用户名: 密码: 验证码:
EPFTS平台上基于服务质量的调度算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络应用的普及和多媒体业务在网络上的剧增,因特网同时面临着高速交换、服务质量、安全和移动性四个方面的严峻挑战。由于基于现有网络的增强措施难以从根本上解决以上问题,人们逐渐认识到实现下一代因特网的关键在于网络体系结构。本论文的研究背景是西南交通大学四川省网络通信技术重点实验室提出的下一代Internet体系结构——单层用户数据交换传输平台的体系结构(Single-layer User-data switching Platform Architecture,SUPA)及其关键技术——面向以太网的物理帧时槽交换技术(Ethernet-oriented Physical FrameTimeslot Switching,EPFTS)。
     基于带外信令思想,SUPA将用户数据交换平台与控制管理平台分离。通过EPFTS技术,SUPA将用户数据交换平台简化为单层结构,有利于提高用户数据交换效率和提供服务质量保障。SUPANET(指支持SUPA的网络)在第一阶段的目标是成为服务质量可保障的高速交换传输网络。SUPANET中服务质量保障框架是由信控管理平台和用户平台的上的QoS机制共同构成。本文以SUPA用户平台上提供服务质量保障为主要目标,集中研究了用户平台上的主要QoS机制——业务调度机制。
     传统网络上业务突发是引起网络拥塞和性能急剧下降的重要原因。为了在SUPANET中提供服务质量保障服务,本文试图引入基于速率控制的业务调度机制来控制业务流服务质量,如时延和时延抖动,研究结果表明这是一个可行的路线。本文研究过程中始终以具备实现可行性和扩展能力为两个前提条件,首先从为EPFTS交换平台设计基于速率控制的服务策略开始,然后研究了单个交换机内基于速率控制的分组调度机制及其特点;最后扩展到多节点互联的网络,研究了网络中在相邻节点之间通过速率控制实现网络QoS保障的机制。
     论文主要研究内容和结论如下:
     (1)根据EPFTS技术特点,本文研究了SUPANET中业务流速率控制方法,提出了一种基于盈余时槽的速率控制策略(Surplus Timeslot based RateControlling,STRC)。STRC利用了业务预留时槽对业务流输出进行速率控制。本文在STRC的基础之上提出了两种调度原则——MASF(MostAvailable Surplus timeslot First)和STRR(Surplus Timeslot Round-Robin)。性能分析和仿真实验结果表明这两种调度原则均具有带宽保证和业务流输出速率受限的特征。
     (2)由单个交换节点出发,研究IQ(Input Queuing)交换机和CICQ(CombinedInput and Crosspoint Queuing)交换机中基于速率控制的分组调度问题。基于STRC策略和以端口对为服务对象,本文先后针对IO交换机提出了分组调度机制TRWFS(Timeslot Reservation Weighted FairScheduling),针对CICQ交换机提出了“MASF/RR”和“STRR/RR”两种调度方案。研究结果表明虽然增加了业务流时延,STRC策略可以提高交换机的吞吐能力,而且业务输出被平滑。
     (3)面向多节点互联的网络环境,设计了一种新的GR(Guaranteed Rate)服务器——TRSFS(Smoothed Fair Scheduling based on Timeslot Reservation)。TRSFS是一种基于速率控制的非持续工作的GR服务器,通过平滑业务输出的方式限制业务输出的突发程度,而且TRSFS完全基于整数运算,易于通过软硬件实现高速处理。TRSFS的提出为在多节点互联环境下研究端到端的QoS保障机制奠定了基础。
     (4)以支持网络扩展的方式提出一种业务流端到端的QoS保障解决方案—PPFAS(Port-Pair Fair Aggregation and Scheduling)。PPFAS基于“同一端口对上交换的所有微流视为一个宏流”的策略,解决了业务流扩展问题,并通过输入输出组合排队和用TRSFS作为各端口上的信元调度器,实现了一种完全分布式的CIOQ(Combined Input and Output Queuing)交换机。仿真实验结果表明PPFAS以稍许增加时延为代价,获得以下性能特点:①交换路径不完全相同的业务流之间影响减弱;②业务流的端到端时延抖动减小;③通过适当控制交换机各端口负载,交换机吞吐能力可达100%。
     本文研究工作表明基于速率控制的分组调度机制虽然增加业务流时延,但更多地提升了其它服务质量性能指标。本文相关研究成果对于SUPA交换机的设计具有参考意义和实际应用价值,特别是PPFAS方案中提出的分布式CIOQ交换机对实现SUPANET端到端的服务质量保障具有可行性。
With proliferation of network applications and drastic increase of multimedia traffic, Internet has been facing with four major challenges, i.e. high-speed switching, Quality of Service (QoS), security, and mobility. After unsuccessful attempts through enhancement over existing networks, the academy have realized the crux of NGI (Next Generation Internet) problem lies in the network architecture. The general background of this thesis is the research on an NGI architecture called SUPA (Single-layer User-data switching Platform Architecture) at SC-Netcom Lab (Sichuan Network Communication Technology Key Laboratory), and EPFTS (Ethernet-oriented Physical Frame Timeslot Switching) - the key technology to support SUPA.
