol·L~(-1)Al处理在70分钟内诱导了扬麦9号根尖表皮细胞[Ca~(2+)]_(cyt)的持续升高,而处理液中同时含有2.5 mmol·L~(-1)CaCl_2时,[Ca~(2+)]_(cyt)在70分钟内则没有发生显著变化。1 mmol·L~(-1) Ca~(2+)螯合剂EGTA预处理30分钟以及处理液中添加1 mmol·L~(-1) EGTA或者质膜Ca~(2+)通道抑制剂LAGl_3、verapamil和nifedipine也抑制了Al诱导的根尖细胞[Ca~(2+)]_(cyt)升高。同时我们还发现在Al诱导根尖细胞[Ca~(2+)]_(cyt)升高出现后处理液中添加8 mmol·L~(-1) CaCl_2会引发[Ca~(2+)]_(cyt)的急剧升高。因此我们推断质外体Ca~(2+)是Al毒害诱导的扬麦9号根尖细胞[Ca~(2+)]_(cyt)升高的主要Ca~(2+)来源之一,而外源CaCl_2对小麦Al毒害的缓解作用发生在Al诱导的细胞[Ca~(2+)]_(cyt)升高之前。40μmol·L~(-1)Al处理30分钟内诱导了扬麦9号根尖细胞ROS含量的快速增加。4mg mL~(-1) CAT预处理30分钟抑制了Al诱导的ROS升高以及[Ca~(2+)]_(cyt)升高。CAT在植物细胞中的主要作用是清除H_2O_2,因此可以推断Al处理引起的细胞ROS累积主要是H_2O_2的累积,而此H_2O_2累积可能上游调控了[Ca~(2+)]_(cyt)的升高。
Al toxicity is one of the factors limiting crops production in acid soil. In present study, we investigated Al toxicity in three wheat cultivars differing in Al resistant. In background of 0.5 mmol·L~(-1) CaCl_2, 5-80μmol·L~(-1) Al significantly inhibited root growth of the three cultivars. Root growth of Atlas 66, Scout 66 and Yangmai 9 were inhibited by about 50% with 24 h treatment of 40, 10 and 5μmol·L~(-1) Al, respectively. It showed that the Al-resistant of the three cultivars follows: Atlas 66 > Scout 66 > Yangmai 9. Using Eriochome cyanine R staining, we found that Al accumulation on surface of root tips was positive related to the inhibition of root growth in treatments of 0 - 80μmol·L~(-1) Al for 24 h. Exchangeable Al in apoplast and symplasm of root tips of wheat was effectively desorbed by 5 mmol·L~(-1) CaCl_2 at 4℃. The results showed that exchangeable Al was mostly accumulated in apoplast after 10 and 40μmol·L~(-1) Al treatment for 24 h. Exchangeable Al in apoplast and symplasm of the two Al-sensitive cultivars was enhanced by treatment of 10μmol·L~(-1) Al for 24 h, but only apoplast Al in Atlas 66was enhanced by the same treatment. Additionally, exchangeable Al in both apoplast and symplasm in root tips of the two Al-sensitive cultivars were significantly higher than that of Atlas 66. So we confirmed that exclusion of Al from root tips is an important mechanism of Al resistant in wheat.After treatment of 10μmol·L~(-1) Al for 7 days, morphologic changes were founded in roots of Yangmai 9. Root elongation was severely inhibited and root tips were stubbed and brown. Development of lateral roots was arrested and protuberances were founded on the surface of primary roots. Using technology of tissue slice, heavily lignified cells was founded around the cells of merism and anlage of lateral root. The lignified cells maybe play some roles in protection of cells which were differentiating, but simultaneously they also inhibited the root elongation and development of lateral roots. 5μmol·L~(-1) Al induced cell death of root tips of Scout 66 and Yangmai 9, but not of Atlas 66. Al increase in cell death was found in treatment of 20μmol·L~(-1) Al in root tips of Atlas 66. Cell death in root tips of all the three cultivars were enhanced by the increasing of treatment Al concentration. Loss of integrity of plasma membrane and accumulation of ROS were also founded in root tips exposed to 5-80μmol·L~(-1) for 24h. They maybe play some roles in the cell death of root tips. Genomic DNA of root tips was purified during 0-12h of 5, 10 and 40μmol·L~(-1) Al treatment for Yangmai 9, Scout 66 and Atlas 66, respectively. DNA ladder was not found in all samples. So cell death induced by Al was not PCD in root tips of all the three wheat cultivars.
     Oxidative stress is a general mechanism of plant response to many bio- and abio-stress. In present experiments, antioxide capacities in roots of Atlas 66 and Scout 66 were compared in short and long Al treatments. Changes were not found for activities of APX, CAT, GR and SOD in roots of Scout 66 with Al toxicity for 6h, but significantly increasing was found of GR of Atlas 66. When thetreatment time prolonged to 12h, activities of APX and SOD of Scout 66 were decreased. Synchronously, CAT of Scout 66 and APX, SOD and GR of Atlas 66 were increased. We suggested that the rapid increasing anti-oxide ability mediated by antioxide enzymes might play some roles in the Al-resistant of Atlas 66, at least it is the fact in the short time treatment. Treatment of 5-80μmol·L~(-1) Al for 24h significantly decreased activities of APX and SOD, and did not effect activities of CAT and GR in roots of Scout 66. Activities of APX, CAT, GR and SOD were decreased by the treatment of low concentration Al, but were increased by high concentration Al. It showed that antioxide enzymes still played roles in Al-resistant of Atlas 66 in the 24h treatment. Apoplastic ASA in roots of Scout 66 was significantly decreased by the treatment of 80μmol·L~(-1) Al for 48h, and that of Atlas 66 was increased. 5-80μmol·L~(-1) Al enhanced the content of total ascorbate in apoplast of roots of Atlas 66, but it decreased that of Scout 66. ASA and total ascobate in apoplast and symplasm of roots of both Scout 66 and Atlas 66 were decreased by treatment of 5-80μmol·L~(-1) Al, but it was more heavily in Scout 66.80μmol.L~(-1) Al treatment significantly decreased activities of APX and AO in apoplast and symplasm of roots of Scout 66, and it did not affected that of Atlas 66. Increasing of content of roots apoplastic ASA and maintaining of symplastic ASA and availability of ASA might contribute to the Al-resistant of Atlas 66. Activities of soluble, cell wall ionic and covalent POD in roots of Scout 66 were increased by treatment of 5-80μM Al for 48h. Activity of cell wall covalent POD in roots of Atlas 66 was decreased by the similar treatment, and that of ionic POD was not affected, and that of soluble POD was increased. The increasing of soluble POD of Scout 66 was more heavily than that of Atlas 66. The lower activities of POD in roots of Atlas 66 enhanced the cell wall extensibility under Al stress and that also played some roles in the Al-resistant of Atlas 66.
     Root growth of the three wheat cultivars exposed to 10 and 40μmol·L~(-1) Al was significantly enhanced by application of exogenous CaCl_2. Cell viability and integrity of plasma membrane of root tips exposed to Al was increased, as well as accumulation of Al and ROS was decreased by applicaiton of exogenous CaCl_2. Pretreatment of 2.5-8.5 mmol·L~(-1) CaCl_2 significantly increased root growth of Atlas 66 and Scout 66 exposing to 10 or 40μmol·L~(-1) Al, but it did not increased that of Yangmai 9. It might be resulted from the different adsorption capacities of Ca and Al in roots of different plants. Exposing only one half of the root system to 2.5 mmol.L~(-1) Ca did not reduce the inhibiting effect of Al on the root growth of the exposed half (A1) of the [Al/2.5 mmol·L~(-1) Ca plants] compared with that of the [Al/0.5 mmol·L~(-1) Ca plants] and the [Al/Al plants], indicated that the amelioration of Al toxicity was due to a direct effect of Ca in the apoplasm. Addition of mmol·L~(-1) level MgCl_2 also improved root growth of the three wheat cultivars exposing to 10 or 40μmol·L~(-1) Al. But the improvement disappeared when all the Ca~(2+) in treatment solutions was displaced by similar concentration Mg~(2+). It might be caused of the deficiency of Ca required for the root growth. Pretreatment of 8 mmol·L~(-1) MgCl_2 significantly increased root growth of Atlas 66 and Yangmai 9 exposing to 40μmol·L~(-1) Al. Mg content in roots and shoots of both cultivars treated with 40μmol·L~(-1) Al were enhanced by the pretreatment. Effect of MgCl_2 pretreatment on Al toxicity of Yangmai 9 was different to that of CaCl_2 pretreatment. It might be due to the different selective absorption of Ca and Mg in roots of Yangmai 9. Our results confirmed that Ca alleviated Al toxicity of wheat by mechanism of decrease in Al~(3+) on surface of root cells.
     Increasing of [Ca~(2+)]_(cyt) is an early syndrome of Al toxicity of plant cell. In present study, we investigated the effect of Al stress on variation of [Ca~(2+)]_(cyt) and ROS in cells of intact root tips of an Al-sensitive wheat cultivar, Yangmai 9. Treatment of 40μmol·L~(-1) Al for 70 min induced the increasing of [Ca~(2+)]_(cyt) in cells of intact root tips. The increasing was inhibited by the addition of 2 mmol·L~(-1) CaCl_2 to the Al treatment solution. It showed that the alleviation of Ca on Al toxicity in Yangmai 9 happened before the induction of variation of [Ca~(2+)]_(cyt). Pretreatment of 1 mmol·L~(-1) Ca~(2+) chelator EGTA and addition of 1 mmol·L~(-1) EGTA and inhibitors of Ca~(2+) channels in plasma membrane, La~(3+), verapamil and nifedipine also inhibited the increasing of [Ca~(2+)]_(cyt) in cells treated with Al. Furthermore, we also found that addition of 8 mmol·L~(-1) CaCl_2 induced a burst of [Ca~(2+)]_(cyt) in cells in which Al had induce a increasing of [Ca~(2+)]_(cyt). We suggested that apoplastic Ca~(2+) was one of the most important source for increasing of [Ca~(2+)]_(cyt) induced by Al toxicity in root cells of Yangmai 9. Accumulation of ROS was induced in root cells of Yangmai 9 treated with 40μmol·L~(-1) Al for 2 min. Pretreatment of 4mg·mL~(-1) CAT inhibited the accumulation of ROS induced by Al stress, as well as the increasing of [Ca~(2+)]_(cyt). CAT was used to clear up the H_2O_2. It exhibited that H_2O_2 mostly contributed to the accumulation of ROS induced by Al stress in root cells. Accumulation of H_2O_2 upstream regulated the increasing of [Ca~(2+)]_(cyt) in cells of intact root tips stressed with Al.
引文
1.高向阳,杨振平,许志强,徐凤彩.水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响.华南农业大学学报,1999,20(2):7-12
    2.何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根液泡膜功能和膜脂组成的影响.南京农业大学学报,2000,23(1):10-13
    3.简令成,王红.钙(Ca~(2+))在植物抗寒中的作用.细胞生物学杂志,2002,24(3):166-171
    4.孙大业,郭艳林,马力耕和崔素娟.细胞信号转导(第三版).科学出版社,2001.
    5.袁清昌.钙提高植物抗旱能力的研究进展.山东农业大学学报,1999,30(3):302-306
    6.张芬琴,沈振国.Al处理下小麦幼苗根系脂膜过氧化作用和质膜微囊ATP酶活性的变化.西北植物学报,1999,19(4):578-584
    7.赵会杰 抗坏血酸含量及抗坏血酸过氧化物酶活力的测定:现代植物生理学实验指导[M] 科学出版社.北京:科学技术出版社,1999:315-316
    8. Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H. Aluminum-induced growth inhibition is associated with impaired efflux of H~+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot, 2002, 53: 1959-1966
    9. Alexandre J, Lassales JP. Intracellular Ca2+ release by InsP_3 in plants and effect of buffers on Ca~(2+) diffusion. Philo Trans Roy Soc London, Series B, 1992, 338: 53-61
    10. Allen GJ, Sanders D. Calcineurin, a type 2B protein phosphatase modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell, 1995, 7: 1473-1483
    11. Aniol A. Induction of aluminum tolerance by low doses of aluminum in the nutrient solution. Plant Physiol, 1984, 76: 551-555
    12. Aniol AM. Physiological aspects of aluminum tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl Genet, 1995, 91: 510-516
    13. Apel K and Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transductioin. Annu Rev Plant Biol, 2004, 55: 373-399
    14. Archambault DJ, Chang G, Taylor GJ. A comparison of the kinetics of A1 uptake in roots of an Al-tolerant cultivar and an Al-sensitive cultivar of Triticum aestivum L. using different Al sources. A revision of the operational definition of symplastic Al. Physiol Plant, 1996a, 98: 578-586
    15. Archambault D J, Chang G; Taylor GJ. A comparison of the kinetics of aluminum (Al) uptake and distribution in roots of wheat (Triticum aestivum). Plant Physiol, 1996b, 112: 1471-1478
    16. Archambault DJ, Zhang G, Taylor GJ. A comparison of the kinetics of aluminum (Al) uptake and distribution in roots of wheat (Triricum aestivum L.). Plant Physiol, 1996, 112: 1571-1578
    17. Arora R, Palta JP. In vivo perturbation of membrane-associated calcium by freeze-thaw stress in onion bulb cells. Plant Physiol, 1988, 87:622-628
    
