用户名: 密码: 验证码:
平台罗经系统控制原理及微机故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平台罗经属自主式导航设备,能够隔离外界干扰,是舰船导航的重要手段。微机系统是平台罗经的控制中心,本文在分析了平台罗经工作原理和微机系统组成的基础上,分别提出了基于FPGA和基于LabVIEW虚拟仪器的平台罗经微机故障检测系统两种设计方法。具体内容如下:
     1、分析了地球自转对自由陀螺的影响,对陀螺主轴运动轨迹作了Matlab仿真,并分析了采用下摆式方法,变自由陀螺为陀螺罗经,通过Matlab仿真验证其可行性;同时在陀螺罗经无阻尼振荡方程基础上,分析了采用垂直阻尼方案使陀螺主轴迅速收敛的数学模型,并通过Matlab仿真验证其可行性。
     2、针对某型力矩电机参数,建立了力矩电机数学模型。在力矩电机数学模型基础上,建立了稳定回路数学模型,分析了未校正稳定回路稳定性。在未校正网络中加入超前校正和滞后校正,并建立了校正后网络数学模型,应用Matlab仿真校正前与校正后的开环传递函数Bode图和单位阶跃响应,分析其稳定性。
     3、介绍了某型平台罗经微机系统组成、功能及各部分功能模块的实现方法。分析了开发平台罗经微机故障检测系统的必要性和可行性,针对基于PC-104总线标准的微机系统各部分功能和组成,建立了基于FPGA的某型平台罗经微机故障检测系统,FPGA的软件开发应用VHDL硬件描述语言,开发的FPGA片内功能模块包括:针对D/A转换板测试,设计了A/D采样控制;针对I/O板串行通信模块测试,设计了UART控制器;针对I/O板并行通信模块测试,设计了FIFO存储器;针对A/D转换板测试,设计了光电编码器脉冲计数器;针对PC机分配给各外设的地址,设计了地址分配器。最后应用Visual C++语言开发了平台罗经微机测试系统软件。
     4、虚拟仪器具有许多传统仪器无法比拟的优势,是今后测试仪器地发展趋势。本论文具体论述了建立了基于LabVIEW虚拟仪器的平台罗经微机故障检测系统的过程。首先建立了基于PCI数据采集卡的硬件系统组成,最后应用LabVIEW图形编程语言设计系统软件,并设计了用户操作界面。
Stabilized Gyrocompass is a kind of autonomous navigation equipment which can be separated from environment disturbance,and it is an important instrument for ships navigation. The microcomputer system is the center controller of the Stabilized Gyrocompass system. In this article, firstly the author introduces working principle of Stabilized Gyrocompass and the form of microcomputer system, and then two kinds of fault detection design projects for Stabilized Gyrocompass’s microcomputer system are given up in order. One design project is based on FPGA technology and another one is based on LabVIEW virtual Instrument application. The particular content of the thesis are listed as follows.
     Firstly, in the thesis, the influence of earth rotation is analyzed for free gyroscope. The author offers motion track of gyroscope principal axis on Matlab simulation platform, present the strategy which can transfer free-gyro to gyrocompass used by the bottom method, at the same time the strategy is proofed working well by Matlab simulation. Based on the gyrocompass Un-damped Oscillatory Equation, the vertical-damped method is used to set up the mathematical model which can make gyroscope principal axis stabilize immediately, then the model is implemented on Matlab platform.
     On the second, with a kind of torque motor parameter, moment motor mathematical model is established, so the stabilization loop math model can be established. In the thesis the author analyze the stability of the uncorrected stabilization-loop, and then Preceding adjustment and lag compensation are added on the uncorrected network to set up corrected network math model. On the Matlab simulation platform, via the analyzing of open-loop transfer function’s Bode diagrams and unit step response those are corrected whether or not, the compare result indicates the stability of the math models.
     Thirdly, in this article the author illuminate the working way to the form and action and every part of function module from some kind of Stabilized Gyrocompass microcomputer system in detail, and analyses the necessity and feasibility to develop the Stabilized Gyrocompass Microcomputer Fault Detection System. According to the function and form design to the every part of microcomputer system on the basis of PC-104 bus standard, the design scheme of microcomputer fault detection system based on FPGA is established for a kind of Stabilized Gyrocompass. The software development of this scheme based on FPGA use VHDL hardware description language. The function modules those are developed inner plate include those are listed as follows. A/D sampling control module is designed for the testing of Stabilized Gyrocompass D/A Transfer Board, UART controller is designed for the testing of Stabilized Gyrocompass I/O Serial Communication Module. FIFO memorizer is designed for the testing of Stabilized Gyrocompass I/O Parallel Communication Module. Photoelectric encoder and pulse counter are designed for the testing of Stabilized Gyrocompass A/D Transfer Board. According to the address of each peripheral device assigned by PC machine, Address assigner is designed in the fault detection system. In the end of the project The author use Visual C++ software design language to develop the software of the Stabilized Gyrocompass Microcomputer Fault Detection System.
