用户名: 密码: 验证码:
成年大鼠视皮层17区突触可塑性的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究单眼形觉剥夺后反缝对成年期弱视大鼠视皮层17区突触可塑性的影响。探讨成年期视皮层突触可塑性的机制。
     方法:
     将Wistar大鼠分为正常组、弱视组和反缝组。分别饲养至相应时间点时取左侧大脑视皮层17区。应用免疫组织化学法检测突触后GABAAR a 1和GluR2亚基的表达水平。透射电子显微镜对视皮层17区第Ⅳ层连续摄取3,000倍照片,局部定位放大后进行突触计数。随机摄取30,000倍照片,使用Image Proplus 6.0分析软件对突触间隙宽度、突触后致密物厚度、突触界面曲率进行测量。所有实验数据采用SPSS13.0统计软件包进行统计学处理。
     结果:
     (1)免疫组织化学结果:P11w时,弱视组和反缝组大鼠视皮层17区GABAARal的表达较正常组明显减少(P<0.001),弱视组较反缝组也明显减少(P<0.001)。P13w时,弱视组较反缝组及正常组明显减少(P<0.001),而反缝组与正常组比较无明显差别(P=0.496),两个时间点弱视组GluR2的表达较反缝组和正常组均明显增强(P<0.001),反缝组较正常组均明显较少(P<0.001)。
     (2)突触超微形态结构变化:P11w与P13w时,3组大鼠视皮层突触数量的差异均有统计学意义,弱视组突触数量较反缝组和正常组明显减少,反缝组较正常组也减少(P<0.01)。弱视组与反缝组及正常组比较,P11w和P13w时都是突触间隙明显增宽,突触后致密物明显增厚,突触界面曲率明显变小(P<0.01)。反缝组与正常组比较,P11w时,突触间隙增宽,突触后致密物增厚,突触界面曲率变小(P<0.05);而P13w时,差异无统计学意义(P>0.05)。
     结论:
     视觉系统的可塑性不仅存在于视觉发育的关键期以内,在关键期之后仍然存在。反缝干预能从结构和功能两方面来使成年大鼠视皮层的可塑性得以改善和恢复。
Objective
     To explore the effect of reverse suture after monocular deprivationon synaptic plasticity at the 17th area of amblyopic rat visual cortex after the critical period of visual development, as well as the possible mechnism of synaptic plasticity in adult rat visual cortex.
     Methods
     The Wistar rats were divided into normal group, amblyopia group and reverse-suture group, and were sacrificed to obtain the 17th area of the left visual cortex at corresponding time points. The expression of GABAARα1 and GluR2 subunit was detected by immunohistochemistry. The changes of synaptic ultra-structure were observed by electron microscopy. Photos of 3,000 magnification were continuously captured from layer VI of the primary visual cortex for counting the number of synapses in 3,000 Multiplying Factor. Photos of 30,000 Multiplying Factor were captured randomly. Image Proplus 6.0 was used to measure the width of synaptic cleft, the thickness of post-synaptic density and synaptic interface curvature. SPSS 13.0 was used for statistical analysis.
     Results
     By immunohistochemistry, weaker expression of GABAARal subunit could be found in the amblyopia group and reverse-suture group than in the normal group at P11w (P<0.001).The expression in the amblyopia group was weaker than the reverse-suture group (P<0.001). At P13w, the weaker expression could also be found in the amblyopia group than the reverse-suture group and the normal group(P<0.001), but there was no significant difference between the reverse-suture group and the normal group (P=0.496). The expression of GluR2 was stronger in amblyopia group than in reverse-suture group and normal group (P<0.001), weaker expression was seen in reverse-suture group than in normal group (P<0.001), either at Pllw or at P13w. Regarding changes of synaptic ultra-structure, there was significant difference among three groups both at Pllw and at P13w. The quantity of synapses in the amblyopia group reduced significantly compared with the reverse-suture group and the normal group, the quantity in the reverse-suture group was reduced than the normal group (P<0.01). The synaptic cleft was widened, synaptic PSD was thickened and interface curvature became smaller in the amblyopia group than the reverse-suture group and the normal group both at P11w and at P13w (P<0.05). The same result was taken when the reverse-suture group was compared with the normal group at P11w(P<0.05), but there was no significant difference at P13w(P>0.05).
