用户名: 密码: 验证码:
医学图像质量评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代大型医疗成像设备的飞速发展,新的成像方法和图像处理方法不断涌现,医学图像正成为临床医学研究、诊断和治疗的依据。发展医学图像质量评价方法对于监控和调整医学图像质量、检验和优化医学图像处理算法意义重大。
     对于医学图像质量的评价,最可靠的方法是主观评价方法。但是医学图像主观评价方法存在代价高、耗时长、实时性差、易受主客观因素影响、不能嵌入实际医学图像处理系统中的缺陷,医学图像质量客观评价方法受到了重视。
     目前医学图像处理系统中主要采用峰值信噪比(PSNR)来进行医学图像质量的客观评价。由于峰值信噪比没有考虑到像素点间的相关性和人类视觉系统的感知特性,评价结果并不能真实反映图像的视觉感知质量。因此,发展更加符合人类视觉系统特性的医学图像质量评价方法是必要的。
     本文主要研究医学图像处理技术对医学图像质量影响的评价方法,为医学图像处理技术提供参考。首先介绍了医学图像质量评价方法的研究背景和意义,并介绍了图像质量的两个方面的定义;其次对人类视觉系统进行了简介,介绍了人类视觉系统的基本构造,讨论了与算法有关的人类视觉系统特性和人类视觉的知觉特性。接着对图像质量评价研究的过去和现状进行了概述,详细介绍了图像质量评价的主客观方法,并重点介绍和分析了基于结构相似度的图像质量评价方法的特点和缺点,总结整理了医学图像质量客观评价方法的应用。
     本文围绕医学图像质量客观评价方法,深入研究人眼视觉特性对图像质量的影响,并着重研究目前较受关注的图像质量评价方法:Zhou Wang等人提出的结构相似度(SSIM)。我们通过对SSIM三个评价因子分解实验,认为SSIM中最重要的结构比较因子难以完整准确的建模人眼的视觉特性。基于此,对图像质量客观评价方法提出了进一步的改进:
     1.提出一种改进的基于结构相似的图像质量客观评价方法。在改进的算法中充分利用图像梯度与图像边缘和纹理的关系,将图像结构信息重新解释为图像的梯度方向信息,而对比度信息解释为梯度大小,实验结果很好的拟合了主观评价。
     2.提出了基于梯度加权结构相似的医学图像质量评价方法。充分利用人眼视觉掩盖效应,针对不同的失真类型对于图像不同的内容具有不同的质量影响,提出了一种新的加权策略。新的加权策略利用图像梯度判断图像纹理和失真类型,模拟人眼的视觉掩盖特性,实验结果很好的拟合了主观评价。
     3.初步建立了用于质量评价的医学图像库,用于图像质量客观评价模型性能评测。从基本方法上说,医学图像质量评价和普通自然图像的质量评价是相同的,但是医学图像的获取方式决定了医学图像与自然图像不同。通用的图像质量评价方法是否适用于医学图像,必须使用医学图像来做进一步的仿真实验。为了更进一步的研究适用于医学图像的客观质量评价方法,我们建立了一套用于质量评价的医学图像库。
With the rapid development of the modern medical imaging equipment, both the new imaging methods and image processing methods are constantly emerging. The medical images have become a major reference in clinical research, diagnosis and treatment. The development of medical image quality assessment for monitoring and adjusting the quality of medical image, and testing and optimizing the algorithm of medical image processing is great significance.
     For all medical image quality assessment, the subjective assessment may be the best one. However, the subjective assessment is too inconvenient, costly and time-consuming for practical usage. Moreover, it is also easily affected by the subjective factors, and hard to be embedded in the medical image processing system. Therefore, how to assess the medical image quality is a very interesting topic.
     The peak signal-to-noise ratio (PSNR) is used as a major image quality assessment in the medical image processing system. As we all know, PSNR doesn't take into account correlation between pixels and the perceptual characteristics of human visual system, and the assessment results maybe not reflect the image quality of visual perception. Therefore, it is essential to research some new medical image quality assessment based on the human visual system.
     In this paper, we study the quality assessment of medical image which to be treated by the medical image processing method, which could be helpful for further medical image processing technique development. Firstly, we introduce the research background and significance, and describe two definitions about image quality. Secondly, we give the brief description of human visual system, and discuss the algorithm that is relative to the characteristics of the human visual system and human visual perception. Then, we outline the image quality assessment, introduce the subjective and objective image quality assessment, and highlights and analysis of the structural similarity based image quality assessment. Moreover, we summarize the application of the objective medical image quality assessment.