     Fourthly, the author points out that virtual instruments have so many application advantages that the traditional testing instruments can’t own. Obviously the development trend is virtual instrument as a testing device will be used popularly in the future. So the author set up the Stabilized Gyrocompass Microcomputer Fault Detection System based on LabVIEW virtual instrument. Firstly, the hardware subsection on the basis of PCI Data Acquisition Card is accomplished, then the LabVIEW graphical programming language is used to engineer the software part of Fault Detection System. Eventually the design of user-menu OSD (on-screen display) is achieved.
引文
[1]谭天乐,李平,宋执环.基于粗糙集的逻辑故障树方法及其应用.仪器仪表学报.2004,25(1)
    [2]陈光宇,黄锡滋,唐小我.故障树模块化分析系统可靠性[J].电子科技大学学报.2006,35(6)
    [3]郭庆祝,王政.基于案例推理及故障树法融合基础下的船舶水上交通事故分析[A].中国航海学会海洋船舶驾驶专业委员会2007年船舶航泊安全的新经验新技术研讨会论文集[C].2007
    [4]魏春岭.一种基于神经网络的传感器故障诊断方法[J].中国惯性技术学报.2001,9(3)
    [5]许晓.某型惯性导航系统故障诊断与排除[A].第六届中国造船工程学会修船技术委员会电子设备维修保障技术学术会议论文集[C].2007
    [6]黄智伟.FPGA系统设计与实践.电子工业出版社,2005.1:279-283页
    [7]华清远见嵌入式培训中心.FPGA应用开发入门与典型实例.人民邮电出版社,2008.7
    [8]刘韬.FPGA数字电子系统设计与开发实力导航.人民邮电出版社,2005.6
    [9]褚振勇,FPGA设计及应用.西安电子科技大学出版社,2006.12
    [10]陈耀和,VHDL语言设计技术.电子工业出版社,2004.3
    [11]清华大学电子学教研室,阎石,数字电子技术基础(第四版).高等教育出版社,1997.12
    [12]范逸之,C++ Builder与RS-232串行通信控制.清华大学出版社,2001.12
    [13]金伟,现代检测技术.北京邮电大学出版社,2006.2:3-20页
    [14]刘福奇.FPGA嵌入式项目开发实战.电子工业出版社,2009.4:232-289页
    [15]高延滨.检测与转换技术.哈尔滨工程大学出版社,2007.8:251-256页
    [16]施闻明,杨晓东.陀螺罗经的航向效应标定与补偿[J].舰船科学技术,2008,30(5)
    [17]黄德鸣.平台罗经.国防工业出版社,1990.4:41-61页
    [18]胡寿松.自动控制原理.科学出版社,2001.2:226-232页
    [19]罗斌.Visual C++ 2005编程实践精粹.中国水利水电出版社,2007.1
    [20]刘弘.面向对象编程技术.北京邮电大学出版社,2005.8
    [21]曾建徽.新型高精度平台罗经系统技术研究.2001.1
    [22]邓方,陈杰,一种高精度的光电编码器检测方法及其装置.北京理工大学学报.2007.11(27)
    [23]尹伟伟.军用平台罗经装备综合测试系统研究[D].2006.
