用户名: 密码: 验证码:
基于多级逆流固液萃取的大豆分离蛋白提取工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆分离蛋白(SPI)是以脱脂豆粕为原料经过碱溶酸沉等方式制备而成的蛋白质产品,传统的提取工艺存在用水量高、提取率低、乳清废水排放量大等问题。本文以豆粕中蛋白质为研究对象,在基于质谱的蛋白质种类识别基础上,考察了提取条件对豆粕中不同种类蛋白质的释放行为的影响,建立基于多级逆流固液提取技术的SPI提取新工艺,在此基础上研究并建立大豆深加工行业乳清废水中高附加值蛋白的提取方法与综合利用,旨在降低提取过程用水量并提高蛋白质收率。主要结论如下:
     1.利用HPLC对蛋白提取物及乳清废水进行了分离,收集了分离出的主要蛋白质组分;采用酶解技术结合液质联用技术对分离出的蛋白质进行了种类识别。结果表明不同种类蛋白质的保留时间分布范围较宽,提取物中7S和11S组分中的蛋白质在色谱图中的保留时间主要集中在24 min以后,含有少量2S组分,乳清废水中主要是2S组分,其保留时间集中在24 min以前。采用飞行时间质谱和凝胶过滤色谱分析了蛋白提取物和乳清废水;结果表明,SPI的分子量范围为10 kDa-320 kDa,乳清废水的分子量范围为10 kDa-30 kDa。
     2.在蛋白质组分识别的基础上,对豆粕中的蛋白质溶出过程进行了监测,并对SPI提取过程中豆粕内各蛋白质组分的释放行为进行了研究。结果表明,2S组分释放速率较快,经过三次提取的相对释放量可达到90%以上;7S和11S组分释放速率较2S组分的释放速率低,四次提取的相对释放量达84%,提高提取过程中固相和液相之间的浓度梯度和延长7S和11S组分相对提取时间有利于提高7S和11S组分的释放速率。
     3.考察了多级逆流固液提取过程中提取条件对蛋白质总提取率、高分子量组分的酸沉率的影响。结果表明,采用多级逆流固液提取技术可在相同的蛋白质收率条件下用水量节省16%,同时由于提取液中较高的7S和11S浓度,在酸沉阶段7S和11S的收率较传统工艺中的酸沉阶段的收率提高3%。实现多级逆流固液提取工艺中试放大,获得的SPI中粗蛋白含量和氮溶解指数为分别为94.9%、99.4%,均高于传统提取工艺获得的SPI。
     4.利用疏水层析法对乳清废水中的胰蛋白酶抑制剂进行纯化,并利用HPLC和MALDI-TOF对纯化结果进行表征。结果表明,疏水层析法可对胰蛋白酶抑制剂进行有效的分离纯化,并以纯化的胰蛋白酶抑制剂为配基,环氧活化的琼脂糖凝胶为载体制取亲和介质,以标准的胰蛋白酶溶液为样品对亲和层析介质进行表征。结果表明,制取的两种亲和介质均能实现对胰蛋白酶的纯化。
     本研究将多级逆流固液萃取技术应用于SPI提取,并考察了不同提取条件对蛋白质收率及释放速率的影响,同时对乳清废水中的胰蛋白酶抑制剂进行了分离纯化,对建立节水和提高蛋白收率的SPI提取工艺具有重要的参考价值。
Soybean protein isolate (SPI) is a mixture of different types of protein obtained from soybean by method of basic extraction and isoelectric precipitation. For traditional extraction process, there are several disadvantages such as high water consumption, low protein recovery, protein degradation. In this study, a new process based on multi-stage countercurrent solid-liquid extraction (MSCSLE) was investigated to decrease water consumption and optimize the process of protein release. The main proteins were characterized and the release behavior and dynamic change of these proteins were investigated. Then, the effect of operational parameters on MSCSLE process was investigated. The possibility for separation of trypsin inhibitor in whey waste water was also investigated. The main results are summarized as follows:
     1. The proteins in the SPI and whey waste water were separated using HPLC and chromatographic peaks were collected. Proteins were identified by mass spectrometric analysis coupled with tryptic digestion. The retention times of proteins in 7S and 11S components were after 24 min. Most of the proteins in whey waste water were 2S protein, which had a retention time below 24 min. The range of molecular weight was obtained by high performance gel filtration chromatography. The molecular weight ranges in SPI and whey waste water were from 10 kDa to320 kDa and from 10 kDa to30 kDa respectively.