     In this paper, we study in-depth the effects of human visual properties on the image quality, and research SSIM proposed by Zhou Wang etc. We think that it is difficult to modeling exactly characteristics of the human visual system from the structure comparison function in SSIM. Therefore, we propose two new medical image assessments. The main contributions can be summed as follows:
     1. Improve the objective image quality assessment based on SSIM. In the improved algorithm, we take full advantage of the relation between image gradient, image edge and texture information, re-define the structure comparison function as the image gradient direction information, and the contrast comparison function as the gradient magnitude. The experiment results match greatly with the subjective assessment.
     2. Proposed a medical image assessment based on gradient-weighted SSIM (GWSSIM). Aiming at different quality effects on different image region and distortion type, we take full advantage of the visual masking effect and proposed a new weighted idea. This new weighted algorithm judges the image texture and distortion type by the image gradient. The experiment results fit well the subjective assessment.
     3. We construct the medical image database used to evaluate the performance of new objective image assessment methods. For the basic methods, medical image quality assessment is the same as general natural image. But whether the general natural image quality assessment is suitable for medical image must be experimented in simulation by medical image. To study further the better suitable objective medical image quality assessment, we construct the medical image database used to evaluate the performance of new objective image assessment methods.
引文
[1]曹茂永等.数字图像处理[M].北京:北京大学出版社,2007.
    [2]包尚联.医学影像物理学的现状和发展[J].中国医学物理学杂志,2003,20(3):275-222.
    [3]王文辉.基于内容的医学图像检索[D].广州:南方医科大学,2008.
    [4]Niranjan Damera-Venkata, Kite T D, Geisler W S, et al. Image quality assessment based on a degrandation model[J]. IEEE Transactions on Image Processing,2000,9(4):636-650.
    [5]ICRU. Medical imaging-The assessment of image quality[R]. Bethesda, Maryland:International Commission on Radiation Units and Measurements, 1996.
    [6]Cosman P C, Gray R M, Olshen R A. Evaluating quality of compressed medical images:SNR, subjective rating, and diagnostic accuracy[J]. Proceedings of the IEEE,1994,82(6):919-932.
    [7]冯前进.基于小波变换的医学图像编码[D].广州:第一军医大学,2003.
    [8]徐启飞.医学图像自适应超分辨率重建算法的研究[D].广州:南方医科大学,2008.
    [9]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [10]夏良正,李久贤.数字图像处理[M].2版.南京:东南大学出版社,2005.
    [11]David Atchison, George Smith. Optics of the Human Eye[M]. Boston: Butterworth-Heinemann,2000.
    [12]Rafael C.Gonzalez, et al,阮秋琦,等译.数字图像处理[M].2版.北京:电子工业出版社,2003.
    [13]Zetzsche C, Hauske G. Multiple channel model for the prediction of subjective image quality [J]. SPIE conference on human vision, Visual processing and Digital Display,1989,1077:209-216.
    [14]Lewis N W, Allnatt J W. Subjective quality of television pictures with multiple impairments[J]. Electron Letters,1965,1:187-188.
    [15]Campbell F W, Kulikowski J J. Orientational selectivity of the human visual system[J]. J. Physiol,1966,187(2):437-445.
    [16]Michelson A A. Studies in Optics[M]. Chicago:University of Chicago Press, 1962.
    [17]曹耀东.逆半调图像质量评价方法研究[D].西安:西安建筑科技大学,2008.
    [18]陈琪,余雄南.关于图形识别的视觉反应的研究[J].西安电子科技大学学报,1994,21(3):356-361.
    [19]Findlay J M. The visual stimulus for saccadic eye movement in human observers[J]. Perception,1980,9(1):7-21.
    [20]Niebur E, Koch C. Computational architectures for attention[M]//Raja Parasuraman. The Attentive Brain. Cambridge, Massachusetts:The MIT Press, 1997:163-186.
    [21]Gale A G. Human response to visual stimuli[M]//Hendee W, Wells P. The Perception of Visual information, New York:Springer-Verlag,1997:127-147.
    [22]EIias G, Sherwin G. Eye movements while viewing NTSC format television[C]. SMPTE Psychophysics Subcommittee white paper,1984.
