用户名: 密码: 验证码:
基于热释光技术的沉积物标样制作和沉积物测年若干基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
释光技术被扩展应用到各种需要进行年代测定领域,如早些时候的古物鉴定,及后来的地质学、空间科学、海洋学、第四纪研究等领域。同时也不可忽视释光基础研究是应用研究的前提。为此:
     1.制作标样L样和Y样,包括实验室前期处理,标样的均匀性检验、离群值检验和定值等。给热释光技术制作大质量的地质标样提供一套科学、实用的方法。
     2.选取L样,分析11~40μm、40~74μm、74~100μm、100~150μm不同粒径样品对热释光值的响应。实验结果显示:不同粒度具有相同剂量同一样品热释光值是不同的,因此测定时选取的粒度要一致且尽量限定在较小的范围内。
     3.选取L样,分析矿物质量对释光值的影响,结果显示:当质量<4 mg时,随样品质量增大,热释光强度也相应增大,且有良好的线性关系,可做质量归一;当质量为>6 mg时,随样品质量增加,热释光强度趋于不变,不可做质量归一
     4.选取L样品,分析比较矿物质量对剂量的响应情况,结果显示:不同质量的样品在检测面积一定的情况下,响应结果完全一致,在检测面积不同的条件下,释光量随剂量增长斜率不一致。
     5.选取Y样进行光晒退实验,表层样品释光值退去大约85%(不可晒退组分未考虑),样品积存热释光的晒退程度随着深度增加逐渐减小,到1000um左右的深度时无变化。
     6.针对于昌平钻孔样品,提取93.1m样石英颗粒,用40%HF按每克2ml溶蚀约80min,一般可获得较纯的石英颗粒,但溶蚀时间不宜过久,300min石英损失量过大,导致样品不适合进行TL测定;分析104m样附加剂量和释光量的关系,300Gy以下随着剂量的增长释光量呈一次线性增长,随后呈现非线性增长。对104m样而言,其天然释光量已处于非线性区,石英存在释光饱和现象。
     7.利用热释光技术对泥石流源区、流通区沉积物样品进行了等效剂量的测定,泥石流沉积物释光本底值依源区、流通区呈现降低趋势;对泥石流台地各层位不同性质沉积物样品退火程度进行比较,细粒样品比粗粒样品退火程度明显要大。本文认为台地中的泥块样是较为理想的年代测定载体,但泥石流物质的退火并不彻底,需要进行残留本底值的研究和矫正,相关的退火机制有待于进一步研究。
Thermoluminescence technique is extended to the age determination of needs areas, such as early identification of antiquities, and later geology, oceanography, space science, Quaternary Research and other fields. However, TL is the application of basic research has always been an important prerequisite.
     1. Using of thermoluminescence technique produce the standard samples of L and Y, including the pre-processing laboratory, homogeneity test, outliers test and valuation of standard samples. The results provide a scientific, practical approach for producing massive geological standard samples with the luminescence method.
     2. Using the different diameter of L samples,11~40μm,40~74μm,74~100μm,100~150μm analyze the TL of them. The results that the different diameter of L samples with same doses is different, so the determination of particle size should be consistent and confined to a smaller range.
     3. Using the different quality of L samples analyze and compare the TL of them, the experimental results show that:when the quality of samples<4 mg, the TL increased with the quality accordingly, and there is good linear relationship between quality and TL for normalization.when the quality of samples> 6 mg, the TL does not tend to change, and there is not need to do the quality of normalization of the samples'TL and its quality.
     4. Using the different quality of L samples analyze and compare the dose response of them. the experimental results showed that:In the detection area of a certain case, the different quality samples of TL is same, and the does response exactly uniformly. Under the different detection area conditions, the amount of TL release different, and the slope that TL increased with the dose is inconsistency
     5. Using the different quality of Y samples do the experiment of light bleach test. TL values of surface samples receded about 85%(non-bleach component is not considered), the sample accumulated bleach TL level decreases with depth, and there is no change about the depth of 1000um.