     With the out-of-band signaling concept, SUPA seperates the User-data-switching platform (U-platform) from that for control and management information (S&M-platforms). By use of EPFTS, SUPA simplifies the typical three-layer User-data platform into single-layer structure, which benefits to improve switching efficiency and provide QoS guarantee. The primary goal at the first stage for SUPANET (network which support SUPA) is to focus on a high-speed switching substrate with QoS provisioning. The QoS provisioning framework in SUPANET involves QoS mechanisms both in S&M-platform and in U-platform. This dissertation is dedicated to realize QoS provisioning in U-platform with an emphasis on scheduling mechanisms.
     Traffic bursting is an important factor to cause congestion and performance degradation in traditional networks. In order to provide QoS guaranteed service in SUPANET, this dissertation tries to resolve end-to-end QoS provisioning problem by focusing on rate-controlling embed scheduling mechanisms to harness quantifiable QoS-parameters such as delay and delay jitters. As shown by the simulation results, the author's work is on the right track.With feasible implementation and scalability as two prerequisite conditions, this dissertation takes the design on rate-controlling based service strategy in EPFTS switching platform as a starting point, then carries out research on the rate-controlling embed scheduling mechanism base on single node, at last study on the end-to-end QoS provision solution through flow rate limitation between adjacent nodes in a multiple nodes interconnected network.
     The main work and contributions are as follows:
     First, grounded on the features of EPFTS, a new service strategy called STRC (Surplus Timeslot based Rate Controlling) is proposed. STRC utilizes the reserved timeslots of each flow as a measure to adjust the flow forwarding rate. In addition, two scheduling principles based on STRC - MASF (Mast Available Surplus timeslot First) and STRR (Surplus Timeslot Round-Robin) - are proposed. Analysis and simulation results show the effectiveness of the two principles to limit the burstiness of output traffic in addition to guarantee bandwidth.
     Second, limited to a single node, the scheduling mechanisms based on STRC for typical scalable switches are studied. For IQ (Input-Queued) switch consisting of crossbar and virtual output queuing, a packet scheduling strategy called TRWFS (Timeslot Reservation Weighted Fair Scheduling) and its implementation algorithms are proposed. For CICQ (Combined Input and Crosspoint Queued) switch, two scheduling mechanisms - "MASF/RR" and "STRR/RR" - are proposed. It is shown that these scheduling mechanisms are all effective in improving switch throughput and smoothing output traffic, at the cost of a modest delay increase.
     Third, a new rate-control scheduling mechanism called TRSFS (Smoothed Fair Scheduling based on Timeslot Reservation) is proposed. Extensive analysis and simulation show that TRSFS is Guaranteed Rate server, and TRSFS is easy to be implemented and capable of output burstiness limitation which helps to realize QoS provision in downstream node. TRSFS will lay the foundation for the end-to-end QoS provisioning to traffic flows in SUPANET.
     Fourth, with the scalability supportable, a solution called PPFAS (Port-Pair Fair Aggregation and Scheduling) is proposed to provide end-to-end QoS guarantee. By considering all micro-flows transferring through the same port-pair as one flow, PPFAS solves the scalable problem in backbone network. Moreover, by utilizing the CIOQ (Combined Input and Output Queuing) mechanism and TRSFS as the building block, PPFAS realizes a full distributed CIOQ switch. Extensive simulation show that at the cost of increasing traffic delay modestly, PPFAS solution features following benefits: (1) the interference impact between flows with different transfer path is weakened; (2) the end-to-end delay jitter is very small; (3) switches could reach 100% throughput under appropriate control of traffic load on switches.
     This dissertation show that though traffic is more delayed, rate-controlling based scheduling mechanism can bring more benefits of QoS performance. Research results in this dissertation are practical to be implemented in SUPANET. Especially the distributed CIOQ switch in PPFAS solution is viable to realize the end-to-end QoS provision in SUPANET.
