用户名: 密码: 验证码:
疏水蛋白对静电纺PLGA支架和PLGA膜进行表面修饰及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物多聚物Poly(D,L-lactic-co-glycolic acid)polymers(PLGA)具有良好的生物相容性和生物可降解性,是目前组织工程研究中使用较多的支架材料。但PLGA存在亲水性差、细胞粘附力弱等问题,限制了其的应用。因此,开发一种能够有效改善PLGA表面特性的方法成为当前研究的热点。
     本文引进了一种Ⅱ型疏水蛋白HFBI来修饰PLGA,并进一步研究了HFBI修饰后的PLGA在作为细胞培养基底及制备图案化神经干细胞复合支架材料方面的应用问题。
     疏水蛋白是一种从丝状真菌中提取的具有两亲性及表面活性的蛋白质,且已被证实能够改变疏水材料的亲/疏水性。通过测量HFBI修饰后的静电纺PLGA支架和PLGA膜表面的静态疏水角,发现二者的表面亲水性及湿润性都显著提高了。在此基础上对静电纺PLGA支架进一步进行胶原修饰并得到其扫描电镜图像,发现胶原能够很好的贴附到HFBI修饰后的PLGA支架上。通过在HFBI/胶原共修饰的静电纺PLGA支架上培养细胞,发现细胞在支架上贴附生长状态良好。该结果不仅解决了PLGA材料细胞贴附率低的问题,还为利用PLGA膜制备图案化神经干细胞复合支架器件奠定了基础。因此,利用微接触印刷法将血清印迹到HFBI修饰的PLGA膜上,并在此基底上培养神经干细胞,成功地获得了图案化神经干细胞复合支架。利用HFBI来修饰静电纺PLGA支架和PLGA膜,不仅能有效的改善表/界面材料的亲疏水性,为生物分子、细胞粘附和生长提供便利,还进一步拓展了PLGA在组织工程中的应用。
Biopolymer poly(lacic-co-glycolic acid) PLGA has been extensively applied in tissue engineering as the scaffold materials, due to its good biocompatibility and biodegradability. However, the hydrophobility property of the biopolymer PLGA materials gives rise to the poor cell affinity on the surface and limits their application. Therefore, it is a hot topic to develop an efficient approach to increasing the hydrophilicity of PLGA materials.
     In this study, we introduced a class of hydrophobin to modify the biopolymer PLGA. Besides, we also investigated its application both in cell adhesion and the preparation of neural stem cells (NSCs) patterns which made the basis for the fabrication of the complex scaffold composed of NSCs and PLGA film.
     Hydrophobins are a group of amphiphilic and surface-active proteins found in filamentous fungi, which has been used to change the surface property of hydrophobic materials. The classⅡhydrophobin HFBI was used to modify electrospun PLGA scaffold and PGLA film. The static water contact angle of the HFBI-modified electrospun PLGA scaffold and PLGA film showed that their surface property conversed from hydrophobictiy to hydrophilicity. Collagen was modified on the HFBI-pretreated electrospun scaffold and the SEM image of the HFBI/collagen co-coated PLGA scaffold demonstrated that collagen could immobilized on the PLGA scaffold with high efficiency. When the HFBI/collagen co-coated PLGA scaffold was used as the substrate of culturing 293 T cells, the cells adhered and grew well on the surface. This result overcame the disadvantage of PLGA materials mentioned above and established the possibility of fabricating neural stem cells patterns on the PLGA film as well. Therefore, the micro-contact printing technology was used to prepare the serum patterns on the HFBI-modified PLGA film and the well-defined neural stem cells patterns was obtained by directly culturing cells on the PLGA film.
     HFBI modification of electrospun PLGA scaffold and PLGA film could not only efficiently change the hydrophobicity surface property and facilitate both the immoblization of biomolecular and cell adhesion on the surface, but also enlarge their application in the tissue engineering.