    18. Arrigoni O, Calabrese G, De Gara L, Bitonti MB, Liso R. Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings. J Plant Physiol, 1997,150:302-308
    
    19. Barcelo J and Poxhchenrieder C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot, 2002,48:75-92
    
    20. Barcelo J, Poschenrieder C, Kidd PS, Gunse B, Vazquez MD, Llugany M, Creus JA, Corrales I, Feixa X, Garzon T. Is there a threshold for the activation of aluminum tolerance mechanisms in maize? In: Proceedings Int. Symposium on impact of potential tolerance of plants on the increased productivity under aluminum stress. 15-16 September, 2000, Kurashiki, Japan, pp 51-54
    
    21. Basu U, Basu A, Taylor GJ. Differential exudation of polypeptides by roots of aluminum-resistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminum stress. Plant Physiol, 1994a, 106:151-158
    
    22. Basu A, Basu U, Taylor GJ. Induction of microsomal membrane proteins in roots of an aluminum-resistant cultivar of Triticum aestivum L. under conditions of aluminum stress. Plant Physiol, 1994b, 104:1007-1013
    
    23. Basu U, Good AG, Aung T, Slaski JT, Basu A, Briggs KG, Taylor GJ. A 23-kDa, root exudates polypeptide co-segregates with aluminum resistance in Triticum aesticum. Physiol Plant, 1999, 106:53-61
    
    24. Basu U, Good AG, Taylor GJ. Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. Plant Cell Environ, 2001,24:1269-1278
    
    25. Bibikova TN, Zhigilei A, Gilroy S. Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta, 1997, 203:495-505
    
    26. Blamey FPC, Asher CJ, Kerven GL, Edwards DG Factors affecting aluminum sorption by calcium pectate. Plant Soil, 1993,149:87-94
    
    27. Blamey FPC, Edmeades DC and Wheeler DM. Role of cation-exchange capacity in differential aluminum tolerance of Lotus Species. J Plant Nutr. 1990,13:729-744
    
    28. Blamey FPC. The role of the root cell wall in aluminum toxicity. In: Ae N, Arihara J, Okada K, Srinivasan A, eds. Plant nutritent acquisition. New perspectives. Tokyo, Japan: Spring-Verlag, 2001, 201-226
    
    29. Blancaflor EB, Jones DL, and Gilroy S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol, 1998,118:159-172
    
    30. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot-Lnodon, 2003, 91:179-194
    
    31. Boland NS, Hedley MJ, White RE. Processes of soil acidification during nitrogen cycling with emphasis on legume based pasture. Plant Soil, 1991,134:53-63
    
    32. Boscolo PRS, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize. Phytochem, 2003, 62:180-189
    
    33. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteintdye binding. Anal Biochem, 1976,72:248-254.
    