引文
[1]R Braden,L Zhang,S Berson,S Herzog,S Jamin.Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification.RFC 2205,September 1997
    [2]R Braden,D Clark,S Shenker.Integrated Services in the Internet Architecture:an Overview.RFC 1633,June 1994
    [3]S Blake,D Black,M Carlson,E Davies,Z Wang,W Weiss.An architecture for differentiated services.RFC2475,1998
    [4]E Rosen,A Viswanathan,and R Callon.Multiprotocol Label Switching Architecture.RFC 3031,January 2001.
    [5]H Zeng,Jun Dou & Dengyuan Xu,Single physical layer U-plane Architecture(SUPA)for Next Generation Internet,in:Comprehensive Report on VoIP and enhanced IP Communications Services,IEC Publications,2004,pp.197-227.
    [6]Raj Jain.Internet 3.0:Ten Problems with Current Internet Architecture and Solutions for the Next Generation.Military Communications Conference,Washington,DC,October 23-25,2006
    [7]D Clark,et.al."New Arch:Future Generation Internet Architecture",FINAL TECHNICAL REPORT,12/31/03.http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf
    [8]JZ ZENG,J XU,Y WU,et al.Service Unit based Network Architecture.in:Pingzhi Fan,Hong Shen,eds.Proc.Of PDCAT2003,IEEE press,2003.pp 12-16
    [9]GENI Planning Group.GENI:Conceptual Design,Project Execution Plan.GENI Design Document 06-07,January 2006.http://www.geni.net/
    [10]ITU-T.Recommendation Y.2001-General overview of NGN.December 2004.
    [11]ITU-T G.8011-Ethernet over Transport-Ethernet services framework,2004.
    [12]L Martini,E Rosen,N El-Aawar,G Heron.Encapsulation Methods for Transport of Ethernet over MPLS Networks,RFC 4448,April 2006
    [13]曾华燊,窦军.论下一代网络与下一代Internet及其体系结构.计算机应用,2007,27(11):2615-2618
    [14]H Zeng,On NGN architecture and evolution strategy.To be appeared in ITU-T Kaleidoscope Event,Geneva,12-13 May 2008
    [15]H Zeng,D Xu,J Dou.On physical frame time-slot switching over DWDM.in:Proc.of PDCAT 2003,IEEE Press,2003,535-540.
    [16]曾华燊,窦军,许登元.从Internet向SUPANET过渡实现“三网合一”.通讯和计算机.2005,2(5):74-81
    [17]H Zeng,D Xu,J Dou.Promotion of Physical Frame Timeslot Switching(PFTS)over DWDM,in:Annual Review of Communications by IEC Publications,2004,pp.809-826
    [18]H Zeng,J Dou,D Xu.Replace MPLS with EPFTS to build a SUPANET.in:Victor O.K.LI,HAMDI M.,eds.Proc.of HPSR 2005.Hong Kong:IEEE press,2005.39-43.
    [19]曾华燊,窦军,汪海鹰.论“单物理层的用户数据传输平面体系结构”—SUPANET.计算机应用,2004年,24(6):1-5.
    [20]J Dou,H Zeng,H Wang.Single User-Plane Architecture and its QoS Provisioning Mechanisms in Signaling and Management(S&M)Planes.in:Proc.of PDCAT2004,December 2004,Singapore,pp.429-440.
    [21]Hua-xin Zeng.Gateway Testing Techniques.Phd.Thesis,University College London,1985,pp.162-165
    [22]M Townsley,I Goyret,J Lau.Layer Two Tunneling Protocols-Version 3(L2TPv3).RFC 3931,March 2005.
    [23]IEEE Computer Society.802.3-2005,Part 3:Carrier sense multiple access with collision detection(CSMA/CD)access method and physical layer specifications,section 1.December 2005,pp.53-53
    [24]C Aurrecoechea,A Campbell,L Hauw.A Survey of Quality of Service Architectures.Technical Report,Lancaster University,ftp://ftp.comp.lancs.ac.uk/public/mpg/MPG-95-18.ps.Z,1995.
    [25]林闯.计算机网络的服务质量(QoS).清华大学出版社,2004,pp.10-12
    [26]Tim Szigeti,Christina Hattingh.End-to-End QoS Network Design:Quality of Service in LANs,WANs,and VPNs(中译本).田敏,宋辉.人民邮电出版社,2007,pp.4-15
    [27]Shenker S,Wroclawski J.Network Element Service Specification Template(RFC2216).http://www.ietf.org/rfc/rfc2216.txt.