     Conclusion
     The plasticity of visual cortex exists not only in the critical period but also after the critical period of visual development. The reverse suture after monocular deprivation could improve the synaptic plasticity in visual cortex of adult rats in structure and function.
引文
1. Webber AL, Wood J. Amblyopia:prevalence, natural history, functional effects and treatment. Clin Exp Optom.2005;88(6):365-375.
    2.惠延年.眼科学.第6版.北京:人民卫生出版社,2004:217.
    3. Daw NW, Beaver CJ. Developmental changes and ocular dominance plasticity in the visual cortex. Keio J Med.2001;50(3):192-197.
    4. Prusky GT, West PW, Douglas RM. Experience-dependent plasticity of visual acuity in rats. Eur J Neurosci.2000;12(10):3781-3786.
    5. Karmarkar UR, Dan Y. Experience-dependent plasticity in adult visual cortex. Neuron.2006;52(4):577-585.
    6. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, et al. Life long learning:ocular dominance plasticity in mouse visual cortex. Curr Opin Neurobiol. 2006;16(4):451-459.
    7. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol,2000;10(1):138-145.
    8. Guire ES, Lickey ME, Gordon B. Critical period for the monocular deprivation effect in rats:assessment with sweep visually evoked potentials. J Neurophysiol. 1999;81(1):121-128.
    9. Montandon G, Horner RL, Kinkead R, et al. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats. J Physiol,2009; 587(Pt 22):5493-5507.
    10. Fox K, Caterson B. Neuroscience. Freeing the bain from the perineuronal net. Science.2002;298(5596):1187-1189.
    11.杨景存.眼外肌病学.第1版.郑州:郑州大学出版社,2003:277.
    12. Myron Yanoff, Jay S, Duker. Ophthalmology.2nd Edition ed.2004.
    13. Heynen AJ, Yoon BJ, Bear MF, et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci. 2003; 6(8):854-862.
    14. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol.1970;206(2):419-436.
    15. Muir DW, Mitchell DE. Visual resolution and experience:acuity deficits in cats following early selective visual deprivation. Science.1973;180(84):420-422.
    16. Maffei L, Berardi N, Pizzorusso T, et al. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci.1992:12(12):4651-4662.
    17. Maya Vetencourt JF, Sale A, Maffei L, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008:320(5874):385-388.
    18. Fagiolini M, Hensch TK. Inhibitory threshold for critical period activation in primary visual cortex.. Nature Rev Neurosci.2000;404:183-186.
    19. Rozas C, Frank H, Heynen AJ, et al. Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J Neurosci. 2001:21(17):6791-6801.
    20. Murphy KM, Beston BR, Boley PM, et al. Development of human visual cortex:a balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol. 2005;46(3):209-221.
    21. Li M, De Blas AL. Coexistence of two beta subunit isoforms in the same gamma-aminobutyric acid type A receptor. J Biol Chem.1997:272:16564-16569.
    22. Wenthold RJ, Yokotani N, Wada K, et al. Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem.1992:267:501-507.
    23. Huang ZJ, Kirkwood A, Pizzorusso T, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999:98(6):739-755.
    24. Desai NS, Cudmore RH, Nelson SB, et al. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci.2002;5(8):783-789.
    25. Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience:dark rearing and monocular deprivation. Vision Res.1994;34:709-720.
    26. Quinlan EM, Philpot BD, Huganir RL, et al. Rapid, experience dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci.1999; 2:352-357.
    27. Kirkwood A, Rioult MG, BearMF. Experience-dependent modification of synaptic plasticity in visual cortex. Nature Rev Neurosci.1996:381:526-527.
    28. Hensch TK, Stryker MP. Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science.2004;303(5664):1678-1681.
    29.关新民.医学神经生物学纲要.北京:科学出版社,2003:110-111.
    30. Sawtell NB, Frenkel MY, Philpot BD. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron.2003:38(6):977-985.
    31. Heynen AJ, Bear MF. Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo. J Neurosci.2001:21:9801-9813.
    32. El Mallah MK, Chakravarthy U, Hart PM. Amblyopia:is visual loss permanent? Br J Ophthalmol.2000;84(9):952-956.
    33. Zhou Y, Huang C, Xu P, et al. Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Res. 2006:46(5):739-750.
    34. Pizzorusso T, Medini P, Berardi N. Reactivation of ocular dominance plasticity in the adult visual cortex. Science.2002;298(5596):1248-1251.