    34. Brauer D. Rapid inhibition of root growth in wheat associated with aluminum uptake as followed by changes in morin fluorescence. J Plant Nutr, 2001, 24(8):1243-1253
    
    35. Budikova S. Structural changes and aluminum distribution in maize root tissues. Biol Plant, 1999, 42:259-266
    
    36. Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:95-122
    
    37. Bush DS. Effects of gibberellic acid and ecviromental factors on Cytosolic calcium in wheat aleurone cells. Planta, 1996,199:89-99
    
    38. Cakmak I, Horst WJ. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant, 1991, 83:463-468
    
    39. Caldwell CR. Analysis of aluminum and divalent cation binding to wheat root plasma membrane protein using terbium phosphorescence. Plant Physiol, 1989, 91:233-241
    
    40. Canut H, Carrasco A, Rossignol M, Ranjeva R. Is vacuole the richest store of IP_3-mobilizable calcium in plant cells? Plant Sci, 1993, 90:135-143
    
    41. Cessna SG, Low PS. Activation of the oxidative burst in aequorin-transformed Nicotiana tabacum cells is mediated by protein kinase- and anion channel-dependent release of Ca~(2+) from internal stores. Planta, 2001, 214:126-134
    
    42. Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ, 1999, 22:1009-1017
    
    43. Chen J Sucoff EI, Stadelman EJ. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra. Plant Physiol, 1991, 96:644-649
    
    44. Clouse J, Rincon M, Gonzales RA. Aluminum associates with wheat root proteins. Plant Physiol, 1991, 96:644-649
    
    45. Cochran M, Coates JH, Elliott DC. Aluminum interaction with biological molecules: The potential hazard. In: de Broe ME, Coburn JW, eds. Aluminum and Renal Failure. Dordrecht: Kluwer Academic publishers, 1990,139-153
    
    46. Cooke A, Cookson A, Ealnshaw M J. The mechanism of action of calcium in the inhibition of high temprarure-induced leakage of belacyamin from beet root disca. New Phyto, 1986,102:491-497
    
    47. Cordoba-pedregosa MC, Villalba JM, Cordoba F, et al. Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. J Exp Bot, 2005,56:685-694
    
    48. Cronan CS. Differential adsorption of Al, Ca, and Mg by roots of red spruce (Picea rubens Sarg.). Tree physiol, 1991, 8:227-237
    
    49. Darko E, Ambrus H, Stefanovits-Banyai E, Fodor J, Bakos F, Barnabas B. Aluminum toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci, 2004,166:583-591
    
    50. David B. Rapid inhibition of root growth in wheat associated with aluminum uptake as followed by changes in morin fluorescence. J Plant Nutr, 2001, 24(8):1243-1253
    
    51. De Gara L. Ascorbate metabolism and plant growth- from germination to cell death. In: Asard H, May J, Smirnoff N, eds. Vitamin C: its function and biochemistry in animals and plants. Oxford: BIOS Scientific Publishers Ltd, 83-95
    
    52. De Pinto MC and De Gara LD. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot, 2004,55:2559-2569
    
    53. De Tullio MC, Paciolla C, Delia Vecchia F, Rasscio N, D'Emerico S, De Gara L, Liso R, Arrigoni O. Changes in onion root development induced by the inhibition of peptidyl prolyl hydroxylase and influence of the ascorbate system on the cell division and elongation. Planta, 1999, 209:424-434
    
    54. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.). I .Uptake and distribution of aluminum in root apices. Plant Physiol, 1993,103:685-693
    
    55. Delhaize and Ryan. Aluminum toxicity and tolerance in plants. Plant Physiol, 1995,107:315-332
    
    56. Delisle G, Champoux M, Houde M. Characterization of oxidase and cell death in Al-sensitive a tolerance wheat roots. Plant Cell Physiol, 2001,42(3):324-333
    
    57. Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, Whiter PJ, Davies JM. Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. Plant J, 2002, 32:799-808
    58. Demidchik V, Shabala SN, Courtts KB, Tester MA, Davies JM. Free oxygen radicals regulate plasma membrane Ca~(2+) - and K~+-permeable channels in plant root cells. J Cell Sci, 2003,116-81-88
    
    59. Dennison KL and Spalding EP. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol, 2000, 124:1511-1514
    
    60. Devi SR, Yamamoto Y, Matsumoto H. An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. J Inorg Biochem, 2003, 97:59-68
    
    61. Dewald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. Rapid accumulation of phosphatidylinositol 4,5-bisphophate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 2001,126:759-769
    
    62. Ding JP, Badot P-M, Pickard BG Aluminum and hydrogen ions inhibit a mechanosensory calcium-selective cation channel. Aust J Plant Physiol. 1993, 20:771-778
    
    63. Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol, 2005, 162(5):529-537
    
    64. Dobrovinskaya OR, Muniz J, Pottosin II. Inhibition of vacuolar ion channels by polymines. J Mem Bio, 1999,167:127-140
    
    65. Eeckhaoudt S, Vandeputte D, Van PH, Van GR, Jacob W. Laser microprobes mass analysis of aluminum and lead in fine roots and their ectomycorrhizal mantles of Norway spruce (Oicea abies (L.) Karst.). Tree Physiol, 1992,10:209-215
    
    66. Ezaki B, Gardner RC, Ezaki Y and Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol, 2000,122:657-665
    
    67. Felle HH, Hepler PK. The Cytosolic Ca~(2+) concentration gradient of Snapis alba root hairs as revealed by Ca~(2+) -selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol, 1997, 114:39-45
    
    68. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Tones MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003, 422:442-446
    
    69. Foy CD, Channey RL, White MC. The physiology of metal toxicity and tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1978,29:511-566
    
    70. Foy CD. Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal, 1988, 19:959-987
    71. Fricker MD, Oparka KJ. Imaging gechbiques in plant reansport: meeting review. J Exp Bot, 1999, 50:1089-1100
    
    72. Gassmann W and Schroeder JL. Inward-rectifying K~+ channels in root hairs of wheat: A mechanism for aluminum-sensitive low-affinity K~+ uptake and membrane potential control. Plant Physiol, 1994, 105:1399-1408
    
    73. Gilroy S, Bethke PC, Jones RL. Calcium homeostasis in plants. J Cell Sci, 1993,106:453-462
    
    74. Gilroy S. Florescence microscopy of lining plant cells. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:165-190
    
    75. Gong M, Van der Luit AH, Knight MR, Trevavas AJ. Heatshock-indued changes in intracellular Ca~(2+) level in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998,116:429-437
    
    76. Grauer UE and Horst WJ. Modeling cation amelioration of aluminum phytotoxicity. Soil Sci Soc Am J, 1992,56:166-172
    
    77. Grabski S, Schindler M. Aluminum induces rigor within the actin network of soybean cells. Plant Physiol, 1995,108:897-901
    