    [28]ITU-T Rec.Y.1540-IP Packet Transfer and Availability Performance Parameters.Dec.2002.
    [29]Hui-Lan Lu,Faynberg,I.An architectural framework for support of quality of service in packet networks.Communications Magazine,IEEE press,2003,41(6):98-105
    [30]Soldatos,J.Vayias,E.Kormentzas,G.On the building blocks of quality of service in heterogeneous IP networks.Communications Surveys & Tutorials,IEEE press,2005,7(1):69-88
    [31]A Campbell.A Quality of Service Architecture:[Ddoctor Thesis of Computing Department of Lancaster University].Jan.1996
    [32]A.T.Campbell,C.Aurrecoechea and L.Hauw.A Review of QoS Architectures.Multimedia Systems J.,1996.
    [33]N.Mckeown.A fast switched backplane for a gigabit switched router.Business Communications Review,1997,27(12):1-17
    [34]徐恪,熊勇强,吴建平.宽带IP路由器的体系结构分析.软件学报,2000、11(2):179-186
    [35]H.J.Chao.Next generation routers,in:Proceedings of the IEEE,2002,90(9):1518-1558
    [36]H.J.Chao.High Performance Switches and Routers.Wiley-IEEE Press,2007,pp 1-25.
    [37]M.Ould-Khaoua et al.Comparative evaluation of hypermesh and multistage interconnection networks.COMPUTER JOURNAL,1996.39(3c):00232-00240
    [38]X Chen,A survey of multistage interconnection networks for fast packet switches,Int.J.Digital Analog Commun.Syst.4(1991)33-59.
    [39]N.Tzeng,Multistage-based switching fabrics for scalable routers,IEEE Trans.Parallel Distribut.Syst.,(2004,15(4):304-318.
    [40]S.Fahmy,A Survey of ATM Switching Techniques,CIS-788-95 Semester Report,Ohio State University,CIS Dep.http://www.cs.purdue.edu/homes/fahmy/cis788.08Q/atmswitch.html
    [41]Elizabeth Suet Hing Tse.Switch fabric design for high performance IP routers:A survey.Journal of Systems Architecture,2005,51(10-11):571-601
    [42]Cisco Systems.Cisco 12416 Internet Router:Data Sheet.http://www.cisco.com/en/US/products/hw/routers/ps 167/ps201/index.html
    [43]LR Goke,G.Lipovski.Banyan networks for partitioning multiprocessor systems,in:Proceedings of the 1~(st)Annual Symposium Computer Architecture,December 1973,pp.21-28.
    [44]Charles Clos.A Study of Non-blocking Switching Networks.The Bell System Technical Journal,1953,32(2):406-424
    [45]Jajszczyk A.Nonblocking,repackable,and rearrangeable Clos networks:fifty years of the theory evolution.IEEE Communications Magazine,2003,41(10):28-33
    [46]J S Turner.Design of a broadcast packet switching network,in:Proceedings INFOCOM,April 1986,pp.667-675.
    [47]S Iyer and N McKeown.Analysis of the parallel packet switch architecture.IEEE/ACM Transactions on Networking,2003,11(2):314-324
    [48]H J Chao,K L Deng,Z Jing.PetaStar:A Petabit Photonic Packet Switch.IEEE JSAC Special Issue on High-Performance Optical/Electronic Switches/Routers for High-Speed Internet,2003,21(7):1096-1112
    [49]R Sudan and W Mukai.Introduction to the Cisco CRS-1 Carrier Routing System.Cisco Systems Inc,Jan.1994.http://www.cisco.com/en/US/products/ps5763/
    [50]范力军,任秀丽,全成斌,栾贵兴.太比特级路由器的体系结构.东北大学学报(自然科学版).2003.24(8):735-738
    [51]J Jose Duato,Sudhakar Yalamanchili,Lionel Ni.Interconnection Networks:An Engineering Approach(second edition).Morgan Kaufmann Publishers,2002.
    [52]Dally WJ.Performance analysis of k-ary n-cube interconnection networks.IEEE Trans.on Computers,1990,39(6):775-785
    [53]Saad Y,Shultz H G.Topological properties of Hypercubes.IEEE Transactions on Computers,1988,37(7):867-872
    [54]L M Mackenzie et al.COBRA:A high-performance interconnection network for large multicomputers.Tech-Report[LM2]119/R19,Computer Science Department,University of Glasgow,1991.