    35. Sale A, Maya Vetencourt JF, Medini P, et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci.2007;10(6):679-681.
    36.包新民,舒斯云.鼠大脑立体定位图谱.北京:人民卫生出版,1991:82-111.
    37. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Second Edition, Academic Press:Sydney.1986:35-55(figure26-31).
    38. Reid SN, Juraska JM. The cytoarchitectonic boundaries of the monocular and binocular areas of the rat primary visual cortex. Brain Res.1991:563:293-296.
    39. Sergej V, Girman, Raymond D, et al. Receptive field properties of single neurons in rat primary visual cortex. J Neurophysiol.2008;99(3):1535-1544.
    40. Gong H, Amemiya T. Optic nerve changes in manganese-deficient rats. Exp Eye Res. 1999;68:313-320.
    41. Jones DG, Devon RM. An ultrastructural study into the effect of pentobarbition on Synaptic organization. Brain Res.1978;147:47-63.
    42. He YS, Yao ZB, Gu YM,et al. NGF promotes collateral sprouting of cholinergic filbers in the septohippocampal cholinergic system of aged rats with fimbria transaction. Brain Res.1992;586:27-35.
    43. Montero, V. M., Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats:a'focal attention' hypothesis. Neuroscience,1999.91(3):p.805-17.
    44. Hubel DH, Wiesel TN. Effects of monocular deprivation in kittens. NaunynSchmiedebergs Arch Exp Pathol Pharmarkol.1964;248:492-497.
    45. Domenici L, Berardi N, Carmignoto G, et al. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci U S A. 1991:88(19):8811-8815.
    46. Hubel DH, Wiesel TN. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol.1963;26:994-1002.
    47. Dews PB, Wiesel TW. Consequences of monocular deprivation on visual behaviour in kittens. J Physiol.1970:206:437-455.
    48. Chow KL, Stewart DL. Reversal of structural and functional effects of long-term visual deprivation in cats. Expl Neurol.1972;34:409-433.
    49. Antonella Antonini, Deda C. Gillespie, Michael C. Crair, et al. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. J Neurosci.1998; 18(23): 9896-9909.
    50. Epelbaum M, Milleret C, Buisseret P, et al. The sensitive period for strabismic amblyopia in humans. Ophthalmology.1993;100(3):323-327.
    51. Chen JP, Song WX, Wu QH. [Clinical study of visual plasticity in teenage and adults with amblyopia]. Zhonghua Yan Ke Za Zhi.2003:39(12):710-713.
    52. Lee WC, Huang H, Feng GL, et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PloSBiol.2006;4(2):e29.
    53. Teyler TJ. Comparative aspects of hippocampal and neucortical long-term potentiation. Neurosci Methods.1989:28(1-2):101.)
    54. Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science. 2002:298(5594):776-780.
    55. Mahanty. Calcium permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature.1998:394(6694):683-687.
    56.'Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci Lett.2006,401(1-2):35-9.
    57. Voronin LL, Cherubini E. "Presynaptic silence" may be golden. Neurophar-macology. 2003,45:439-449.
    58. Kim CH, Chung HJ, Lee HK, Huganir RL. Interaction of the AMPA receptor subunitGluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci U S A.2001,98(20):11725-30.
    59. Majewska AK, Newton JR, Sur M. Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci.2006:26(11):3021-3029.
    60. Weeks AC, Ivanco TL, LeBoutillier JC, et al. The degree of potentiation is associated with synaptic number during the maintenance of long-term potentiation in the rat dentate gyrus. Brain Res.1998;798(1-2):211-216.
    61. Markus EJ, Petit TL. Synaptic structural plasticity:role of synapticshape. Synapse.1989;3(1):1-11.
    62. Marrone DF, Petit TL. The role of synaptic morphology in neural plasticity:structural interactions underlying synaptic power. Brain Res Brain Res Rev.2002;38(3):291-308.
    63. Pan B, Yang DW, Han TZ. Changes of synaptic structure after long-lasting LTP induced by high and low frequency tetanus in slices of the rat visual cortex. Sheng Li Xue Bao.2005;57 (1):77-82.