    78. Grabski S, Arnoy S, Busch B, Schindler M. Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol, 1998,116:279-290
    
    79. Greulich KO, Pilarczyk G, Hoffmann A, Horsts GMZ, Schafer B, Uhl V, Monajembashi S. MicromanipOulatiojn by laser microbeam and optical tweezers: from plant cells to single molecules. J Micro, 2000,198:182-187
    
    80. Guern J, Felle H, Mathieu Y, Yarkdjian A. Regulation of intercellular pH in plant cells. Int Rev Cytol, 1991,127:111-173
    
    81. Gunse B, Llugany M, Poschenrieder C, Barcelo J. Simultaneous and continuous measurement of root and shoot extension growth with a computerized linear displacement transducer system. Plant Physiol Biochem, 1992, 30:499-504
    
    82. Hamel F, Breton C, Houde M. Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogensis response elicitor. Planta, 1998,205:531-538
    
    83. Haug A and Shi B. Biochemical basis of aluminium tolerance in plant cells. In: Wright RJ, Baligar VC, Murrmann RP, eds. Plant-soil interactions at low pH. Dordrecht: Kouwer Academic Publishers, 1991, 839-850
    
    84. Haug A, Caldwell Cr. Aluminum toxicity in plants: the role of the root plasma membrane and calmodulin. In: JohnSt JB, Berlin E, Jackson PC, eds. Frontiers of Membrane Reasearch in Agriculture, Beltscille Symp. 9. Totowa USA: Rowman & Allanheld, 1985, 359-381
    
    85. Haug A, Shi B, Vitroello V. Aluminum interaction with phosphoinositide-associated signal transduction. Arch Toxicol, 1994, 68:1-7
    
    86. Haug A. Molecular aspects of aluminum toxicity. Crit Rev plant Sci, 1984,1:345-373
    
    87. Haussling M, Joras CA, Lehmbecker G, Hecht-Buchholz C, Marschner H. Ion and water uptake in relation to root development in Norway sprece (Picea abies (L.) Karst). J Plant Physiol, 1988, 133:486-491
    
    88. Hawes C, Crooks K, Coleman J, Satiat-Jeunemaitre B. Endocytosis in plants: fact or artifact? Plant Cell Environ, 1995,18:1245-1252
    
    89. Hecht-Buchholz CH, Shuster J. Responses of Al-tolerant Dayton and Al-sensitive Kearney barley cultivars to calcium and magnesium during Al stress. Plant Soil, 1987, 99: 47-61
    
    90. Henderson M, Ownby JD. The role of root cap mucilage secretion in aluminum tolerance in wheat. Curr Top Plant Biochem Physiol, 1991,10:134-141
    
    91. Herrmann A, Felle HH. Tip growth in root hair cells of Sinapis alba L. Significance of internal and external Ca~(2+) and pH. New Phyto, 1995,129:523-533
    
    92. Hodson MJ and Wilkins DA. Localization of aluminum in the roots of Norway spruce (Picea abies (L.) Karst) inoculated with Paxillus incolutus Fr. New Phyto, 1991,118:273-278
    
    93. Holdaway-Clarke TL, Feijo JA, Hackett GR, Kunkel JG, Hepler PK. Pollen tube growth and the intracellular Cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell, 1997, 9:1999-2010
    
    94. Holdway-Clarke TL, Walker NA, Hepker PK, Overall RL. Physiological wlevation in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plsmodesmata. Planta, 2000, 210:329-335
    
    95. Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M. Dose aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil, 1999, 215:163-174
    
    96. Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M. Dose aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil, 1999, 215:163-174
    
    97. Horst WJ, Wagner A, Marschner H. Mucilage protects root meristems from aluminum injury. J Plant Physiol, 1982,105:435-444
    
    98. Horst WJ. The role of the apoplast in aluminum toxicity and resistance of higher plants: a review. J Plant Nutr Soil Sci, 1995,158:419-428
    
    99. Huang JW, Grunes DL, Kochian LV. Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. Quantification of calcium fluxes using a calcium-selective vibrating microelectrode. Planta, 1992a, 188:414-421
    
    100. Huang JW, Shaff JE, Grunes DL, Kochian LV. Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol, 1992b, 98:230-237
    
    101. Huang JW, Pellet DM, Papernik LA, Kochian LV. Aluminum interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and -resistant wheat cultivars. Plant Physiol, 1996,101:561-569
    
    102. Huett DO, Menary RC. Aluminum distribution in freeze dried roots of cabbage, lerrule and kikuyu grass by energy dispersive X-ray emission microanalysis. Aust J Plant Physiol, 1980,7:101-111
    
    103. Hult M, Bengtsson B, Larsson NPO. Yang C. Particle induced X-ray emission microanalysis of root sample from beech (Fagus sylvatica). Scann Microsc, 1992, 6:581-590
    
    104. Ingemarsson BSM. Ethylene effects on peroxidases and cell growth patterns in Piceo abeas hypocotyls cuttings. Physiol Plant, 1995,94:211-218
    
    105. Ishikawa S, Wagatsuma T. Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant. Plant Cell Physiol, 1998, 39(5):516-525
    
    106. Ishikawa S, Wagatsuma T. Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant. Plant Cell Physiol, 1998, 39(5):516-525
    
    107. Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol, 1999,57:231-245
    
    108. Jan F, Yamashita K, Matsumoto H, Maeda M. Protein and peroxidase changes in various root-cell fractions of two upland rice cultivars differing in Al tolerance. Environ Exp Bot, 2001, 46:141-146
    
    109. Jentschke G, Schlegel H, Godbold DL. The effect of aluminum on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol Plant, 1991, 82:266-270
    
    110. Jian LC, Li JH, Chen WP, Li PH, Ahlstrand GG Cytochemical localization of calcium and Ca~(2+) -ATPase activity in plant cells under chilling stress: a comparative study between the chilling-sensitive maize and the chilling-insensitive winter wheat. Plant Cell Physiol, 1999, 40:1061-1071
    
    111. Jiang MY and Zhang JH. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002,53:2401-2410
    
    112. Jones DL, Kochian LV, Gilroy S. Aluminum induces a decrease in Cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol, 1998a, 116:81-89
    
    113. Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV. Effect of aluminum on cytoplasmic Ca~(2+) homeostasis in root hairs of Arabidopsis thaliana (L.). Planta, 1998b, 206:378-387
    
    114. Jones DL, Kochian LV. Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: a role in Al toxicity? Plant Cell, 1995, 7:1913-1922
    
    115. Jones DL, Kochian LV. Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Letters, 1997, 400:51-57
    
    116. Jones DL, Shaff JE, Kochian LV. Roel of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. I . Inhibition of tip growth by aluminum. Planta, 1995,197:672-680
    
    117. Jorge RA, Menossi M, Arruda P. Probing the role of calmodulin in Al toxicity in maize. Phytochemistry, 2001, 58:415-422
    
    118. Kawano T, Kadono T, Furuichi T, Muto S, Lapeyrie F. Aluminum-induced distortion in calcium signaling involving oxidative bursts and channel regulation in tobacco BY-2 cells. Biochem Biophys Res Commu, 2003, 308:35-42
    
    119. Keltjens WG. Magnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchanges sites. Plant Soil, 1995,171:141-146
    
    120. Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J. The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L). J Exp Bot, 2001,52:1339:1352
    
    121. Kiegle E, Gilliham M, Haseloff J, Tester M. Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J, 2000, 21:225-229
    
    122. Kinraide TB, Parker DR. Cation amelioration of aluminum toxicity in wheat. Plant Physiol, 1987, 83:546-551.
    
    123. Kinraide TB, Ryan PR, Kochian LV. Interactive effects of A13+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 1992 99:1461-1468
    
