用户名: 密码: 验证码:
旋转机械随机支撑刚度参数模拟试验装置的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机参数转子动力学问题是继转子动力学的线性和非线性动力学问题之后需要系统研究的重要课题。近年来,虽然有少数学者对该问题进行了初步研究,但都局限于理论研究,极少有人进行试验研究。这是因为试验研究随机参数问题需要加工大量的试件,这在研究时间和成本上都是不允许的。为了试验研究随机支撑刚度参数对转子系统动力学性能的影响,本文基于电磁支撑刚度随电磁场强度变化而改变的原理,设计了一套电磁支撑与机械支撑并联的模拟试验装置,实现了转子轴承系统支撑刚度参数的随机变化。论文的主要研究内容和研究成果如下:
     1.给出了一种利用电磁支撑模拟产生随机支撑刚度参数的设计方案。该电磁支撑的工作原理是利用电、磁、力三者之间的依存关系,以励磁电流为控制源,控制电磁铁的电磁场强度和电磁力,进而控制支撑刚度参数的变化特征。
     2.基于电磁铁的动态电磁关系从理论上研究了因动态间隙和励磁电流产生的电磁感应对电磁支撑刚度特性的影响。研究结果表明当电磁支撑的基本工作参数满足一定的关系时,完全可以忽略因电磁感应现象而产生的附加刚度和阻尼参数对支撑刚度特性的影响。
     3.以端部具有电磁支撑的悬臂梁为研究对象,计算、实测了不同励磁电流下悬臂梁系统的一阶固有频率和对数减幅系数;给出了基于系统一阶实测固有频率及其对数减幅系数识别支撑刚度和阻尼的方法,识别出了不同励磁电流工况下电磁支撑的实际刚度和附加阻尼参数;识别结果表明附加阻尼参数的实测值远远小于其理论值,可以忽略不计;支撑刚度参数在多数情况下存在较大偏差,但在静态工作点附近工作时偏差较小。
     4.通过对随机变刚度电磁支撑数学模型的研究给出了通过控制电流的随机改变实现转子轴承系统支撑刚度参数随机变化的四个设计准则。线性化准则保证试验装置系统支撑刚度的线性特性;线性随机准则确保支撑刚度参数与随机控制电流间的线性关系;随机分量显著准则使得支撑刚度具有明显的随机特征,便于试验研究;综合刚度为正的设计准则,保证了试验装置系统的稳定性。根据设计准则合理设计了试验装置的工作参数,并基于这些工作参数对电磁支撑进行了结构设计。
     5.理论分析了实验过程中出现的衔铁偏心和非线性现象对电磁支撑的刚度特性的重要影响;最后对随机电流在制备过程中应注意的事项进行了阐述,并提出了改进措施。
Rotor dynamics with random parameters is an important subject that required to reasearch systematically after linear rotor dynamics and nonlinear rotor dynamics problems. In recent years, some scholars have started to study on this problem, but they only study on the theoretical research aspect, or not study on the experimental research aspect. This is because that the experimental research on random parameters problem needs to a large number of test pieces that is not allowed in the time and cost. In order to experimental research on the random support stiffness parameter affecting dynamic performance of the rotor system, based on the principle of electromagnetic support stiffness varying with electromagnetic field, a test device with parallel electromagnetic and mechanical support elements is designed, and it can realize the varying of the rotor system support stiffness following the electromagnetic field strength. The main research contents and results in this paper include the following aspects:
     1. The design scheme of using the electromagnetic support to simulation generate the random support stiffness parameters is proposed The working principle of the electromagnetic support is to make use of the dependence relation of electricity, magnetism and force, regard the excitation current as control source to control the electromagnetic intensity and the electromagnetic force of the electromagnet, and then control variation characteristics of the support stiffness parameter.
     2. Based on the dynamic characteristics of the electromagnets, electromagnetic induction reduced by dynamic gap and excitation current affecting the electromagnetic support stiffness characteristics isreaearch theoretically.The results show that when the basic parameters of the electromagnetic support meet a certain relationship, additional stiffness and damping parameters reduced by electromagnetic induction affecting the support stiffness characteristics can be ignored completely.
     3. The cantilever beam with an electromagnetic support at end was taken as a research object. The first order natural frequency and logarithmic damping coefficients of this structural system with different excitation current were calculated and tested. Based on the first order natural frequency and logarithmic damping coefficients of the support system which were measured in the experiment, a new method was proposed to identify the support stiffness and damping parameters. The support stiffness and damping parameters of the electromagnetic support with different excitation current were identified according to this method. The identification results showed that the experimental values of electromagnetic support damping parameter were always far smaller than the theoretical values and can be ignored, while there were big deviations between theoretical values and experimental values of support stiffness parameter in most cases, but the deviation is smaller at the static working point.