     2. The release rates of different types of protein in soybean meal were determined according to the peak areas in chromatogram. The results indicated that proteins in 2S had a higher release rate than that in 7S and 11S. The almost 90% of total 2S protein could be released when the soybean meal was washed three times. The total released proteins in 7S and11S was 84% after four-time extraction. The release rate of 7S and 11S proteins increased with the extraction time and ratio of water to solid increasing during extraction process.
     3. MSCSLE was carried out and effect of water/solid ration and extraction time on the release rate, total released proteins, and precipitation ratio of high MW proteins were investigated. Compared to the traditional extraction method, 16% of water consumption could be saved by method of MSCSLE. At the same time, MSCSLE could decrease the degradation velocity of 7S and 11S, resulting in higher 7S and 11S content in SPI. Further analysis indicated that the crude protein content and nitrogen solution index of the product were 94.9% and 99.4% respectively.
     4 The trypsin inhibitor in whey waste water was purified using hydrophobic chromatography. The obtained trypsin inhibitor was verified based on HPLC-MS and MALDI-TOF MS analysis. The result indicated that hydrophobic chromatography was an effective method to separate trypsin inhibitor from whey waste water. Then, trypsin inhibitor was coupled on agarose gel, which was activated by 1, 4-butanediol diglycidyl ether, and affinity chromatographic media was prepared. The efficacy of affinity media was test by trypsin solution. The result showed the trypsin could be purified by the affinity medium, indicating that the whey waste water can be used a resource to separate high value proteins.
     MSCSLE was used in the extraction of SPI, and the impact of extraction conditions to the recovery ratio and release action was studied. The extraction conditions were optimized. Besides, the TI in whey waste water was purified by hydrophobic chromatography. This was benefit to construct a new SPI extraction method with low water consumption and high protein recovery.
引文
迟玉杰,朱秀清,李文滨,等.大豆蛋白质加工新技术[M].科学出版社, 2008
    储茂泉,古宏晨,刘国杰.中药浸提过程的动力学模型[J].中草药, 2000, 3(1): 504
    储茂泉,刘国杰.中药提取过程的动力学[J].药学学报, 2002, 37(7): 559
    崔东善,宋洪亮,陈元松,等.大豆分离蛋白生产过程中水洗工艺的控制[J].现代化农业, 1996, 6: 37-38.
    邓修,吴俊生.化工分离工程[M].北京:科学出版社, 2000
    董季,林凤岩.醇法制备大豆浓缩蛋白工艺[J].中国油脂, 2008, 33 (6): 24-25
    盖钧镒.大豆加工产业的发展及其对大豆品质的要求[J].食品开发, 2008, 4-7
    韩丽.应用逆流提取与膜分离技术的中药注射剂新工艺研究[Z].博士论文.成都:成都中医药大学, 2003. 05. 01
    胡小中,温光源,李里特.多级逆流醇浸法制取大豆浓缩蛋白工艺的研究[J].食品工业科技, 2009, 30(3): 272-275.
    江连洲,胡少新.中国大豆加工产业发展现状与建议[J].中国农业科技导报, 2007, 9(6): 22-27
    康宇杰,欧仕益.可食性大豆分离蛋白膜的研究进展[J].中国粮油学报, 2003, 18(4): 38-42
    雷雨.火腿肠生产工艺及质量控制[J].食品科技, 1999, 5: 22-23.