引文
[1]Mano J F, Sousa R A, Bosesel L F, et al., Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement:state of the art and recent developments. J. Composites Science and Technology,2004,64:789-817
    [2]汪朝,赵耀,聚乙醇酸类生物降解高分子.广州化学,2004,29:50-57
    [3]李双燕,PLGA组织工程支架材料的研究与展望.国外丝绸,2009:29-31
    [4]李冰,蔺嫦,组织工程支架材料的研究进展.生物医学工程与临床,2007,11:241-246
    [5]Grasel T G, Pierce J A, Cooper S L, Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers. Journal of Biomedical Materials Research, 1987,21:815-842
    [6]Yeh Y S, Iriyama Y, Matsuzawa Y, et al., Blood compatibility of surfaces modified by plasma polymerization. Journal of Biomedical Materials Research,1988,22:795-818
    [7]Siow K S, Britcher L, Kumar S, et al., Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization-A review. Plasma Processes and Polymers,2006,3:392-418
    [8]Inagaki N, Tasaka S, Hibi K, Surface modification of Kapton film by plasma treatments. Journal of Polymer Science Part A:Polymer Chemistry,1992,30:1425-1431
    [9]Ko T-M, Lin J-C, Cooper S L, Surface Characterization and Platelet Adhesion Studies of Plasma-Carboxylated Polyethylene. Journal of Colloid and Interface Science,1993,156: 207-217
    [10]Lens J P, Terlingen J G A, Engbers G H M, et al., Introduction of Carboxylate Groups at Poly(ethylene) Surfaces by Argon Plasma Immobilization of Sodium Salts of Fatty Acids. Langmuir,1997,13:7052-7062
    [11]Lens J P, Harmsen P, Fter Schegget E M, et al., Immobilization of functionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surfaces by means of an argon plasma treatment. J Biomater Sci Polym Ed.,1997,8:963-982
    [12]Mirenghi L, Ramires P A, Pentassuglia R E, et al., Growth of human endothelial cells on plasma-treated polyethyleneterephthalate surfaces. Journal of Materials Science-Materials in Medicine,2000,11:327-331
    [13]Kang I K, Choi S H, Shin D S, et al., Surface modification of polyhydroxyalkanoate films and their interaction with human fibroblasts. International Journal of Biological Macromolecules,2001,28:205-212
    [14]Inagaki N, Tasaka S, Miyazaki H, Sulfonic acid group-containing thin films prepared by plasma polymerization. Journal of Applied Polymer Science,1989,38:1829-1838
    [15]Yang J, Bei J, Wang S, Improving cell affinity of poly(D, L-lactide) film modified by anhydrous ammonia plasma treat-ment. Polymers for Advanced Technologies,2002,13: 220-226
    [16]Yang J, Shi G X, Bei J Z, et al., Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid)(70/30) cells scaffold for human skin fibroblast cells culture. J Biomed Mater Res,2002,62:438-446
    [17]Wang Y Q, Qu X, Lu J, et al., Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials,2004,25: 4777-4783
    [18]Wan Y, Yang J. Cell adhesion on gaseous plasma modified poly-(-lactide) surface under shear stress field. Biomaterials,2003,24:3757-3764
    [19]Kim J, Chaudhury M, KOwen M J, et al., The Mechanisms of Hydrophobic Recovery of Polydimethylsiloxane Elastomers Exposed to Partial Electrical Discharges. Journal of Colloid and Interface Science,2001,244:200-207
    [20]Hillborg H, Gedde U W, Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer,1998,39:1991-1998
    [21]Everaert E P, Vandermei H C, Devries J, et al., J. Adhes. Sci. Technol,1995,9:1263-1278
    [22]Everaert E P, VanderMei H C, Busscher H J, J. Adhes. Sci.Technol,1996,10:351-359
    [23]Morra M, Occhiello E, Marola R, et al., On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science,1990,137:11-24
    [24]Lumsdon S O, Green J, Stieglitz B, Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids and Surfaces B-Biointerfaces,2005,44:172-178