     4. By studying the mathematical model of the electromagnetic support, the four design rules are given, which make sure that the system support stiffness parameter can be randomly controlled by the controllable random electric current. The linearized rule guarantees the linearity of the system support stiffness; the linear random rule engenders the linear relationship between the support stiffness parameter and the controllable random electric current; the rule of random stiffness weight being distinct gets the obvious randomness of the system support stiffness, and satisfy the demand of testing; finally the rule of the system total stiffness being positive ensures the stability of the simulation test device. Based on the design rules, the working parmaters of the electromagnetic support are designed reasonablely. Meanwhile, according to the the working parmaters, the structure of the working parmaters is designed.
     5. The armature eccentricity and non-linear phenomena have an important influence on stiffness characteristic of the electromagnetic support in the experimental process through the theory analysis. Finally, the matter needing attention in the generation process of the random current was studied, and improvement measures were proposed.
引文
[1]闻邦椿,顾家柳,夏松波等.高等转子动力学[M].北京:机械工业出版社,2000.
    [2]虞烈,刘恒.轴承-转子系统动力学[M].西安:西安交通大学出版社,2001.
    [3]郑州机械研究所,清华大学,哈尔滨工业大学等.国家自然科学基金、机械工业技术发展基金联合资助重大项目——“三峡水轮发电机组动力学响应分析及系统稳定性研究”课题研究报告, 1999, 5.
    [4]黄文虎,武新华,焦映厚,夏松波,陈照波.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497~508.
    [5]陆颂元.论国内旋转动力机械非线性振动理论研究的现状和发展[J].汽轮机技术,2006,48(2):85~87.
    [6]孟庆国,詹世革,汲培文.重大项目“大型旋转机械非线性动力学问题”取得重要进展[J].中国科学基金,2004:142~144.
    [7]李杰.随机结构系统[M].北京:科学出版社,1996.
    [8] Muszynska A,Bently D E.Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines[J].J of Sound and Vibration,1990,143:103~124.
    [9] Goodwin M J. Experimental techniques for bearing impedance measurement. Transactions of ASME[J], J of Engineering for Industry, 1991, 113:335~342.
    [10] Tiwari R,Vyas N S.Stiffness estimation from random response in multi-mass rotor bearing systems[J].Probabilistic Engineering Mechanics, 1998, 13(4):255~268.
    [11] Scharrer J K,Childs D W.Theory vs. experiment for the rotordynamic coefficients of labyrinth seals,Part 1 & 2.Journal of Vibration,Acoustics,Stress and Reliability in Design,1988, 110(3):270~287.
    [12] Zhang Yimin,Wen Bangchun,Liu Qiaoling.Uncertain responses of rotor-stator systems with rubbing.Mechanical Systems, Machine Elements and Manufacturing,International J of JSME, 2003, 46:150~154.
    [13]宿苏英,张义民,李鹤,闻邦椿.旋转机械转子-机匣系统碰摩的随机响应[J].东北大学学报(自然科学版),2006,27(5):528~531.
    [14]苏长青,张义民.质量慢变转子系统碰摩的可靠性分析[J].北大学学报(自然科学版),2008,29(11):1605~1608.
    [15]张义民,刘巧伶,李鹤,闻邦椿.转子-定子系统碰摩可靠性灵敏度研究[J].航空动力学报,2006,21(5):848~853.
    [16]冷小磊,孟光,张韬,方同.考虑随机扰动时裂纹转子系统的分叉与混沌特性[J].振动工程学报,2006,19(6):212~218.
    [17] DimentbergM F,Iourtchenko D V,Naess A.Coherence function of transverse random vibrations of a Rotating Shaft[J].J of Sound and Vibration, 2006,292:983~986.
    [18] Dimentberg M F.Vibration of a rotating shaft with randomly varying internal damping[J].J of Sound and Vibration, 2005,285:759~765.
    [19] Dimentberg M F,Ryzhik B,Sperling L.Random vibrations of a damped rotating shaft[J].J of Sound and Vibration, 2005,279:275~284.
    [20] Dimentberg M F.Transverse vibrations of rotating shafts: probability density and first-passage time of whirl radius[J] . International Journal of Non-Linear Mechanics,2005,40:1263~1267.
    [21] Oleg Vinogradov.Fromrandomtolerances to randomrotor vibrations[J].J of Mechanical Design,Transactions of ASME, 2002,124:539~542.
    [22]刘保国,王威,殷学纲.一维随机参数结构的特征值问题[J].机械强度,2004,26(4):367~370.
    [23]刘保国.一维不定参数结构系统的摄动Riccati传递矩阵方法及其应用[博士学位论文].重庆大学,2002.
    [24] Liu Baoguo,Yin Xuegang,Jian Kailin.Perturbation transfer matrix method for eigendata of one-dimensional structural system with parameter uncertainties [J]. Applied Mathematics and Mechanics, 2003,24(7):801~807.