     6. Using 93.1m samples of Changping drilling extract quartz, the experimental results showed that:2ml per gram samples with 40% HF dissolute about 80min, it can get the availability of pure quartz particles generally, but the dissolution time is not too long, and 300min is excessive loss of quartz, the treated samples are not suitable for TL measurement. Using 104m samples of Changping drilling that has extracted quartz analyze the interpretation of the relationship between its additional dose and TL. when its additional dose is less than 300Gy, the result release that there has a linear growth between the amount of TL and the dose, when its additional dose is more than 300Gy, the growth is nonlinear. For 104m sample, the amount of its natural TL that has been detected is in the nonlinear regions, and the 104m samples has reached the quartz saturation.
     7. The work tests the equivalent dose of the samples from source area and drainage area. It is proved that thermolμminescence dose decreased in order from source area to drainage area. The work compares to the amount TL of different layers of the debris flow sediment samples, it is showed that the annealing of nature thermolμminescence of fine-grained samples was larger than the coarse-grained samples. This paper argues that the mud-like platform is an ideal dating carrier. However the debris flow material annealing is not sufficient, it is need for correction of the background value and studying the mechanism of thermo-lμminescence attenuation.
引文
[1]李虎侯.古陶瓷辨识[M].北京:首都师范大学资源环境与地理信息系统北京重点实验室.2004:323.
    [2]李虎侯.热释光断代—细粒技术记要[J].1981,6.
    [3]崔之久等.泥石流沉积与环境[M].海洋出版社,北京,1996.
    [4]李虎侯.BG1999选频光释光断代仪[J].核技术.2001,24(12):961-963.
    [5]李虎侯等.能隙中的电子运动[J].原子能科学技术.2006,40:67-73.
    [6]Aitken, M.J. Thermoluminescence Dating [M]. London, Academic Press,1985.
    [7]蔡干钢,吴方,王所亭译.固体热释光[M].北京,原子能出版社,1993.
    [8]王维达主编.中国热释光与电子自旋共振测定年代研究[M].中国计量出版社.1997.
    [9]Daniels, Boyd, Saunders. Thermoluminescence as a research tool [J]. Science,1953,117, 343-349.
    [10]Aitken, M.J.Title, M.S and Reid,J. Thermoluminescence dating of ancient ceramics [J] Nature,1964(202):1032-1033.
    [11]Mazess, R.B.and Zimmerman D.W., Pottery dating from thermoluminescence [J]. Science, 1966(152):347-348.
    [12]Rulph, E.K.and Han, M.L., Dating of Pottery by thermoluminescence [J]. Nature, 1966(210):245-247.
    [13]Aitken, M.J., Zimmerman, D.W. and Fleming, S.J., Thermoluminescence dating of ancient pottery [J].Nature,1968,219,442-444.
    [14]Fleming, S.J., Thermoluminescence techniques in archaeology [M]. Clarendon Press, Oxfordd,1979.
    [15]Zimerman, P.W., Introduction to basic procedures for sample preparation and TL measunement of ceramics [J]. PACT,1978(2):1-6.
    [16]Goksa, H.Y., Fremlin, J.H., et al., Age determination of burned flint by a thermoluminescent method [J]. Science,1974,183,651-654.
    [17]Wintle, A.G., Anomalous fading of thermoluminescence in mineral samples [J]. Nature, 1973,245,143-144.
    [18]Durrani, S.A., Temperature and duration of the shadow of a recently-arrived lunar boulder [J].Nature,1971,266,411-412
    [19]Mckeever, S.W.S.and Sears, D.W., Thermoluminescence and tesrestrial age of the Estacado Meteorite [J].Nature,1978,275,629.
    [20]Wintle, A.G. and Huntley, D., J., Thermoluminescence dating of a deep-sea ocean core [J]. Nature,1979,279,710-712.
    [21]Wintle, A.Gand Huntley, D.J., Thermoluminescence dating of ocean sediments [J] Canadian Journal of Earth Science,1980(17):348-360.
    [22]Wintle, A.G.and Huntley, D.J., Thermoluminescence dating of sediments [J]. Quaternary Science Reviews,1982(1):31-53.
    [23]李虎侯.黄土的热释光年代—光晒退的实验测定和结果修正[J].地球化学,1984,2:82-84.
    [24]Singhvi, A.K., Sharma, Y.P. and Agrawal, D.P., Thermoluminescence dating of sand dunes in Rajasthan [J]. India, Nature,1982(295):313-315.