    [24]程禄,焦传道,黄德鸣.船舶导航定位系统.国防工业出版社,1991
    [25]吴赛成.自抗扰控制器在激光陀螺单轴稳定平台中的应用研究[D].2006
    [26]黄卫权,陈建国.陀螺壳体旋转法监控技术研究[J].哈尔滨工程大学学报.2003,24(1)
    [27]高桦.MCV3型平台罗经系统分析与测试[D].2005
    [28]黄卫权,赵国良,谈振藩等.陀螺壳体旋转监控技术[J].中国造船.2002,43(3)
    [29]谈振藩,王蓓蕾,丁玉军.陀螺约束回路稳定性的李亚普诺夫法分析[J].哈尔滨工程大学学报.2000,21(3)
    [30]谢韶旺,陈其廉,李庆芬.平台罗经框架结构的动力响应分析[J].哈尔滨工程大学学报,2006,27(5)
    [31]周爱军.基于Labview的平台罗经测试系统[J].仪器仪表学报,2004,25(z1)
    [32]藤桂兰,郑光华,杨则森.惯导平台稳定系统MATLAB仿真研究.辽宁工程技术大学学报(自然科学版).200l
    [33]殷志良,刘万顺.一种基于FPGA技术的电子式互感器接口实现新方法[J].电力系统自动化.2004,28(14)
    [34]徐雁,吴勇飞,肖霞.采用FPGA&DSP实现电子式互感器合并单元[J].高电压技术.2008,34(2)
    [35]刘爽,赵凯生,龙再川等.基于ARM和FPGA的嵌入式CCD采集系统[J].光电子·激光.2007,18(11)
    [36]张晓峰,张桂才.光纤陀螺信号处理电路中FPGA与DSP的接口方法研究[J].红外与激光工程.2006,35(z5)
    [37]陆元九.惯性器件(下).宇航出版社,1993
    [38]黄锐,唐继勇,张磊.基于FPGA的多DSP系统接口电路设计[J].中国测试技术.2008,34(3)
    [39]刘强,蔡泽祥.基于Matlab的变压器差动保护闭环仿真研究[J].电力自动化设备.2007,27(9)
    [40]郭富强,于波.陀螺稳定装置及其应用口.西北工业大学出版社,1995
    [41]王晓军,贾继强,王俊善.机载三轴稳定平台跟踪方法研究与仿真[J].计算机仿真.2008,25(5)
    [42]赵建勋,苏刚,郝路瑶.捷联式稳定平台的建模与仿真[J].火力与指挥控制.2008,33(4)
    [43]王仁臻,陈毅.MATLAB在稳定平台机械谐振中的应用[J].科学技术与工程.2009,9(4)
    [44]周结华,彭侠夫,何栋炜.惯性平台稳定回路的多环控制[J].福州大学学报(自然科学版).2008,36(z1)
    [45]郭模灿,邱太琪,管金麟.陀螺罗经线路板测试平台的设计[J].船舶工程,2003,25(5)
    [46]王庆文.基于自适应PID控制的平台稳定系统控制器的设计和仿真[A].2003年全国系统仿真学术年会论文集[C].2003
    [47]姚秀娟,张永科,彭晓乐等.速率陀螺稳定电视导引头平台数字控制器设计[J].电光与控制,2006,13(3)
    [48]G. E. Sandoval-Romero.Analysis of the Existent Noise in a Gyrocompass of Dynamic Configuration[A].RIAO/OPTILAS 2007 :[C].2008.
    [49]Jianhua Cheng,Yanling Hao,Lei Wu et al.Research and Realization of Inertial Gyrocompass System Based on INS[A].7th World Congress on Intelligent Control and Automation (WCICA 2008), vol.16[C].2008.
    [50]Zhang Yanshun,Wang Yue.The Azimuth Error Compensation for Inclinometer Based on Gyrocompass[A].Measurement Theory and Systems and Aeronautical Equipment, Seventh International Symposium on Instrumentation and Control Technology. Proceedings of SPIE, Vol.7128[C].2008.
    [51]Zhang Xiaoming.Describing Function Analysis of Nonlinearities in Gyrocompass Alignment[A].第七届国际测试技术研讨会论文集[C].2007.
    [52]A. G. Andreev,V. S. Yermakov,M. B. Mafter.PROBLEMS OF ACCURACY ENHANCEMENT OF GYROCOMPASS WITH DIGITAL CONTROL[A].8th Saint Petersburg International Conference on Integrated Navigation Systems[C].2001.
    [53]L. N. Belyanin,A. N. Golikov,V. M. Martemyanov.The increase of analytic gyrocompass system precision constructed on dynamically turned gyro[A].5th Korea-Russia International Symposium on Science and Technology (KORUS 2001), vol.1, Tomsk, Russia, June 26 - July 3, 2001[C].2001.
    [54]O. N. Bezvesilnaya,S. V. Ivanov.Corrected Gyrocompass Synthesis as a System with Changeable Structure[A].Symposium Gyro Technology 2003[C].2003.
    [55]岂兴明,周建兴,矫津毅: LabVIEW8.20中文版入门与典型事例.人民邮电出版社,2008:3-23页
    [56]雷振山.LabVIEW8.20基础教程.中国铁道出版社,2008:4-24页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700