    李书国.大豆分离蛋白生产新工艺的研究[J].西部粮油科技, 1998, 4: 35-38
    李应彪,李开雄,童军茂.大豆蛋白在火腿肠生产中的应用[J].肉类研究, 1999, 4: 44-45.
    刘大川,杨国燕,翁利荣.等.超滤膜法制备大豆分离蛋白工艺的研究[J].中国油脂, 2003, 11: 30-34
    南海涵,郑建仙.大豆蛋白的保健功能.营养与保健, 2001, 6
    权静,卢定强,张筱,等.大豆功能性成分的研究现状[J].大豆通报, 2004, 3: 27-29
    沈再春,沈群,费晓书等.国内大豆分离蛋白生产的现状、差距及建议[J].粮食与饲料工业, 1998, 3: 35-37
    石慧,张俊红.大豆抗营养因子的研究进展[J].孝感学院学报, 2006, 26(3): 18-21
    宋国安.国外几种大豆蛋白的生产及应用[J].食品工业科技, 1999, 6: 59-61.
    孙莉静.大豆蛋白与肾脏疾病[J].国外医学泌尿系统分册, 2002, 22(1): 16-19
    王长良,张永忠,孙志刚. Bowman-Birk型大豆胰蛋白酶抑制剂研究进展.大豆科学, 2007, 26(5): 757-761
    王坤.益母草罐组式动态逆流提取工艺研究.安徽中医学院学报, 2000, 19(5): 46-47
    王溶溶.鸡血藤动态逆流连续循环提取工艺的研究[J].中成药, 2003, 25(5): 358-359
    王薇.大豆食品生产的发展及建议[J].中国食物与营养, 1998, 6: 26-29
    王英,崔政伟.连续动态逆流提取的动态和现状[J].技术综述, 2009, 27(1): 49-53.
    王璋等译.食品化学[M].第二版,北京中国轻工业出版社, 1991, 230-223
    翁蕾蕾.大豆蛋白纤维的性能及产品开发[J].毛纺科技, 2003, 5: 25-27
    夏剑秋,杨秋萍.用大豆蛋白强化成品粮营养势必在行[J].中国粮油学报, 1998, 3: 44-47.
    谢可方.大豆Kunitz型胰蛋白酶抑制剂的抗性及其基因表达的研究.硕士学位论文, 2000, 5-14
    谢志鹏,刘雪松,陈勇,等.动态罐组式逆流提取技术在中药生产中的应用研究进展[J]. 中国中药杂志, 2007, 32(10): 884-887
    杨宏顺,陈复生,于志玲,等.反胶束萃取技术在食品科学中的研究进展[J].郑州工程学院学报, 2001, 4: 42-45
    杨庆斌,孙永军,等.大豆蛋白纤维发展与应用综述[J].山东纺织科技, 2004, 2: 43-45
    曾仲奎,谢文胜,鲍锦库.水稻巯基蛋白酶抑制剂的分离纯化及性质研究.生物学杂志, 1996, 12(6): 703-708
    张军涛,杨晓泉,黄立新.改性大豆蛋白胶黏剂的研究进展[J].粘接, 2004, 25(4): 31-34
    赵西周,陈春佳,张效伟.连续性碱溶酸沉生产大豆分离蛋白特点分析[J].中国油脂, 2002, 5(5): 61~63
    周兵,周瑞宝.大豆球蛋白的性质[J].西部粮油科技, 1998, 23 (4): 39-43
    朱婉华,郑伟娟,武力,等.大豆β-淀粉酶的纯化和性质研究[J].南京大学学报, 1994, 30 (1): 174-178
    朱行.浓缩大豆蛋白的加工、特性和前景[J].中国食品与营养, 2002 (5): 34-35
    Bartlet-Jones M, Jeffery W A, Hansen H F, et al. Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent [J]. Rapid Commun. Mass Spectrom, 2005, 8: 737-742
    Bazinent L, Lamarche F, Labrecque R. Electro acidification of soybean proteins forproduction of isolation [J]. Food technology, 1997, 9: 52-56
    Bebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature, 2003, 422: 198-207
    Birk Y. The Bowman-Birk inhibitor trypsin and chymotrypsin inhibitor from soybean. Int J Pept Protein Rea, 1985, 25(2): 113-131
    Boss H J, Rohde M F, Rush R S. Multiple sequential fraction collection of peptides and glycopeptides by high-performance capillary electrophoresis [J]. Anal. Biochem,1995, 230: 123-129
    Broadway R M, Duffey S S. Plant proteinase inhibitors mechanism of action and effects on the growth and digestive physiology of iarval heliothis zea and spodoptera exigua [J]. Insect Physiology, 1986, 32(10): 827-833
    Castro R F, Marina M L, Garfa M C. Perfusion reversed-phase high-performance liquid chromatography/mass spectrometry analysis of intact soybean proteins for the characterization of soybean cultivars [J]. J. Chromatogr. A, 2007, 1170: 34-43
    Cheng X H, Harmes A C, Goudreau P N. Direct measurement of oligonucleotide binding stoichiometry of gene V protein by mass spectrometry [J]. PNAS, 1996, 93: 7022-7027
    Dancik V, Addona T A, Clauser K R, et al. Denovo peptide sequencing via tandem mass spectrometry [J]. J. Comput. Biol, 1999, 6:327-42