    [23]孔斌.人类视觉与计算机视觉的比较[J].自然杂志,2002,24(1):51-55.
    [24]Mannos JL, Sakrison D J. The effects of a visual fidelity criterion on the encoding of images [J]. IEEE Transactions on Information Theory,1974,20(4): 525-536.
    [25]Watson A B. DCT Quantization Matrices Visually Optimized for Individual Images[J]. Proc. SPIE,1993,1913(14).
    [26]ITU-R Rec.BT.500-11. Methodology for the subjective assessment of the quality of television pictures[S].2002.
    [27]VQEG. The Video Quality Experts Group[OL]. http://www.its.bldrdoc.gov /vqeg/
    [28]VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment[R/OL]. http://www.its.bldrdoc. gov/vqeg/, Jun.2000.
    [29]VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment[R/OL]. http://www.its.bldrdoc. gov/vqeg/, Aug.2003.
    [30]Zhou Wang and Bovik A C. Mean Squared Error:Love it or leave it? [J]. IEEE Signal Processing Magazine,2009,26(1):98-117.
    [31]Kutter M, Petitcolas F. A fair benchmark for image watermarking systems[J]. SPIE Security and Watermarking of Multimedia Contents,1999,3657: 226-239.
    [32]Zhou Wang, Bovik A C, Ligang Lu. Why is image quality assessment so difficult[J]. Proc. IEEE International Conference Acoustics, speech, and Signal Processing,2002,4:3313-3316.
    [33]Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communications,1995,43(12):2959-2965.
    [34]Nill N B. A visual model weighted cosine transform for image compression and quality assessment[J]. IEEE Transactions on Communications,1985,33(6): 551-557.
    [35]丁艺芳.基于小波变换和视觉系统的图像质量综合评价新算法[D].上海:上海大学,2001.
    [36]Daly S. The visible difference predictor:An algorithm for the assessment of image fidelity[M]//Watson A B. Digital images and human vision. Cambridge, Massachusetts:The MIT Press,1993:179-206.
    [37]Lubin J. A visual discrimination mode for image system design and evaluation[M]//Peli E. Visual Models for Target Detection and Recognition. Singapore:World Scientific Publishers,1995:245-283.
    [38]Salem K A, Lewin J S, Aschoff A J, et al. Validation of a human vision model for image quality evaluation of fast interventional magnetic resonance imaging[J]. J. Electronic Imaging.2002,11:224-235.
    [39]Jun Miao, Donghai Huo, Wilson D L. Quantitative image quality evaluation of MR images using perceptual difference models[J]. Medical Physics,2008, 38(6):2541-2552.
    [40]Li Bei, Meyer G W, Klassen R V. A comparison of two image quality models[J]. SPIE Human Vision and Electronic Imaging Ⅲ,1998,3299(2): 98-109.
    [41]Egiazarian K, Astola J, Ponomarenko N, et al. New full-reference quality metrics based on HVS[C]. Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale,2006,4 p.
    [42]Zhou Wang, Bovik A C. A universal image quality index[J]. IEEE Signal Processing Letters,2002,9(3):81-84.
    [43]袁飞,黄联芬,姚彦.基于视觉掩盖效应和奇异值分解的图像质量评测方法[J].光学精密仪器,2008,16(4):706-713.
    [44]Mallat S. A theory for multi resolution signal decomposition:the wavelet representation[J]. IEEE Trans. Pattern Anal. Machine Intell,1989,11(7): 674-693.
    [45]Yung-Kai Lai, C.-C.Jay Kuo. Image quality measurenment using the Haar wavelet[J]. SPIE:Wavelet Applications in Signal and Image Processing V, 1997,3169:127-138.
    [46]Osberger W, Maeder A J. A technique for image quality assessment based on a human visual system model[Z].9th European Signal Processing Conference(EUIPC0-98),1998.
    [47]汪孔桥,沈兰荪,邢听.一种基于视觉兴趣性的图像质量评价方法[J].中国图象图形学报,2000,5(4):300-303.
    [48]陆旭光,汪岳峰,胡文刚等.基于视觉感兴趣区的图像质量评价方法[J].微计算机信息,2005,21(10-3):95-96.
    [49]Zhou Wang, Bovik A C, Sheikh H R. Image quality assessment:from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
    [50]Bovik A C. Handbook of Image and Video Processing[M]. San Diego:Elsevier Academic Press,2005.