    [25]刘保国,桑广伟.动力响应问题的摄动RICCATI传递矩阵方法[J].机械科学与技术,2007,26(5):589~594.
    [26]河南工业大学.河南省高校杰出科研人才创新工程资助项目——“旋转机械的随机参数系统动力学问题研究及应用”课题研究报告.2009.9.
    [27]乔红威,吕震宙.随机激励下随机结构动力可靠性灵敏度分析[J].振动工程学报,2008,21(4):404~408.
    [28]蒋建东,梁锡昌,张博.适用于车辆的旋转式磁流变阻尼器研究[J].汽车工程2005,27(1):86~88.
    [29]李慧敏.用于高速旋转机械的电磁辅助支撑的研究[博士学位论文].浙江大学,2004.
    [30]高星伟,李全通,陈卫等.一种可变刚度弹性轴承座的设计[J].机械设计与制造,2008,10:15~17.
    [31]闻邦椿,袁艺,王东.转子系统变刚度主动控制的非线性特性的研究[J].机械强度,1995,17(3):36~39.
    [32]阎晓军,聂景旭,孙长任.用于高速转子振动主动控制的智能变刚度支撑系统[J].航空动力学报,2000,15(1):63~66.
    [33] Nagaya K and Takeda S. Active control method for passing through critical speeds of rotating shafts by changing stiffness of the supports with use of memory metals [J]. J of Sound and Vibration, 1987, 113 (2):307~315.
    [34]王洪礼,李强,孙景.用形状记忆合金弹簧主动控制转子振动[J].机械强度, 2002, 24(l): 29~31.
    [35]虞烈.可控磁悬浮转子系统[M].北京:科学出版社,2003.
    [36]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
    [37]李慧敏,何勇,曾胜.电磁辅助支撑的变刚度减振研究[J].机械强度,2006,28(4):489~493.
    [38]徐明欣,刘保国,孙磊.随机变刚度支撑平台的研究[J].机械设计,2008,25(8):16~17.
    [39]邹继武,刘宝廷,崔淑梅等.磁路与磁场[M].哈尔滨:哈尔滨工业大学出版社, 1998.
    [40]杨祚新.电磁铁应用设计计算方法[J].机床电器, 1996,01:44~46.
    [41]钱家骊.电磁铁吸力公式的讨论[J].电工技术杂志, 2001, 1: 59~60.
    [42]秦曾煌.电工学(上册)—电工技术[M].北京:高等教育出版社,2004.
    [43]赵凯华,陈熙谋.电磁学(第二版)[M].北京:高等教育出版社,1985.
    [44]童水光.转子轴承系统电磁阻尼器控制的研究[博士学位论文].浙江大学,1991.
    [45]汪海航.电磁阻尼器动力特性及转子振动主动控制研究[博士学位论文].浙江大学,1994.
    [46]顾金初,童水光,雷建辉等.电磁阻尼器对转子系统进行振动主动控制的机理探讨及其实验研究[J].浙江大学学报,1996,30 (4): 253~258.
    [47]张义民.机械振动[M].北京:清华大学出版社,2007.
    [48]盛骤,谢式千,潘承毅.概率论与数理统计(第二版)[M].北京:高等教育出版社, 2001.
    [49] Jianghua Deng, Chunfeng Li, Zhiheng Zhao. Numerical simulation of magnetic flux and force in electromagnetic forming with attractive force[J]. Journal of Materials Processing Technology.184(2007): 190~194.
    [50]文湘隆,胡业发,陈龙.径向磁力轴承定子结构参数的确定[J].机械制造,2006,44(499): 25~27.
    [51]赵韩,王勇.径向电磁轴承结构设计与分析[J].农业机械学报, 2005, 36(7): 122~125.
    [52]吴刚,张育林,刘昆等.电磁轴承结构参数设计研究[J].机械科学与技术, 2005,24(6): 713~718.
    [53]张钢,曹广忠,虞烈.电磁轴承的工业应用设计[J].轴承, 1996, 6: 2~6.
    [54]赵韩,田杰.磁力机械学[M].北京:高等教育出版社, 2009.
    [55]张冠生.电器学[M].北京:机械工业出版社, 1980.
    [56]《现代数学手册》编纂委员会,现代数学手册·随机数学卷[M].华中科技出版社, 2000.
    [57]刘正高.标准均匀随机数的产生方法分析[J].航天标准化, 1996(5): 5~7.
    [58]何光渝. Visual Basic常用数值算法集[M].科学出版社, 2002.
    [59]周燕.关于线性同余组合发生器的周期性和统计性质[J].重庆大学学报(自然科学版), 2000, 23(6): 67~70.
    [60]石仁庆,王丽英.随机模拟在公差分析中的应用[J].机械工程与自动化, 2007(5): 50~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700