    Delwiche S R, Pordesimo L O, Panthee D R, et al. Assessing Glycinin (11S) and β-Conglycinin (7S) fractions of soybean storage protein by near-infrared spectroscopy [J]. J. Am. Oil Chem. Soc., 2007, 84 (12): 1107-1115
    Dittmann KH, Dikomey E, Mayer C. The Bowman-Birk protease inhibitor enhances clonogenic cell survival of ionizing radiation-trated nucleotide excision repain-competent cells but not of xeroderma pigmentosum cells. Internal Journal of Radiation Biology, 2000, 76(2): 223-229
    Duranti M, Barbiroli A, Scarafoni A. One-step purification of kunitz soybean trypsin Inhibitor [J]. Protein Express and Purif, 2003, 30(2): 167-170
    Dzvid R. E. Practical handbood of soybean processing and utilization [M]. St. Louis, Missouri: AOCS PRESS and United Soybean Board, 1993: 387-391
    Faeder J, Ladanyi B M. Materials, aurfaces, interfaces & biophysical/royal photographic society of great Britain [J]. Phys. Chem B, 2000, 104: 1033-1046
    Fenn J B, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science, 1989, 246: 64-71
    Garcra M C. Composition and characterization of soybean and related products [J]. Critical Reviews in Food Science and Nutrition, 1997, 37(4): 361-391
    Geyer H, Schmitt S, Wuhrer M. Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS [J]. Anal. Chem, 1999, 71: 476-482
    Hettiarachchcy N S, Kalapathy U, Myers D J. Alkali-modified soy protein with improved adhesive and hydrophobic properties [J]. J Am Oil Chem Soc, 1995, 72(12): 1461-1464
    Hou K F, Zheng Q, Li Y R, et al. Modeling and optimization of herb leaching processes [J]. Comput Chem Eng, 2000, 24: 1343
    Insella J E, Fox P E. Watersorption protein: milk and whey proteins [J]. Food Sci Nutri, 2002, 24: 91-139
    Jensen O N, Barotsky D F, Young M C. In: Crabb J W, ed. Techniques in protein chemistry [J]. V. San Diego. Academic Press. 1994. 27-37
    Johnson L A, Myers J, Burden D J, et al. Early users of soy protein in far east [J]. Inform, 1984, 3: 282-284
    Jonscher K R. Matrix-assisted laser desorption ionization/quadrupole ion trap mass spectrometry of peptides. application to the localization of phosphorylation sites on the P protein from sendai virus [J] . J. Bio. Chem, 1997, 272: 1735-1741
    Katta V, Chait B T. Observation of the hemo-globin complex in native myoglobin by electrospray-ionization mass spectrometry [J]. J. Chem. Soc, 1991, 113: 8534-8537
    Kaufmann R,Spengler B,Lutzenkirchen F. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization [J]. Rapid Commun. Mass Spectrom, 1993, 7: 902-910
    Kennedy AR. Chemopreventive agents: protease inhibitors [J]. Pharmacol Ther, 1998, 78(3): 167-209
    Kontessis P, Jones S, Dodds R, et al. Renal, metabolic and hormonal response to ingestion of animal and vegetable proteins [J]. J. Kindey Int, 1990, 38(1): 136-144
    L C Dickey, N Parris, J C Craig, et al. Serial batch extraction of zein from milled maize [J].Industrial Crops and Products, 2002, 15: 33042