    124. Kinraide TB, Ryan PR, Kochian LV. Al~(3+)-Ca~(2+) interaction in aluminum rhizotoxicity . II. Evaluating the Ca~(2+)-displacement hypothesis. Planta, 1994,192:104-109
    
    125. Kinraide TB. Use of Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some feature of mineral thizotoxicity. Plant Physiol, 1994,106:1583-1592
    
    126. Kinraide TB. The mechanisms for the Calcium alleviation of mineral toxicity. Plant Physiol, 1998, 118:513-520
    
    127. Kinraide TB. Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al~(3+) and H~+ and insufficient Ca~(2+) and Mg~(2+) upon root elongation. Plant Soil, 2003, 54:323-333
    
    128. Kinraide TB, Pelder JF, Parker DR. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil, 2004,259:201-208
    
    129. Klimashevskii EL and Dedov VM. Location of the mechanism of growth-inhibition action of Al~(3+) in elongation cell walls. Soviet Plant Physiol. 1975, 22:1040-1046
    
    130. Klusener B, Weiler EW. A calcium-selective channel from root-tip endomembranes of garden cress. Plant Physiol, 1999,119:1399-1405
    
    131. Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol, 2002,130:2152-2163
    
    132. Knight MR, Campbell AK, Smith SM, Trewavas AJ. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 1991,352:524-526
    
    133. Knight MR, Smith SM, Trewavas AJ. Wind-induced plant motion immediately increases Cytosolic calcium. Proc Natl Acad Sci USA, 1992, SA89:4967-4971
    
    134. Knight MR, Read ND, Campbell AK, Trewavas AJ. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol, 1993,121:83-90
    
    135. Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 1996, 8:489-503
    
    136. Knight H, Trewavas AJ, Knight MR. Calcium signaling in Arabiposis thaliana responding to drought and salinity. Plant J, 1997,12:1067-1078
    
    137. Knight H, Brandt S, Knight MR. A history of stress alters drought calcium signaling pathways in Arabidopsis. Plant J, 1998,16:681-687
    
    138. Knight H. Calcium signaling during abiotic stress in plants. Inter Rew Cell Bio, 2000,195:269-324
    
    139. Knight MR. Signal transduction leading to low-temprature tolerance in Arabidopsis thaliana. Philoso Trans Royal Soci Lodon, Series B, 2002,357:871-875
    
    140. Kochian LV. Cellular mechanism of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1995,46:237-260
    
    141. Kopka J, Pical C, Gray JE, Muller-Rober B. Molecular and enzymatic characterization of three phosphoinoside-specific phospholipase C isoforms form potato. Plant Physiol, 1998,116:239-250
    
    142. Kuo MC and Kao CH. Aluminum effects on lipid peroxidative enzyme activities in rice leaves. Biol Plant, 2003,46(1):149-152
    143. Lance JC, and Peaeson RW. Effect of low concentrations of aluminum on growth and water and nutrient uptake by cotton roots. Soil Sci Soc Amer Proc, 1996, 33:95-98
    
    144. Larkindale J, Knight MR. Proection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abascisic acid, ethylene and salicylic acid. Plant Physiol, 2002,128:682-695
    
    145. Lazof DB and Holland MJ. Evaluation of the aluminum-induced root growth inhibition in isolation from low pH effects in Glycine max, Pisum sativum and Phaseolus vulgaris. Aust J Plant Physiol, 1999, 26:147-157
    
    146. Lazof DB, Goldsmith JG, Rufty TW, Linton RW. Rapid uptake of aluminum into cells of soybean root tips. Plant Physiol, 1994a, 106:1107-1114
    
    147. Lazof DB, Rincon M, Rufty TW, Mactown CT, Carter TE. Aluminum accumulation and associated effects on ~(15)NO~- influx in roots of two soybean genotypes differing in Al tolerance. Plant Soil, 1994b, 164:291-297
    
    148. Lazof DB, Goldsmith JG, Rufty TW and Linton RW. The early entry of Al into cells of intact soybean roots - A comparison of three developmental root regions using secondary ion mass spectrometry imaging. Plant Physiol, 1996,112:1289-1300.
    
    149. Le Van H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol, 1994,106:971-976
    
    150. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. Analysis and effects of Cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell, 2002, 14:2627-2641
    
    151. Legue V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S. Cytoplasmic Ca~(2+) in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol, 1997,114:789-800
    
    152. Lin CC and Kao CH. Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. J Plant Physiol, 2001,158:667-671
    
    153. Lindberg S, Szynkier K, Greger M. aluminum effects on transmembtane potential in cells of fibrous roots of sugar beet. Physiol Plant, 1991,83:54-62
    
    154. Lindberg S and Strid H. Aluminum induces rapid changes in Cytosolic pH and free calcium and potassium concentrations in root protoplast of wheat (Triticum aestivum). Physiol Plant, 1997, 99:404-414
    
    155. Liu K and Luan S. Internal aluminum block of plant inward K~+ channels. Plant Cell, 2001, 13:1453-1465
    
    156. Llugany M, poschenrieder C, Barcelo J. Monitoring of aluminium-induced inhibition of root elongation in four cultivars differing in tolerance to aluminium and proton toxicity. Physiol Plant, 1995,93:265-271
    
    157. Lu EY, Sucoff SP. Responses of quaking aspen seedlings to solution calcium and aluminum. J Plant Nutr, 2003,26:97-123
    
    158. Ma JF, Shen RF, Nagao S, Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant cell Physiol, 2004,45(5):583-589
    
    159. Ma LG, Fan QS, Yu ZQ, Zhou HL, Zhang FS, Sun DY. Does aluminum inhibit pollen germination via extracellular calmodulin? Plant Cell Physiol, 2000,41(3):372-376
    
    160. Ma QF, Rengel Z, Kuo J. Aluminum toxicity in rye (Secale cereale): root growth and dynamics of cytoplasmic Ca~(2+) in intact root tips. Ann Bot-London, 2002, 89:241-244
    
    161. MacDonald TL, Humphreys WG, Martin RB. Ptomotion of tubulin assembly by aluminum ion in vitro. Science, 1987,236:183-186
    
    162. Malho R, Trewavas AJ. Localized apical increases of Cytosolic free calcium control pollen tuve orientation. Plant Cell, 1996, 8:1935-1949
    
    163. Marienfeld S and Stelzer R. X-ray microanalysis in roots of Al-treated Avena sativa plants. J Plant Physiol, 1993,141:569-573
    
    164. Marienfeld S, Lehmann H, Stelzer R. Ultrastructural investigations and EDX-analyses of Al-treated oat (Aven asativa) roots. Plant Soil, 1995,171:167-173
    
    165. Marschner H. Mineral nutrition of higher plant. 2an ed. Lodon; Academic press
    
    166. Martin RB. Bioionrganic chemistry of aluminum. In: Sigel H, ed. Metal Ions in Biological System. Vol. 24. Aluminum and its Role in Biology. New York: Marcel Dekker, 1988,1-57
    
    167. Martinez-Estevez M, Palma GR, Munoz-Sanchez JA, Brito-Argaez L, Loyola-vargas VM, Hernandez-Sotomayor SMT. Aluminum differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells. J Plant Physiol, 2003,160:1297-1303
    
    168. Masion A, Bertsch PM. aluminium speciation in the presence of wheat root cell wall: a wet chemical study. Plant Cell Environ, 1997, 20:504-512
    
    169. Matsumoto H, Yamaya Y. Inhibition of potassium uptake and regulation of membrane-associated Mg~(2+)-ATPase activity of pea roots by aluminum. Soil Sci Plant Nutr, 1986, 32:179-188
    