    [55]R Y Awdeh,H T Mouftah.Survey of ATM switch architectures.Computer Networks and ISDN Systems,1995,27(12):1567-1613
    [56]C Minkenberg.On Packet Switch Design.Ph.D.thesis,Technical University Eindhoven,The Netherlands,September 2001,pp.13-14.
    [57]Karol M,Hluchyj M,Morgan S.Input versus output queuing on a space division switch.IEEE Transactions on Communication,1987,35(12):1347-1356.
    [58]Anderson T,Owicki S,Saxes J,Thacker C.High speed switch scheduling for local area networks.ACM Transactions on Computer Systems,1993,11(4):319-352
    [59]PRABHAKAR B,et al.On the Speedup Required for Combined Input and Output Queued Switching.Stanford Univ,Stanford,CA,Computer Science Lab Tech Rep,1997
    [60]H.Zhang.Service disciplines for guaranteed performance service in packet-switching networks.in:Proc.IEEE.1995,83(10):1374-1399.
    [61]王宏宇,顾冠群.集成服务网络中的分组调度算法研究综述.计算机学报.1999,22(10):1090-1099
    [62]M.Katevenis,S.Sidiropoulos,and C.Courcoubetis.Weighted Round-Robin Cell Multiplexing in a General-Purpose ATM Switch Chip.IEEE Journal on Selected Areas in Communication,1991,9(8):1265-1279.
    [63]Shreedha M,Varghese G.Efficient fair queuing using deficit round-robin.IEEE/ACM Trans on Networking,1996,4(3):375-385.
    [64]D.Ferrari and D.Verma.A scheme for real-time channel establishment in wide-area networks.IEEE J.Selected areas in commun.1990,8(3):368-379.
    [65]D Ferrari.Realtime communication in an internetwork Journal of High Speed Networks.Journal of High Speed Networks.1992,1(1):79-103
    [66]L.Zhang.Virtual clock:A new traffic control algorithm for packet switching networks.in:Proc.ACM SIGCOMM '90,Philadelphia,PA,Sept.1990:19-29
    [67]Xie G,Lam S.Delay guarantee of virtual clock server.IEEE/ACM Trans.on Networking.1995,3(6):683-689
    [68]Demers A,Keshav S,Shenker S.Analysis and simulation of a fair queueing algorithm.in:Proc ACM SIGCOMM'89,Austin,TX,1989:1-12
    [69]Parekh A,Gallager R.A generalized processor sharing approach to flow control in integrated services networks:The single node case.IEEE/ACM Trans.on Networking,1993,1(3):344-357
    [70]Bennett J,Zhang Hui.WF2Q:Worst-case fair weighted fair queueing,in:Proc IEEE INFOCOM'96,San Francisco,CA,1996,vol.1:120-128
    [71]Bennett J.,Zhang Hui.Hierarchical packet fair queueing algorithms,in:Proc.ACM SIGGCOMM'96,Stanford,CA,1996.pp.143-156
    [72]Golestani S.A.Self-clocked fair queueing scheme for broadband applications,in:Proc.IEEE INFOCOM'94,Toronto,Canada,1994.pp636-646
    [73]P.Goyal,H.M.Vin,and H.Cheng.Start-time fair queueing:A scheduling algorithm for integrated services packet switching networks.IEEE/ACM Trans.Networking,Oct.1997,5(5):690-704
    [74]Turner J.New directions in communications(or which way to the information age?).IEEE Communication Magazine,1986,24(10):8-15
    [75]D Verma,H Zhang,D Ferrari.Guaranteeing delay jitter bounds in packet switching networks,in:Proc.Tricomm'91,Chapel Hill,NC,Apr.1991:35-46
    [76]J Golestani.A stop-and-go queueing frame work for congestion management,in:Proc.ACM SIGCOMM'90,Philadelphia,PA,Sept.1990:8-18
    [77]C Kalmanek,H Kanakia,and S Keshav.Rate controlled servers for very high-speed networks,in:IEEE Global Telecommun.Conf.,San Diego,CA,Dec.1990: 300.3.1-300.3.9
    [78]H Zhang and D Ferrari.Rate-controlled static priority queueing.In Proc.IEEE INFOCOM'93,San Francisco.CA,Apr.1993:227-236.