    [25]Wang R, Yang Y L, Qin M, et al., Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chemistry of Materials,2007,19: 3227-3231
    [26]Hakanpaa J, Paananen A, Askolin S, et al., Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. Journal of Biological Chemistry,2004,279: 534-539
    [27]Linder M B, Szilvay G R, Nakari-Setala T, et al., Hydrophobins:the protein-amphiphiles of filamentous fungi. Ferns Microbiology Reviews,2005,29:877-896
    [28]Fan H, Wang X Q, Zhu J, et al., Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. Proteins-Structure Function and Bioinformatics,2006,64: 863-873
    [29]Chandler D, Interfaces and the driving force of hydrophobic assembly. Nature,2005,437: 640-647
    [30]Whitesides G M, Grzybowski B, Self-assembly at all scales. Science,2002,295:2418-2421
    [31]Wosten H A B, de Vries O M H, Wessels J G H, Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer. Plant Cell,1993,5:1567-1574
    [32]Paananen A, Vuorimaa E, Torkkeli M, et al., Structural hierarchy in molecular films of two class Ⅱ hydrophobins. Biochemistry,2003,42:5253-5258
    [33]Kisko K, Torkkeli M, Vuorimaa E, et al., Langmuir-Blodgett films of hydrophobins HFBI and HFBII. Surface Science,2005,584:35-40
    [34]Rusmini F, Zhong Z Y, Feijen J, Protein immobilization strategies for protein biochips. Biomacromolecules,2007,8:1775-1789
    [35]Scholtmeijer K, Janssen M I, Gerssen B, et al., Surface modifications created by using engineered hydrophobins. Applied and Environmental Microbiology,2002,68:1367-1373
    [36]Wang X Q, Graveland-Bikker J F, De Kruif C G, et al., Oligomerization of hydrophobin SC3 in solution:From soluble state to self-assembly. Protein Science,2004,13:810-821
    [37]Bilewicz R, Witomski J, Van der Heyden A, et al., Modification of electrodes with self-assembled hydrophobin layers. Journal of Physical Chemistry B,2001,105:9772-9777
    [38]Palomo J M, Penas M M, Fernandez-Lorente G, et al., Solid-phase handling of hydrophobins: Immobilized hydrophobins as a new tool to study lipases. Biomacromolecules,2003,4: 204-210
    [39]Ikeno S, Szilvay G R, Linder M, et al., Protein dot stamp using hydrophobin as immobilization carrier. Sensors and Materials,2004,16:413-420
    [40]Zhao Z X, Qiao M Q, Yin F, et al., Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization. Biosensors & Bioelectronics,2007, 22:3021-3027
    [41]Kostiainen M A, Szilvay G R, Lehtinen J, et al., Precisely defined protein-polymer conjugates:construction of synthetic DNA binding domains on proteins by using multivalent dendrons. Acs Nano,2007,1:103-113
    [42]Kostiainen M A, Szilvay G Z R, Smith D K, et al., Multivalent dendrons for high-affinity adhesion of proteins to DNA. Angewandte Chemie-International Edition,2006,45: 3538-3542
    [43]Corvis Y, Brezesinski G, Rink R, et al., Analytical investigation of the interactions between SC3 hydrophobin and lipid layers:Elaborating of nanostructured matrixes for immobilizing redox systems. Analytical Chemistry,2006,78:4850-4864
    [44]Kurppa K, Jiang H, Szilvay Geza R, et al., Controlled Hybrid Nanostructures through Protein-Mediated Noncovalent Functionalization of Carbon Nanotubesl3. Angewandte Chemie International Edition,2007,46:6446-6449
    [45]Janssen M, Ivan Leeuwen M B, MScholtmeijer K, et al., Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid. Biomaterials,2002,23: 4847-4854
    [46]Janssen M, Ivan Leeuwen M B, Mvan Kooten T G, et al., Promotion of fibroblast activity by coating with hydrophobins in the beta-sheet end state. Biomaterials,2004,25:2731-2739