    [51]Zhou Wang, Simoncelli E P, Bovik A C. Multi-scale structural similarity for image quality assessment[J]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA.2003,2:1398-1402.
    [52]Zhou Wang, Simoncelli E P. Translation insensitive image similarity in complexwavelet domain[C]. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing,2005:573-576.
    [53]郑德品,沈海斌,赵武峰.一种抗模糊失真的结构相似度图像质量评价法[J].机电工程,2007,24(10):81-84.
    [54]杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J],电子学报,2007,35(7):1313-1317.
    [55]廖斌,陈岩.双尺度边缘结构相似度的图像质量评估[J].计算机工程,2007,33(19):199-203.
    [56]Rao D V, et al. An image quality assessment technique based on visual regions of interest weighted structural similarity[J]. GVIP Journal,2006,6(2):69-75.
    [57]杨威,赵剡,许东.基于人眼视觉的结构相似度图像质量评价方法[J].北京航空航天大学学报,2008,34(1):1-4.
    [58]Zhou Wang, Xin-li Shang. Spatial pooling strategies for perceptual image quality assessment[C]. Proc. IEEE Int. Conf. Image Processing,2006: 2945-2948.
    [59]Guan-Hao Chen, Chun-Ling Yang, Edge-based structural similarity for image quality assessment[C], IEEE International Conference on Acoustics, Speech and Signal Processing,2006,2:933-936.
    [60]Yun Zhou, Duo Chen, Chuan-fu Li, et al. A practice of medical image quality evaluation[J]. Neural Networks and Signal Processing,2003,1:204-207.
    [61]Garcia J, Tello J, Castellanos G. Human visual system model for medical image quality analysis[OL]. http://scholar.google.cn
    [62]Artur Przelaskowski. Numerical equivalent of accuracy as a measure of medical image quality[C]. Proceedings, XVII IMEKO World Congress, Dubrovnik, Croatia,2003.
    [63]Wan Muhamad Saridan Wan Hassan, Yusof Munajat, Shamsul Sahibuddin. Physical image quality evaluation of medical radiographs[J]. Jurnal Fizik Malaysia,2002,23:201-206.
    [64]Kupinski M A, Clarkson E. Image-quality assessment in optical tomography[R]. Biomedical Imaging:Nano to Macro,2004. IEEE International Symposium.
    [65]Peter Barnum, Mei Chen, Hiroshi Ishikawa. Local quality assessment for optical coherence tomography[OL]. http://citeseerx.ist.psu.edu/viewdoc/ summary? doi=10.1.1.153.2638
    [66]Stein D M, Ishikawa H, Hariprasad R, et al. A new quality assessment parameter for optical coherence tomography[J]. British Journal of Ophthalmology,2006,90:186-190.
    [67]Cosman P C, Gray R M, Olshen R A. Quality evaluation for compressed medical images:Fundamentals[M]//Bankman I N. Handbook of Medical Imaging, Processing and Analysis. San Diego:Academic Press,2000:803-819.
    [68]Cosman P C, Gray R M, Olshen R A. Quality evaluation for compressed medical images:Diagnostic Accuracy[M]//Bankman I N. Handbook of Medical Imaging, Processing and Analysis. San Diego:Academic Press,2000: 821-839.
    [69]Cosman P C, Gray R M, Olshen R A. Quality evaluation for compressed medical images:Statistical Issues[M]//Bankman I N. Handbook of Medical Imaging, Processing and Analysis. San Diego:Academic Press,2000:841-849.
    [70]Tzong-Jer Chen, Keh-Shih Chuang, Yuang-Chin Chiang, et al. A statistical method for evaluation quality of medical images:a case study in bit discarding and image compression [J]. Computerized Medical Imaging and Graphics,2004, 28:167-175.
    [71]Kocsis O, Costaridou L, Mandellos G, et al. Compression assessment based on medical image quality concepts using computer-generated test images[J]. Computer Methods and Programs in Biomedicine,2003,71:105-115.
    [72]Jeffrey P. Johnson, Elizabeth A. Krupinski, Hans Roehrig, et al. Human visual system modeling for selecting the optimal display for digital radiography[C]. Elsevier International Congress Series,2004,1268:335-340.
    [73]Johnson J P, Lubin J. Visual discrimination model for digital mammography[J]. Proc. SPIE Med. Imaging,1999,3663:253-263.