    Laurent Bzainent, Lamarche F, Labrecque R. Effect of number of bipolar membrance and temperature on the performance of bipolar membrance electroacidification [J]. Journal Agriculture Food Chemistry, 1997, 10: 3778
    Li W, Zheng C, Wang J S. Microwave multi-stage countercurrent extraction of dihydromyricetin from ampelopsis grossedentata [J]. Food Technol. Biotechnol., 2007, 45(4): 374-380
    Liu C, Wang H L, Gui Z M, et al. Optimization of extraction and isolation for 11S and 7S Globulins of soybean seed storage protein [J]. Food Chem., 2007, 102 (4): 1310-1316
    Liu S H, Zhou R B, Tian S J, et al. A Study on subunit groups of soybean protein extracts under SDS-PAGE [J]. J Am Oil Chem. Soc, 2007, 84: 793-801
    Liu X B, Jin J, Wang G H. Soybean yield physiology and development of high-yielding practices in Northeast China [J]. Field Crops Research, 2008, 105: 157-171
    Macello Duranti, Albert Barbiroli, Alessio Scarafoni, Gabriella Tedeschi, Paolo Morazzoni. One-step purification of Kunitz soybean trypsin inhibitor. Protein Expression and Purification, 2003, 30: 167-170
    Macht M, Fielder W, Kurzinger K. Mass spectrometric mapping of protein epitope structures of myocardial infarct markers myoglobin and troponin T [J]. Biochem, 1996, 35: 15633-15639
    Mann M, Hojrup P, Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases [J]. Biol. Mass Spectrom, 1993, 22: 338-345
    Maria C P, Cecilia E L, Maria C A, et al. Gelation of soybean protein in isolates in acidic conditions. effect of pH and protein concentration [J]. J Agic Food Chem, 1995, 43 (9): 2356-2361
    Mclaffert Y FW, Fridriksson E K, Hom D M, et al. Biomolecular mass spectrometry [J]. Science, 1999, 284: 1289-1290
    Mortz E, Oconnor P B, Roepstorff P, Kelleher N L, Wood T D, et al. Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases [J]. PNAS, 1996, 93: 8264-7
    Moure A, Franco D, Sineiro J, et al. Simulation of multistage extraction of antiosidants fromchilean hazelnut (Gevuina avellana) hulls[J]. J Am Oil Chem Soc, 2003, 80(4): 389
    Nilsson B. Analysis of protein glycosylation by mass spectrometry [J]. Mol. Biotechnol, 1994, 2: 243-280
    Omosaiye O, Cheryan M. Ultrafiltration of soybean water extracts: processing characteristics and yield [J]. J Food Sci, 1979, 44: 1027-1031
    Panthee D R, Kwanyuen P, Sams C E, et al. Quantitative trait loci forβ-Conglycinin (7S) and Glycinin (11S) fractions of soybean storage protein [J]. J. Am. Oil Chem. Soc., 2004, 81 (11): 1005-1012
    Parker C E, Papac D A, Trojak S K. Epitope mapping by mass spectrometry: determination of an epitope on HIV-1 IIIB p26 recognized by a monoclonal antibody [J]. J. Immunol, 1996, 157: 198-206
    Poirot Rache, Prat Laurent, Gourdon Christophe, et al. Fast batch of continuous solid-liquid extraction from plants in continuous industrial extractor [J]. Chem Eng Technol. 2007, 30(1): 46-51