    170. McAinsh MR, Clayton H, Mansfield TA, Hetherington AM. Changes in Stomatal behavior and guard cell Cytosolic free calcium in response to oxidative stress. Plant Physiol, 1996, 111:1031-1042
    
    171. McDonald-Stephens JL and Taylor GJ. Kinetics of aluminum uptake by cell suspensions of Phaseolus vulgairs L. J Plant Physiol, 1995,145:327-334
    
    172. McDonald-Stephens JL, Taylor GJ. Kinetics of aluminum uptake by cell suspensions of Phaseolus vulgaris L. J Plant Physiol, 1995,145:327-334
    
    173.Meiwas KJ, Khanna PK, and Ulrich B. Parameters for describing soil acidification and their relevance to the stability of forest ecosystems. Forest Ecol Manag, 1986,15:161-179
    
    174. Miedema H, Bothwell JHF, Brownlee C, Davies JM. Calcium uptake by plant cells-channels and pumps acting in concert. Trends Plant Sci, 2001,6:514-519
    
    175. Milivojevic D and Stojanovic D. Role of calcium in aluminum toxicity on content of pigments and pigment-protein complexes of soybean. Inter J Dairy Tech. 2003, 26:341-350
    
    176. Mistrik I, Tamas L, Hurrova, Gejdosova V. Accumulation of microsomal polupeptides in barley roots during aluminium stress. Biol Plant, 2002,45(3):417-421
    
    177. Mitter, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7:405-410.
    
    178. Miyasaka SC, Buta JG, Howell RK, Foy CD. Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol, 1991, 96:737-743
    
    179. Moller IM. Plant mitochondria and oxidatives stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:561-591
    
    180. Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ. The deposition of suberin lamellae determines the magnitude of Cytosolic Ca~(2+) elevations in root endodermal cells subjected to cooling. Plant J, 2002, 30:457-465
    
    181. Mori IC and Schroeder JI. Reactive oxygen species activation of plant Ca~(2+) channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol, 2004,135:702-708
    
    182. Morsomme P and Boutry M. The plant plasma membrane H~+-ATPase: structure, function and regulation. Biochem Biophy Acta, 2000,1465:1-16
    
    183. Murata Y, Pei ZM, Mori IC, Schroeder J. Abscisic acid activation of plasma membrane Ca~(2+) channels in guard cells requires Cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-1 protein Phosphatase 2C mutants. Plant cell, 2001,13:2513-2523
    
    184. Murphy T M. Ca~(2+) dependence and La~(3+) interference of ultra violet radiation-induced K~+ efflux from rose cells. Physiol Plant, 1988, 74:537-543
    
    185. Nagy NE, Dalen LS, Jones DL, Swensem B, Fossdal CG, Eldhuset TD. Cytological and enzymatic responses to aluminum stress in root tips of Norway spruce seedlings. New Phyto, 2004, 163:595-607
    
    186. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot, 2002,53:1237-1247
    187. Nicholo BE, Oliveira LA. Effects of aluminum on the growth and distribution of calcium in roots of an aluminum-sensitive cultivar of barley (Hordeum vulgare). Can J Bot, 1995,73:1894-1858
    
    188. Noctor G, Foyer CH. Ascorbate and glutathione keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:249-279
    
    189. Noun PA and Greddy GB. Influence of acid rain and ozone on heavy metals under loblolly pine trees: a field study. Plant Soil, 1995,171:59-62
    
    190. Overmyer K, Brosche M, Kangasjarvi J. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci, 2003,8:335-342
    
    191. Ownby JD, and Popham HR. Citrate reverses the inhibition of wheat root growth caused by aluminum. J Plant Physiol, 1989,135:588-591
    
    192. Ownby JD, Hruschka WR. Quantitative changes in cytoplasmic and microsomal proteins associated with aluminium toxicity in two cultivars of winter wheat. Plant Cell Environ, 1991,14:303-309
    
    193. Ownby JD. Mechanisms of reaction with aluminum-treated roots. Physiol Plant, 1993, 87:371-380
    
    194. Ozaki S, DeWald DB, Shope JC, Chen J, Prestwich GD. Intracellular delivery of phosphoinositides and insitol phosphates using polyamine carries. Proc Natl Acad Sci USA, 2000,97:11286-11291
    
    195. Pan JW, Zhu MY, Chen H. Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot, 2001, 46:71-79
    
    196. Pandey S, Tiwari SB, Upadhyaya KC, Sopory SK. Calcium signaling: linking environmental signals to cellular functions. Crit Rev Plant Sci, 2000,19:291-318
    
    197. Parker DR. Root growth analysis: an underutilized approach to understanding aluminum rhizotoxicity. Plant Soil, 1995,171:151-157
    
    198. Pedreira J, Sanz N, Pena MJ, Sanchez M, Queijeiro E, Revilla G, Zarra I. Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant Cell Physiol, 2004,45:530-534
    
    199. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000,406:731-734
    
    200. Peixoto PHP, Cambraia J, SantAnna R, Mosquim PR, Moreira MA. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg, 1999,11 (3): 137-143.
    
    201. Pellet DM, Papernik LA, Kochian LV. Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol, 1996,112:591-7
    
    202. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J, 2002,32:539-548
    
    203. Pettersson CA. Exodermal casparian bands: their significance for ion uptake by roots. Physiol Plant, 1988, 72:204-208
    
    204. Pettersson S, Steid H. Effects of aluminum on growth and kinetics of K~+(~(86)Rb) uptake in two cultivars of wheat (Triticum aestivum) with different sensitivity to aluminum. Physiol Plant, 1989, 76:255-261
    
    205. Pignocchi C and Foyer CH. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol, 2003, 6:379-389
    
    206. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH. The function of ascorbate oxidase (AO) in tobacco (Nicotiana tabacum L.) Plant Physiol, 2003,132:1631-1641
    
    207. Pineros ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell, 1994,6:1815-1828
    
    208. Pineros M and tester M. Characterisation of a voltage-dependent Ca~(2+) -sensitive channel form wheat roots. Planta, 1995,195:478-488
    
    209. Pineros M and Tester M. Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J Exp Bot, 1997, 48:551-577
    
    210. Plieth C, Sattelmacher B, Hansen UP, Knight MR. Low-pH-mediated elevations in Cytosolic calcium are inhibited by aluminum: a potential mechanism for aluminum toxicity. Plant J, 1999, 18:643-650
    
    211. Plieth C. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma, 2001, 218:1-23
    
    212. Poovaiah BW, Reddy ASN. Calcium messenger system in plants. Crit Rev Plant Sci, 1987, 6:47-103
    
    213. Potters G, Horemans N, Caubergs RJ, Asard H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol, 2000,124:17-20
    
    214. Powell MJ, Davies MS, Francis D. The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and a non-tolerant cultivar of Festuca rubra L. New Phyto, 1986,102:419-428
    
    215. Price AH, Allan WTG, Knight H, Knight MR, Malho R, Russell A, Shacklock PS, Trewavas AJ. Imaging and measurement of Cytosolic free calcium in plant and fungal cells. J Microsc, 1992, 166:57-86
    
    216. Price AH, Taylor A, Ripley SJ, Griffiths A, Knight MR. Oxidative signals in gobacco increase Cytosolic calcium. Plant Cell, 1994, 6:1301-1310
    217. Puthota V, Cruz-Ortega R, Johnson J. Ownby JD. An untrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminum. In: Wright RJ, Baligar VC, Murrmann RP. Eds. Plant-soil interaction at low pH. Dordrecht: Kluwer Academic Publisher, 779-787
    
    218. Rasmussen HP. Entry and distribution of aluminum in zea mays: Electron microprobe X-ray analysis. Planta, 1868,81:28-37
    