    [74]G. Piella and H. Heijmans. A new quality metric for image fusion[R]. In Proc. IEEE Int.Conf.Image Processing, Barcelona, Spain, vol.3, Sept.2003, pp.173-176.
    [75]Yu Lifeng, Zu Donglin, Wang Weidong, et al. Multi_modality medical image fusion based on wavelet analysis and quality evaluation[J]. Journal of Systems Engineering and Electronics,2001,12(1):42-48.
    [76]Reinsberg S A, Doran S J, Charlers-Edwards E M, et al. A complete distortion correction for MR images:II. Rectification of static-field inhomogeneities by similarity-based profile mapping[J]. Phys. Med. Boil.,2005,50(11):2651-2661.
    [77]Loizou C P, Pattichis C S, Christodoulou C I, et al. Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery[J]. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control,2005,52(10): 1653-1669.
    [78]Loizou C P, Pattichis C S, Istepanian R. Ultrasound image quality evaluation. Information Technology Applications in Biomedicine,2003.4th International IEEE EMBS Special Topic Conference on.
    [79]Loizou C P, Pattichis C S, Pantziaris M. Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering[J]. Medical and Biological Engineering and Computing,2006,44(5): 414-426.
    [80]Sampat M P, Zhou Wang, Whitman G J, et al. Measuring intra- and inter-observer agreement in identifying and localizing structures in medical images[C]. Proc. IEEE Int. Conf. Image Processing, Atlanta,2006:81-84.
    [81]Mingyan Li, Radha Poovendran, Sreeram Narayanan. Protecting patient privacy against unauthorized release of medical images in a group communication environment [J]. Computerized Medical Imaging and Graphics,2005,29: 367-383
    [82]Sheikh H R, Zhou Wang, Cormack L. Live Image Quality Assess Database Release 2[OL]. Laboratory for Image & Video Engineering. University of Texas at Austin. http://live.ece.utexas.edu/research/quality/,2005.
    [83]Ponomarenko N, Carli M, Lukin V, et al. Color image database for evaluation of image quality metrics[C]. Proceedings of International Workshop on Multimedia Signal Processing, Australia,2008:403-408.
    [84]Patrick Le Callet, Florent Autrusseau. The Subjective quality assessment IRCCyN/IVC database[OL]. Universite de Nantes, France. http://www2.irccyn.ec-nantes.fr/ivcdb/,2005.
    [85]Alexandre Ninassi, Patrick Le Callet, Florent Autrusseau. Pseudo No Reference image quality metric using perceptual data hiding[J]. SPIE Human Vision and Electronic Imaging, San Jose, CA,2006,6057-8.
    [86]Yuukou Horita. MICT Image Quality Evaluation Database[OL]. Media Information and Communication Technology (MICT) Lab. University of Toyama, Japan. http://mict.eng.u-toyama.ac.jp/mict/index2.html
    [87]Chandler D M, Hemami S S. VSNR:A wavelet-based visual signal-to- noise ratio for natural images[J]. IEEE Transactions on Image Processing,2007,16(9): 2284-2298.
    [88]Shepp L A, Logan B F. The fourier reconstruction of ahead section[J]. IEEE Trans. Nucl. Sci.,1974, NS-21:21-43.
    [89]Keith A. Johnson and J. Alex Becker. Harvard University.The Whole Brain Atlas [OL]. http://www.med.harvard.edu/AANLIB/home.htm
    [90]Luke L. Yao MD, Gay S B, et al. Imaging Evaluation of the Cervical Spine[OL]. University of Virginia Health Sciences Center, Department of Radiology. http://www.med-ed.virginia.edu/courses/rad/cspine/
    [91]Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing,2006,15(11):3441-3452.
    [92]Gottschalk P G, Dunn J R. The five-parameter logistic:A characterization and comparison with the four-parameter logistic [J]. Analytical Biochemistry,2005, 343:54-65. Available on http://www.sciencedirect.com/
    [93]Ran X, Farvardin N. A perceptually motivated three-component image model-part I:Description of the model[J]. IEEE Transactions on Image Prodessing,1995,4(4):401-415.
    [94]龚声蓉,刘纯平.图像处理与分析[M].北京:清华大学出版社,2006:77.
    [95]Zhou Wang. Source codes of SSIM[OL].2003. Available at http://www.cns.nyu.edu/-zwang/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700