    64. Kennedy MB. Signal-processing machines at the postsynaptic density. Science. 2000:290(5492):750-4.
    65. Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and LTP. Trends Neurosci.2000,23(2):75-80.
    66. de Bartolomeis A, Fiore G. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity:implications for human behavior pathologies. Int Rev Neurobiol.2004:59:221-54.
    1. Webber AL, Wood J. Amblyopia:prevalence, natural history, functional effects and treatment. Clin Exp Optom.2005;88(6):365-375.
    2. Daw NW, Beaver CJ. Developmental changes and ocular dominance plasticity in the visual cortex. Keio J Med.2001;50(3):192-197.
    3. Karmarkar UR, Dan Y. Experience-dependent plasticity in adult visual cortex. Neuron.2006;52(4):577-585.
    4. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol,2000;10(1):138-145.
    5. Montandon G, Horner RL, Kinkead R, et al. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats. J Physiol,2009; 587(Pt 22):5493-5507.
    6. Guire ES, Lickey ME, Gordon B. Critical period for the monocular deprivation effect in rats:assessment with sweep visually evoked potentials. J Neurophysiol. 1999;81(1):121-128.
    7. Fox K, Caterson B. Neuroscience. Freeing the bain from the perineuronal net. Science.2002:298(5596):1187-1189.
    8. Myron Yanoff, Jay S, Duker. Ophthalmology.2nd Edition.2004.
    9. Holmes JM, Clarke MP. Amblyopia. Lancet.2006:367(9519):1343-13451.
    10. Heynen AJ, Yoon BJ, Bear MF, et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat Neurosci. 2003; 6(8):854-862.
    11. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol.1970;206(2):419-436.
    12. Muir DW, Mitchell DE. Visual resolution and experience:acuity deficits in cats following early selective visual deprivation. Science.1973;180(84):420-422.
    13. Maffei L, Berardi N, Pizzorusso T, et al. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci.1992;12(12):4651-4662.
    14. Rosenzweig MR. Environmental complexity, cerebral change, and behavior. Am Psychol.1966; 21(4):321-332.
    15. Jones TA, Hawrylak N, Greenough WT. Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology.1996;21(2):189-201.
    16. Van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci.2000;1(3):191-198.
    17. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature.1997;386 (6624):493-495.
    18. Singh P, Heera PK, Kaur G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury. Mol Cell Biochem.2003;247(1-2):69-74.
    19. Pfeiffer BE, Huber KM. Current advances in local protein synthesis and synaptic plasticity. J Neurosci.2006.26(27):7147-7150.
    20. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Forth Edition.McGraw-Hill Companies in USA:New York.2000:1260-1265.
    21. Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron.1995;15(1):89-103.
    22. Huang ZJ, Kirkwood A, Pizzorusso T, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999;98(6):739-755.
    23. Murphy KM, Beston BR, Boley PM, et al. Development of human visual cortex:a balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol. 2005;46(3):209-221.
    24.关新民,ed.医学神经生物学纲要.2003,科学出版社:北京.110-111.
    25. Chen L, Yang C, Mower GD. Developmental changes in the expression of GABAA receptors subunits in the cat visual cortex and effects of dark rearing. Mol Brain Res.2001;88:135-143.
    26.吕国蔚,ed.医学神经生物学.2004,高等教育出版社:北京.98-99.
    27. McDonnell MN, Orekhov Y, Ziemann U. Suppression of LTP-like plasticity in human motor cortex by the GABAB receptor agonist baclofen. Exp Brain Res.2007; 180(1): 181-186.
    28. Lien CC, Mu Y, Vargas-Caballero M. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat Neurosci.2006;9(3): 372-380.
    29. Hensch TK, Stryker MP. Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science.2004:303(5664):1678-1681.
    30. Katagiri H, Fagiolini M, Hensch TK. Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron.2007;53:805-812.
    31. Nusser Z, Naylor D, Mody I. Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents. Biophys J.2001;80(3):1251-1261.
    32. Fagiolini M, Fritschy JM, Low K. Specific GABAA circuits for visual cortical plasticity..Science.2004;303:1681-1683.
    33. Teyler TJ. Comparative aspects of hippocampal and neucortical long-term potentiation. Neurosci Methods.1989;28(1-2):101.