    219. Read ND, Allan WTG Knight H, Knight MR, Malho R, Russell A, Shaddock PS, Trewavas AJ. Imaging and measurement of Cytosolic free calcium in plant and fungal cells. J Microsc, 1992, 166:57-86
    
    220. Reid RJ, Tester M, Smith FA. Calcium/aluminum interaction in the cell wall and plasma membrane of Chara. Planta, 1995,195:362-368
    
    221. Reid RJ, Brookes JD, Tester MA, Smith FA. The mechanism of zinc uptake in plants: characterization of the low-affinity system. Planta, 1996a,198:39-45
    
    222. Reid RJ, Rengel Z, Smith FA. Membrane fluxes and comparative toxicities of aluminum, scandium and gallium. J Exp Bot, 1996b, 47:1881-1888
    
    223. Rengel Z and Robinson DL. Aluminum and plant age effects on adsorption of cation in the Donnan free space of ryegrass roots. Plant Soil, 1989b, 116:223-227
    
    224. Rengel Z. Disturbance of cell Ca~(2+) homeostasis as a primary trigger of Al toxicity syndrome. Plant Cell Environ, 1992a, 15:931-938
    
    225. Rengel Z and Elliott DC. Mechanism of aluminum inhibition of net ~(45)Ca~(2+) uptake by Amaranthus protoplast. Plant Physiol, 1992, 98:632-638
    
    226. Rengel Z. Role of calcium in aluminum toxicity. New Phyto, 1992b, 121:499-531
    
    227. Rengel Z. The role of calcium in salt toxicity. Plant Cell Environ, 1992c, 15:625-632
    
    228. Rengel Z. Effects of Al, rare earth elements and other metals on net ~(45)Ca~(2+) uptake by Amaranthus protoplast. J Plant Physiol, 1994,143:47-51
    
    229. Rengel Z, Pineros M. Tester M. Transmembrane calcium fluxes during Al stress. Plant Soil, 1995, 171:125-130
    
    230. Rengel Z. Tansley Review, 89: Uptake of aluminum by plant cells. New Phyto, 1996,134:389-406
    
    231. Rengel Z. Relationship between Cytosolic calcium activity and toxicity of aluminum to plant cells. In: International symposium on impact of potential tolerance of plants on the increased productivity under aluminum stress. Institute for Bioresources, Okayama University, Kurashiki, Japan, 2000, 15-18
    
    232. Rengel Z and Zhang WH. Role of dynamics of intracellular calcium in aluminum-toxicity syndrome. New Phyto, 2003,159:295-314
    233. Rentel M and Knight MR. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol, 2004,135:1471-1479
    
    234. Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol, 1998,116:409-418
    
    235. Rincon M, Gonzales RA. Aluminum partition in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol, 1992, 99:1021-1028
    
    236. Rodriguez and Cardemil. Tissue specific expression of cell wall proteins of seedlings of Prosopis chilecsis during development and wound stress. Physiol Plant, 1995,93:457-463
    
    237. Roos W. Ion mapping in plant cells-methods and applications in signal transduction research. Planta, 2000, 210:347-370
    
    238. Roy SJ, Holdaway-Clarke TL, Hachett GR, Kunkel JG, Lord EM, Hepler PK. Uncoupling secretion and tip growth in lily pollen rubes: evidence for the role of calcium in exocytosis. Plant J, 1999, 19:379-386
    
    239. Rudd JJ, Franklin-Tong VE. Calcium signaling in plants. Cell Mol Life Sci, 1999, 55:214-232
    
    240. Rufyikiri G, Dufey JE, Achard R, Delvaux B. Cation exchange capacity and aluminum-calcium-magnesium binding in roots of bananas cultivated in soils and in nutrient solutions. Commun Soil Sci Plant Anal, 2002,33:991-1009
    
    241. Ryan PR, Shaff JE, and Kochian LV. Aluminum toxicity in roots: correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol, 1992, 99:1193-1200
    
    242. Ryan PR Kochian LV. Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance. Plant Physiol, 1993,102:975-982
    
    243. Ryan PR, Ditomaso JM, Kochian LV. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot, 1993,44:437-446
    
    244. Ryan PR, Reid RJ, Smith FA. Direct evaluation of the Ca~(2+) -displacement hypothesis for Al toxicity. Plant Physiol, 1997,113:1351-1357
    
    245. Schmohl N, Horst WJ. Cell wall pectin content modulates aluminum aensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Physiol, 2000, 23:735-742
    
    
    246. Schofield RMS, Pallon J, Fiskesjo G, Karlsson G, Malmqvist KG Aluminun and calcium distribution patterns in aluminum-intoxicated roots of Allium cepa do not support the calcium-displacement hypothesis and indicate signal-mediated inhibition of root growth. Planta, 1998, 205:175-180
    247. Schroeder JL, Ward JM, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K~+ channels in higher plants: Biophysical implications for K~+ uptake. Annu Rev Biophys Biomol Struct, 1994, 23:441-471
    
    248. Schwarzerova K, Zelenkova S, Nick P, Opatrny Z. Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant cell Physiol, 2002,43(2):207-216
    
    249. Seldbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH. Transgenic aequorin reveals organ-specific Cytosolic Ca~(2+) responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol, 1996,111:243-257
    
    250. Sharp RE, Slik WK, Hsiao TC. Growth of the maize primary root at low water potentials. Plant Physiol, 1988, 87:50-57
    
    251. Shen RF and Ma JF. Distribution and mobility of aluminum in an Al-accumulating plant, Fagopyrum esculentun Moench. J Exp Bot, 2001, 52:1683-1687
    
    252. Shen RF, Ma JF, Kyo M, Iwashita T. Compartmentation of aluminum in leaves of an Al-accumulator, Fagopyrun esculentum Monench. Planta, 2002,215:394-398
    
    253. Shen ZG, Wang JL. Effect of aluminum and calcium on growth of wheat seedlings and germination of seeds. J Plant Nutr, 1993,16:2135-2148
    
    254. Shortle WC, Smith KT. Aluminum-induced calcium deficiency syndrome in declining red spruce. Science, 1988,240:1017-1018
    
    255. Siegel N and Haug A. Calmodulin-dependent formation of membrane potential in barley root plasma membrant vesicles: a biochemical model of aluminum toxicity in plants. Physiol Plant, 1983a, 59:285-291
    
    256. Siegel N and Haug A. Aluminum interaction with calmodulin. Evidence for altered structure and function form optical and enzymatic studies. Biochem Biophys Acta, 1983b, 744:35-45
    
    257. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW. Aluminum accumulation at nuclei of cells in the root tip: Fluorescence detection using lumogallion and Confocal laser scanning microscopy. Plant Physiol, 2000,123:543-552.
    
    258. Silva IR, Smyth TJ, Israel DW, Rufty TW. Altered aluminum inhibition of soybean root elongation in the presence of magnesium. Plant Soil, 2001a, 230:223-230.
    