    Przybylski M, Kast J, Glocker MO. Mass spectrometric approaches to molecular characterization of protein-nucleic acid interactions [J]. Toxicol. Lett, 1995, 82: 567-575
    Qi Ruifeng, Song Zhangwu, Chi Chengwu. Structure feature and molecular evolution of Bowman-Brik protease inhibitor and their potential application [J]. Acta Biochimica et Biophysica, 2005, 37(5): 283-292
    Qian X H. Proteome and biological mass spectrometry [J]. J. Mass Spectrom, 1998, 19: 48-54
    Rajni Mujoo, Dianne T. Trinh, Perry K. W. Ng, Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture [J]. Food Chemistry, 2003, 82: 265-273
    Renkema J M S, Lakemond C M M, De Jongh H H J, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins [J]. J. Biotechnol., 2000, 79 (3): 223-230
    Righetti P G, Campostrini N, Pascali J, Hamdan M. Quantitative proteomics: a review of different methodologies [J]. Eur. J. Mass Spectrom, 2004, 10: 335-48
    Seo J, Lee K J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches [J]. J. Biochem. Mol. Biol, 2004, 37: 35-44
    Shen Z J, Sun Z M, Wu L, Wu K, et al. Rapid method for the determination of amino acids in serum by capillary electrophoresis [J]. J Chromatogr A, 2002, 979 (1-2): 227-232
    Shevchenko A, Loboda A, Ens W, et al. MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research [J]. Anal. Chem, 2000, 72: 2132-2141
    Snyder A P. Biochemical and biotechnological applications of electrospray ionization mass spectrometry [J]. Washington. An american chemical society publication. 1995
    Sun Y L, Sun J M, LI Q P. Purification and trypsin inhibitor activity of a sporamin B from sweet potato [J]. Agricultural Science in China, 2009, 8(7): 808-820.
    Tanaka, K.; Waki H, Ido Y., et al. Protein and polymer analysis up to m/z 100 000 by laser ionization time-of flight mass spectrometry [J]. Rapid Commun. Mass Spectrom, 1988, 2: 151-153
    Wang Q E, Ma S M, Fu B Q. Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fish) [J]. Biochem Eng J, 2004, 21(3): 285-292
    Wells M A, Misiorowsky R L. Biochemistry [M]. 1974, 13: 4921-4927
    William H. Vensel, France M. Dupont, Stacia Sloane, et al. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins [J]. Phytochemistry, 2011
    Yuan Y J, Velev O D, Chen K, et al. Effect of pH and Ca2+-induced associations of soybean proteins [J]. J. Agric. Food Chem., 2002, 50(17): 4953-4958
    Zalacain A, Prodanov M, Carmona M, et al. Optimization of extraction and Identification of Galbtannins from Sumac lesves [J]. Biosye Eng, 2003, 84(2): 211
    Zarkadas C G, Gagnon C, Poysa V, et al. Protein quality and identification of the storage protein subunits of tofu and null soybean genotypes, using amino acid analysis, one- and two-dimensional gel electrophoresis and tandem mass spectrometry [J]. Food Res. Int., 2007, 40(1): 111-128
    Zhao Y, Chait B T. Probing antibody-antigen interactions by mass spectrometry [J]. Methods Mol. Biol, 1996, 66: 129-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700