    [47]Nakari-Setala T, Azeredo J, Henriques M, et al., Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall:Effect on cell surface properties and immobilization. Applied and Environmental Microbiology,2002,68:3385-3391
    [48]Linder M, Szilvay G, RNakari-Setala T, et al., Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Science, 2002,11:2257-2266
    [49]Gross G W, Rhoades B K, Azzazy H M E, et al., The use of neuronal networks on multielectrode arrays as biosensors. Biosensors and Bioelectronics,1995,10:553-567
    [50]R L, P V J, Tissue engineering. Science,1993,10:920-926
    [51]Zeck G, Fromherz P, Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proceedings of the National Academy of Sciences of the United States of America,2001,98:10457-10462
    [52]Zhang S G, Yan L, Altman M, et al., Biological surface engineering:a simple system for cell pattern formation. Biomaterials,1999,20:1213-1220
    [53]Kane R, STakayama S, Ostuni E, et al., Patterning proteins and cells using soft lithography. Biomaterials,1999,20:2363-2376
    [54]Tan W, Desai T A, Microfluidic patterning of cells in extracellular matrix biopolymers:effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng,2003,9: 255-267
    [55]Odde D J, Renn M J, Laser-guided direct writing of living cells. Biotechnol Bioeng,2000,67: 312-318
    [56]Bhatia S K, Hickman J J, Ligler F S, New approach to producing patterned biomolecular assemblies. Journal of the American Chemical Society,1992,114:4432-4433
    [57]Liu V A, Jastromb W E, Bhatia S N, Engineering protein and cell adhesivity using PEO-terminated triblock polymers. Journal of Biomedical Materials Research,2002,60: 126-134
    [58]Piner R D, Zhu J, Xu F, et al., "Dip-pen"nanolithography. Science,1999,283:661-663
    [59]Lee K B, Park S J, Mirkin C A, et al., Protein nanoarrays generated by dip-pen nanolithography. Science,2002,295:1702-1705
    [60]Wilson D L, Martin R, Hong S, et al., Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proceedings of the National Academy of Sciences of the United States of America,2001,98:13660-13664
    [61]Roth E A, Xu T, Das M, et al., Inkjet printing for high-throughput cell patterning. Biomaterials,2004,25:3707-3715
    [62]Nahmias Y, Arneja A, Tower T T, et al., Cell patterning on biological gels via cell spraying through a mask. Tissue Engineering,2005,11:701-708
    [63]Nahmias Y K, Zhi Gao B, Odde D J, Dimensionless Parameters for the Design of Optical Traps and Laser Guidance Systems. Appl. Opt.,2004,43:3999-4006
    [64]Liu V A, Bhatia S N, Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices,2002,4:257-266
    [65]Hickman J J, Bhatia S K, Quong J N, et al., Rational pattern design for in-vitro cellular networks using surface photochemistry. J Vac Sci Technol Vac Surf Films,1994,12:607-616
    [66]Kleinfeld D, Kahler K H, Hockberger P E, Controlled outgrowth of dissociated neurons on patterned substrates. J Neurosci,1988,8:4098-4120
    [67]Ravenscroft M S, Bateman K E, Shaffer K M, et al., Developmental Neurobiology Implications from Fabrication and Analysis of Hippocampal Neuronal Networks on Patterned Silane-Modified Surfaces. Journal of the American Chemical Society,1998,120:12169-12177
    [68]Chang J C, Brewer G J, Wheeler B C, Modulation of neural network activity by patterning. Biosensors & Bioelectronics,2001,16:527-533
    [69]Newman J D, Turner A P F, Marrazza G, Ink-jet printing for the fabrication of amperometric glucose biosensors. Analytica Chimica Acta,1992,262:13-17