    [25]Proscott, J.R., Thermoluminescence dating of sand dunes at Roonka [J]. South Australia, PACT,1983(9):505-512.
    [26]Huntley, D.J., Godfrey-Smith, D.I. and Thewall, M.L.W., Optical dating of Sediments [J] Nature,1985(313):105-107.
    [27]Hutt,G, Jack, I and Tchonka, J., Optical dating:k-feldspars optical response Stimulation Spectra [J]. Quaternary Science Reviews,1988(7):381-385.
    [28]B(?)tter-Jensen, L, Luminescence technique:instrumentation and methods [J]. Radiation Measurements,1997(27):749-768.
    [29]B(?)tter-Jensen, L., Mejdahl, V.and Alurray, A.S., New light on OSL [J]. Quaternary Geochronology,1999(18):303-309.
    [30]Duller, G.A.T., Equivalent dose determination using single aliquots [J]. Nuclear Tracks and Radiation Measurements,1991(18):371-378.
    [31]Bulur,E., An alternative technique for Optically stimulated luminescence(OSL) experiment [J]. Radiation Measurement,1996(26):701-709.
    [32]Bulur, E., Botter-Jensen, L., Murray, A.S., Optically stimulated luminescence from quartz measured using the linear modulation technique [J]. Radiation Measurements,2000(32): 407-411.
    [33]Bulur, E., Duller, G.A.T., Solongo, S., BΦtter-Jensen, L., Murray, A.S., LM-OSL from single grains of quartz:a preliminary study [J]. Radiation Measurements,2002(35):79-85.
    [34]李虎侯,魏明建.选频光释光断代初探[J].核技术,2003,26(1):22-24.
    [35]张克旗,陈杰,刘进峰等.海原断裂带刺儿沟剖面烘烤次生黄土的光释光测年及其地质意义[J].地震地质,2003,29(2):24-26.
    [36]范育新,赵晖,陈发虎等.博斯腾湖湖泊沉积物光释光年代测量[J].第四纪研究,2007,27(4):20-27.
    [37]张家富,周力平,姚书春.湖泊沉积物的14C和光释光测年——以固城湖为例[J].第四纪研究,2007,27(4):32-36.
    [38]覃金堂,周力平.沙漠边缘厚层黄土上部光释光测年的初步研究[J].第四纪研究,2007,27(4):38-42.
    [39]李晓妮,卢演俦,王旭龙.洛川黄土细颗粒混合矿物红外释光信号异常衰减的初步研究[J].第四纪研究,2007,27(4):24-27.
    [40]张家富,周力平.释光技术在构造事件定年中的应用[J].核技术,2007,11(30):30-36.
    [41]张家富,袁宝印,周力平等.福建晋江“老红砂”的释光年代学及对南方第四纪沉积物释光测年的指示意义[J].科学通报,2007,22(52):18-22.
    [42]康树刚,卢演俦,王旭龙.黄土细颗粒混合矿物红外释光和红外后蓝光释光的环境意义[J].核技术,2009,32(2):13-16.
    [43]贾耀锋等.渭河流域东部全新世黄土一古土壤剖面光释光测年及其记录的土壤侵蚀事件[J].海洋地质与第四纪地质,2008,28(3):23-28.
    [44]熊正烨,唐强,陈劲民等.湖光岩玛尔湖的热释光断代[J].核技术,2009,32(4):12-16.
    [45]刘海生,侯胜利,方念乔.东北印度洋沉积岩芯热释光与古气候变化[J].气候与环境研究,2008,13(1):25-28.
    [46]刘海生,侯胜利,方念乔.深海沉积生物碳酸盐岩天然热释光成因初探[J].自然科学进展,2009,19(9):16-20.
    [47]谭文化,李胜荣,申俊峰.大庆徐家围子火山岩热释光特征与火山活动期次及岩性判别[J].岩石矿物学杂志,2007,26(3):13-16.
    [48]张丽娇,叶树林,刘庆成.土壤天然热释光测量在探查滑坡体边界中的应用研究[J].铀矿地质,2008,24(5):19-22.
    [49]达雪娟,高柏原,伊海生.碳酸盐矿物和碳酸盐岩天然热释光的实验研究[J].物探化探计算技术,2009,31(1):19-22.