    34. Sale A, Maya Vetencourt JF, Medini P, et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci.2007.;0(6):679-681.
    35. He HY, Hodos W, Quinlan EM. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. Neuroscience.2006;26:2951-2955.
    36. Lee WC, Huang H, Feng G. Dynamic remodeling of dendritic arbors in GABA ergic interneurons of adult visual cortex. PLOS Biology.2006;4:271-280.
    37. Bliss, T. V. and A. R. Gardner-Medwin, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol,1973.232(2):p.357-74.
    38. Miyamoto E. Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci. 2006:100(5):433-442.
    39. Liu L, Wong TP, Pozza ME, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science.2004;304(5673): 1021-1024.
    40. Roberts EB, Rama AS. Ehanced NR2A subunit expression and decreased NMDA receptor delay time at the onset of ocular dominance plasticity in the ferret. Neurophysoil.1999;81(4):2587-2591.
    41. Wei Q, Zhengqin Y, Shijunw. Effects of binocular from deprivation on the excitatory post-synaptic currents mediated by N-methyl-D-aspartate recepots in rat visual cortex. Clinical&Experimental Ophthalmology.2004;32(3):289-294.
    42. Kumari M, Ticku MK. Regulation of NMDA receptors by ethanol. Prog Drug Res. 2000;54:152-189.
    43. Xiao MY, Wasling P, Hanse E, et al. Creation of AMPA-silent synapses in the neonatal hippocampus. Nat Neurosci.2004;7(3):236-243.
    44. Liao D, Hessler N, Mallnow R. Activation of postsynapticaIly silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995;375:400-404.
    45. Voronin LL, Cherubini E. "Presynaptic silence" may be golden. Neuropharmacology.2003;45:439-449.
    46. Nishimume A, Isaac JT, Henley JM. NSF binding to GluR2 regulates synapic transmission and plasticity. Neuron.1998;21:87-97.
    47. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci.2002:25(11):578-88.
    48. O'Neill MJ, Bleakman D, Zimmerman DM, et al. AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord. 2004;3(3):181-194.
    49. Ye EA, Kim TJ, Choi JS, et al. Ionotropic glutamate receptor GluR1 in the visual cortex of hamster:distribution and co-localization with calcium-binding proteins and GABA. Acta Histochem Cytochem.2006;39(2):47-54.
    50. Gutierrez-Ibarluzea I, Mendizabal-Zubiaga JL, Reblet C, et al. GABAergic neurons with AMPA GluR1 and GluR2/3 immunoreactivity in the rat striate cortex. Neuroreport.1997;8(11):2495-2499.
    51. Carder RK. Immunocytochemical characterization of AMPA-selective glutamate receptor subunits:laminar and compartmental distribution in mascaque striate cortex. J. Neurosci.1997;17:3352-3363.
    52. Laezza F, Dingledine R. Voltage-controlled plasticity at GLuR2-deficient synapses onto hippocampal interneurons. J Neurophysiol.2004;92 (6):3575-3581.
    53. Ryoo SR, Ahn CH, Lee JY, et al. Immunocytochemical localization of neurons containing the AMPA GluR2/3 subunit in the hamster visual cortex. Mol Cells. 2003:16(2):211-215.
    54. Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science. 2002;298(5594):776-780.
    55. Mahanty. Calcium permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature.1998;394(6694):683-687.
    56. Lapointe V, Morin F, Ratte S, et al. Synapse-specific mGluR1-dependent long-term potentiation in interneurones regulates mouse hippocampal inhibition. J Physiol. 2004; 555(Pt 1):125-135.
    57. Morishita W, Tsui J, Gaietta G, et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci.2004;7:244-253.
    58. Sutton MA, Ito HT, Cressy P, Kempf C, et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell.2006;125(4):785-99.
    59. Jiaz L, Agopyan N. Gene targeting reveals a role for the glutamate receptors mGluR5 and mGluR2 in learning and memory. Physiol and Behavior.2001; 73:793-802.
    60. Obrietan K, Gao X, Van Den Pol AN. Excitatory actions of GABA increase BDNF expression via a MARK-CREB-dependent mechanisma positive feedback circuit in development neurons. J Neurophysiol.2002;88:1005-1015.
    61. Skeberd. Excitatory actions of GABA during development:the nature of the nurture. Nature Rev Neurosci.2002;3:728-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700