    [70]Xu T, Petridou S, Lee E H, et al., Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnology and Bioengineering,2004,85:29-33
    [71]Grant I, Warwick K, Marshall J, et al., The co-application of sprayed cultured autologous keratinocytes and autologous fibrin sealant in a porcine wound model. British Journal of Plastic Surgery,2002,55:219-227
    [72]Wenzel R N, Resistance of solid surface to wetting by water. Ind. Eng. Chem,1936,28: 988-994
    [73]Cassie A B D, Baxter S, Wettability of porous surfaces. Trans. Faraday Soc,1944,40:546-561
    [74]Szilvay G R, Paananen A, Laurikainen K, et al., Self-assembled hydrophobin protein films at the air-water interface:Structural analysis and molecular engineering. Biochemistry,2007,46: 2345-2354
    [75]Qin M, Wang L K, Feng X Z, et al., Bioactive Surface Modification of Mica and Poly(dimethylsiloxane) with Hydrophobins for Protein Immobilization. Langmuir,2007,23: 4465-4471
    [76]Fauza D, OFishman S, JMehegan K, et al., Videofetoscopically assisted fetal tissue engineering:skin replacement. J Pediatr Surg,1998,33:357-361
    [77]Holy C E, Shoichet M S, Davies J E, Bone marrow cell colonization of and extracellular matrix expression on, biodegradable polymers. Cells Mater 1997,7:223-234
    [78]De Silva M N, Desai R, Odde D J, Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomedical Microdevices,2004,6: 219-222
    [79]Hou S, Yang K, Qin M, et al., Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosensors & Bioelectronics, 2008,24:912-916
    [80]Carpenter C, EMueller R, JKazmierczak P, et al., Effect of a virus on accumulation of a tissue-specific cell-surface protein of the fungus Cryphonectria (Endothia) parasitica. Mol Plant Microbe Interact,1992,5:55-61
    [81]Qin M, Hou S, Wang L K, et al., Two methods for glass surface modification and their application in protein immobilization. Colloids and Surfaces B-Biointerfaces,2007,60: 243-249
    [82]陈志,细胞工程.2005:205
    [83]Bhang S H, Lim J S, Choi C Y, et al., The behavior of neural stem cells on biodegradable synthetic polymers. J Biomater Sci Polym Ed.,2007,18:223-239
    [84]Yang J, Shi G X, Bei J Z, et al., Fabrication and surface modification of macroporous
    poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. Journal of Biomedical Materials Research,2002,62:438-446
    [85]Yao L, Wang S G, Cui W J, et al., Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia,2009,5:580-588
    [86]Buzanska L, Ruiz A, Zychowicz M, et al., Patterned growth and differentiation of human cord blood-derived neural stem cells on bio-functionalized surfaces. Acta Neurobiol Exp, 2009,69:24-36
    [87]Ceriotti L, Buzanska L, Rauscher H, et al., Fabrication and characterization of protein arrays for stem cell patterning. Soft Matter,2009,5:1406-1416
    [88]Teng Y D, Lavik E B, Qu X L, et al., Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of the United States of America,2002,99:3024-3029
    [89]阎华,马景,李兰,大鼠神经干细胞和雪旺细胞体外共培养生长特性.J.天津医药,2006.34:36-38
    [90]Athanasiou K A, Niederauer G G, Agrawal C M, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials,1996,17: 93-102
    [91]Bernard A, Renault J P, Michel B, et al., Microcontact printing of proteins. Advanced Materials,2000,12:1067-1070
    [92]Hou S,Li X X, Li X Y, et al., Surface modification using a novel type I hydrophobin HGFI. Analytical and Bioanalytical Chemistry,2009,394:783-789
    [93]Ruiz A,Buzanska L,Gilliland D, et al., Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials,2008,29:4766-4774

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700