    [50]魏明建等.热释光信号在泥石流发生后的变化[J].核技术,2009,32(2):23-27.
    [51]贾耀锋,黄春长,庞奖励等.释光测年在应用研究方面的新进展[J].陕西师范大学学报(自然科学版),2005,33(4):115~121
    [52]熊正烨,唐强,张纯祥.掺Cu,Ag,Mg的Li2B407磷光体的热释光研究[J].中国科学G辑:物理学力学天文学,2007,37(2):165-173.
    [53]龚革联,谭凯旋.石英的热释光性质及其在测年中的应用.湖南地质[J].1999,18(2、3):180-182
    [54]M.R. Krbetchek. In Coloyne:11th international Conference on L u minescence and Electron Spin Resonance Dating[J]. June,2005.
    [55]龚革联,刘顺生,夏斌.光谱方法研究长石的热释光过程[J].中国科学G辑:物理学力学天文学,2008,38(1):102-107.
    [56]杨传成,陈杰,张克旗.水成相沉积物细颗粒石英光释光综合生长曲线的建立与应用[J].地震地质,2007,29(2):26-29.
    [57]李虎侯.释光技术测定年龄的现状.第四纪研究[J].1997,3:248-257
    [58]潘宝林,魏明建.不同厚度石英对α射线的热释光响应[J].原子能科学技术,2008,42(7):24-29.
    [59]潘宝林,魏明建,李东旭等.氧化铝和石英颗粒α射线的热释光响应[J].核技术,2009,32(2):113-115.
    [60]李国强,赵晖,范育新等.光释光测年中石英样品提纯方法的改进[J].地球科学进展,2008,23(3):284-289
    [61]李虎侯.热释光断代[M].香港:科学家出版社,1999.
    [62]全浩.韩永志主编.标准物质及其应用技术(第二版),北京:中国标准出版社,2002
    [63]杨震宇.室内实物标样的制作[J].分析实验室,2006,25(3):98-102.
    [64]麦克唐纳,R.W,郑久华.海洋底质标准物质的制备和应用[J].海洋通报,1988,7(3):76-80.
    [65]袁卫,庞皓,蹭五一.统计学[M].北京:高等教育出版社,2000:23-55.
    [66]程子丰,许富春.环境数据统计分析[M].北京:化学工业出版社,2006:35-107.
    [67]盛骤,谢式千.概率论与数理统计(第三版)[M].北京:高等教育出版社,2001:106-132.
    [68]Bailey,S.D.,Wintle,A.G,Duller,G.A.T. and Bristow,C.S.,Sand deposition during the last millennium at Aberffraw,Anglesey,North Walses as determined by OSL of quartz, Quaternary Science Reviews,2001,20,701-704.
    [69]赖忠平等.绿光释光测年中基于单片技术的再生附加法[J],地质力学学报,1999,5(4):24-38
    [70]雷祥义,李昭淑.蒋家沟泥石流堆积物的时代及成因[J].山地研究.1993,11(3):149-155.
    [71]李吉均,况明生.小江流域第四纪沉积物的ESR年代、山原红壤发育年龄与地层划分的研究[C].见:八五攀登计划青藏高原项目1995年学术年会论文集.兰州大学.1995.64-781.
    [72]M.Stoffel, D.Conus, M.Grichting et al. Dynamics in debris-flow activity on a forested cone —A case study using different dendroecological approaches[J], Catena 72 (2008) 67-78
    [73]Kovanen, D.J., Slaymaker, O., The morphometric and stratigraphic framework for estimates of debris flow incidence in the North Cascades foothills, Washington State, USA, Geomorphology[J].2007
    [74]Chen, J., et al., Holocene debris-flow deposits and their implications on the climate in the upper Jinsha River valley, China. Geomorphology (2007), doi:10.1016/j.geomorph. 2007.03.011
    [75]唐邦兴等.中国泥石流[M].商务出版社.北京.2000.
    [76]康志成,李焯芬,马蔼乃.中国泥石流研究[M].科学出版社.北京.2004.
    [77]崔鹏,韦方强,谢洪.中国西部泥石流及其减灾对策[J].第四纪研究.2003,23(2):142-151.
    [78]业渝光等.云南东川古泥石流堆积物ESR测年的初步研究[J].地理研究.1995,15(4)373-377。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700