    259. Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW. Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chaman-Stera model. Plant Cell Physiol, 2001b, 538-545
    
    260. Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW. Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant Cell Physiol, 2001c, 546-554
    
    261. Simonocova M, Tamas L, Huttova J, Mistrik I. Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol Plant, 2004, 48(2):261-266
    
    262. Sivaguru M, Horst WJ. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol, 1998,116:155-163
    
    263. Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol, 1999a, 119:1073-1082
    
    264. Sivaguru M, Yamamoto Y, Matsumoto H. Differential impacts of aluminum on microtubule organization depends on growth phase in suspension-cultured tobacco cells. Physiol Plant, 1999b, 107:110-119
    
    265. Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang ZM.Osawa H, Maeda T, Mori T, Volkmann D, Mutsumoto H. Aluminum-induced 1,3-β-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol, 2000, 124:991-1005
    
    266. Sivaguru M, Pike S, Gassmann W, Baskin TI. Aluminum Rapidly Depolymerizes Cortical Microtubules and Depolarizes the Plasma Membrane: Evidence that these Responses are mediated by a Glutamate Receptor. Plant Cell Physiol, 2003a, 44(7):667-675
    
    267. Sivaguru MS, Ezaki B, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol, 2003b, 132:2256-2266
    
    268. Slaski JJ. NAD~+ kinase activity in root tips of nearly isogenic lines of wheat (Triticum aestivum L.) that differ in their tolerance to aluminum. J Plant Physiol, 1995,145:143-147
    
    269. Somers DJ, Keith G Briggs, Gustafson JP. Aluminum stress and protein synthesis in near isogenic lines of Triticum aestivum differing in aluminum tolerance. Physiol Plant, 1996, 97:694-700
    
    270. Tabuchi A and Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant, 2001,112:353-358
    
    271. Tamas L, Huttova J, Mistrid I. Inhibition of Al-induced root elongation and enhancement of Al-induced peroxidase activity in Al-sensitive and Al-resistant barley cultivars are positively correlated. Plant Soil, 2003,250:193-200
    
    272. Tamas L, Simonovi-cova M, Huttova J, Mistrik I. Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot, 2004,51:281-288
    
    273. Taylor GJ. Overcoming barriers to understanding the cellular basis of aluminum resistance. Plant Soil, 1995,171:89-103
    
    274. Taylor GJ, Basu A, Basu U, Slaski J, zhang GC, and Good A. Al-induced, 51-kilodalton, membrane-bound proteins are associated with resistance to Al in a segregating population of wheat. Plant Physiol, 1997,114:363-372
    
    275. Taylor GJ, Hepler PK. Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol, 1997,48:461-491
    
    276. Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ. Direct measurement of aluminum uptake and distribution in single cells of Char a corellina. Plant Physiol, 2000,123:987-996
    
    277. Thion L, Mazars C, Nacry P, Bouchez D, Mreau M, Ranjeva R, Thuleau P. Plasma membrane depolarization-activated calcium channels, stimulated by mivrotubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display consitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules, Plant J, 1998, 13:603-610
    
    278. Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R. Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Letter, 1996, 393:13-18
    
    279. Tice KR, Parker DR, Demason A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol, 1992,100:309-318
    
    280. Trewavas AJ and Malho R. Signal perception and transduction: the origin of the phenotype. Plant Cell, 1997,9:1181-1195
    
    281. Very AA, Davies JM. Hyperpolarization-activated calcium channels at the tip of arabidopsis root hairs. Proc Natl Acad Sci USA, 2000,97:9801-9806
    
    282. Vranova E, Inze D, Breusegem FV. Signal transduction during oxidative stress. J Exp Bot, 2002, 53:1227-1236
    
    283. Wagatsuma T. Characteristics of upward translocation of aluminum in plants. Soil Sci Plant Nutr, 1984, 30:345-358
    
    284. Ward JM, Pei ZM, Schroeder JI. Role of ion channels in initiation of signal transduction in higher plants. Plant Cell, 1995,7:833-844
    
    285. Watanabe T and Okada K. Interactive effects of Al, Ca and other cations on root elongation of rice cuntivars under low pH. Ann Bot-London, 2005, 95:379-385
    
    286. Webb AAR, McAinsh MR, Taylor JE, Hetherington AM. Calcium of signal transduction in higher plants. Adv Bot Res, 1996, 22:45-96
    287. Weiss C and Haug A. Aluminum-induced conformation changes in calmodulin after the dynamics of interaction with melittin. Arch Biochem Biophys, 1987, 254:304-312
    
    288. Wheeler DM, Edmeades DC. Effect of ionic strength on wheat yield in the presence and absence of aluminum. In: Date RA, Grundon NJ, Rayment GE, Probert ME, editors. Plant-Soil Interactions at Low pH. Kluwer Academic Publishers, 1995. p 623-6.
    
    289. White PJ. Calcium channels in the plasma membrane of rye roots. J Exp Bot, 1997, 48:499-514
    
    290. White PJ. Calcium channels in the plasma membrane of root cells. J Exp Bot, 1998, 81:173-183
    
    291. White PJ, Pineros M, Tester M, Ridout MS. Cation permeability and selectivity of a root plasma membrane calcium channel. J Membrane Biol, 2000,174:71-83
    
    292. White PJ, Davenoport RJ. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in Cytosolic Ca~(2+) homeostasis. Plant Physiol, 2002,130:1386-1395
    
    293. Wymer CL, Bibikova TN, Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J, 1997,12:427-439
    
    294. Yamamoto Y, Rikiishi S, Chang Y-C, Ono K, Kasai M, Matsumoto H. Quantitative estimation of aluminum toxicity in cultured tobacco cells: correlation between aluminum uptake and growth inhibition. Plant Cell Physiol, 1994,35:575-583
    
    295. Yamamoto Y, Masamoto K, Rikiishi S, Hachiya A, Yamaguchi Y, Matsumoto H. Aluminum tolerance acquired during phosphate starvation in cultured tobacco cells. Plant Physiol, 1996, 112:217-227
    
    296. Yamamoto Y, Hachiya A, Matsumoto H. Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol, 1997, 38:1333-1339
    
    297. Yamamoto Y, Kobayashi Y, Devi R, Rikiishi S, Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol, 2002,128(1):63-72
    
    298. Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. Oxidative stress triggered by aluminum in plant roots. Plant Soil, 2003,255:239-243
    
    299. Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol, 2001, 125:199-208
    
    300. Yang SC, Tepper HB, Schaedle M. Localization of Al in roots of Honeylocust and loblolly pine using Al-26 and hematosxylin. Albios Proj Rep, 1988.
    
    301. Yang YH, Chen SM, Abdullahi BA. Alleviation effect of different ratios of Al to Ca on Al toxicity formorphological growth of mungbean seedling. J Plant Nutr. 2001, 24(3): 573-583
    302. Yermiyahu U, Brauer DK, Kinraide TB. Sorption of aluminum to plasma membrane vesicles isolated from roots of Scout 66 and Atlas 66 cultivars of wheat. Plant Physiol, 1997, 115: 1119-25
    303. Zhang G, Taylor GJ. Effects of biological inhibition on kinetics of aluminum uptake by excised roots and purified cell wall material of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. J Plant Physiol, 1991, 138: 533-539
    304. Zhang G, Taylor GJ. Effects of biological inhibition on kinetics of aluminum uptake by excised roots and purified cell wall material of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. J Plant Physiol, 1991, 138: 533-539
    305. Zhang G, Taylor GJ. Kinetics of aluminum uptake by excised root of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol, 1989, 91: 1094-1099
    306. Zhang WH, Rengel Z, Kuo J. Determination of intracellular Ca~(2+) in cells of intact wheat roots: Loading of aceroxymethyl eater of Fluo-3 under low temperature. Plant J, 1998, 15: 147-151
    307. Zhang WH and Rengel Z. Aluminum induces an increase in cytoplastic calcium in intace wheat root apical cells. Aust J Plant Physiol, 1999, 26: 401-409
    308. Zhao XJ, Sucoff E, Stadelmann EJ. Al~(3+) and Ca~(2+) alteration of membrane permeability of Quercus rebra root cortex cells. Plant Physiol, 1987, 83: 159-162
    309. Zysset M, Brunner I, Frey B, and Blaser P. Response of European chestnut to varying calcium/aluminum ratios. J Environ Qual, 1996, 25: 702-708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700