    [79]H Zhang and D Ferrari.Rate-controlled service disciplines.Journal of High speed Networks,1994,3(4):389-412
    [80]Kalmanek C,Kanakia H,Keshav S.Rate controlled servers for very high speed networks,in:Proc IEEE Globecom'90,San Diego,CA,1990.300.3.1- 300.3.9
    [81]H J Chao.Saturn:A Terabit Packet Switch Using Dual Round-Robin.IEEE Communication Magazine.2000,38(12):78-84
    [82]庞斌,贺思敏,高义.高速IP路由器中输入排队调度算法综述.软件学报.2003,14(5):1011-1022
    [83]熊庆旭.输入排队结构交换机分组调度研究.通信学报.2005,26(6):118-129
    [84]McKeown N.The iSLIP scheduling algorithm for input-queued switches.IEEE/ACM Transactions on Networking,1999,7(2):188-201
    [85]Serpanos DN,Antoniadis PI.FIRM:A class of distributed scheduling algorithms for high-speed ATM switches with multiple input queues,in:Sidi M,ed.Proceedings of the IEEE INFOCOM.Tel Aviv:IEEE Communications Society,2000.548-555
    [86]Y Li,S Panwar,and H J Chao.The dual round-robin matching switch with exhaustive service,in Proc.High Performace Switching and Routing(HPSR)2002,Kobe,Japan (May 2002).
    [87]N McKeown,TE Anderson.A quantitative comparison of scheduling algorithms for input-queued switches.Computer Networks and ISDN Systems,1998,30(24):2309-2326
    [88]N McKeown,A Mekkittikui,V Anantharam,J.Walrand Achieving 100%throughput in an input-queued switch.IEEE Transactions on Communication,1999,47(8):1260-1267
    [89]A Mekkittikui,N McKeown.A starvation-free algorithm for achieving 100%throughput in input-queued switches,in:Lee D,ed.Proceedings of the IEEE ICCCN 1996.Rockville,MA:IEEE Communications Society,1996.226-231
    [90]N McKeown.Scheduling algorithms for input-queued switches[Ph.D.Thesis].Berkeley:University of California at Berkeley,1995
    [91]A Mekkittikui,N McKeown.A practical scheduling algorithm to achieve 100%throughput in input-queued switches,in:Akyildiz I,ed.Proceedings of the IEEE INFOCOM.San Francisco:IEEE Communications Society,1998.792-799
    [92] T Tassiulas. Linear complexity algorithms for maximum throughput in radio networks and input queued switches. in: Akyildiz I, ed. Proceedings of the IEEE INFOCOM. New York: IEEE Communications Society, 1998. 533-539
    [93] Giaccone P, Prabhakar B, Shah D. Towards simple, high-performance schedulers for high-aggregate bandwidth switches. in: Kermani P, ed. Proceedings of the IEEE INFOCOM. New York: IEEE Communications Society, 2002. 1160-1169
    [94] Hung A, Kesidis G, Mckeown N. ATM input-buffered switches with guaranteed-rate property. in: Kristine L, ed. Proc. of the IEEE ISCC'98. Athens: IEEE Press, 1998. 331-335
    [95] Chang CS, Chen WJ, Huang HY. Birkhoff-von Neumann input buffered crossbar switches. in: Sidi M, ed. Proceedings of the IEEE INFOCOM. Tel Aviv: IEEE Communications Society, 2000. 1614-1623
    [96] Chang CS, Lee DS, Jou YS. Load balanced Birkhoff-von Neumann switches Part I: One-stage buffering. Computer Communications, 2002, 25(6):611-622
    [97] Chang CS, Lee DS, Lien CM. Load balanced Birkhoff-von Neumann switches Part II: Multi-Stage buffering. Computer Communications, 2002, 25(6):623-634.
    [98] CHUANG S T, et al. Matching output queueing with a combined input output queued switch[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(6): 1030-1039
    [99] E Leonardi, M Mellia, F Neri, M Ajmone Marsan. On the Stability of Input-Queued Switches with Speedup. IEEE/ACM Transactions on Networking. 2001, 9(1): 104-118.
    [100] P Krishna, N S Patel, A Charny, R J Simcoe. On the speedup required for work-conserving crossbar switches. IEEE Journal on Selected Areas in Communications. 1999, 17(6): 1057-1066
    [101] G Nong, M Hamdi. On the provision of quality-of-service guarantees for input queued switches. IEEE Communications Magazine. 2000, 38(12):62-69
    [102] STOIC A I, et al. Exact emulation of an output queueing switch by a combined input output queueing switch, in Proc. IEEE IWQoS'98. Athens, Greece, 1998. 218-224
    [103] S Iyer, A Awadallah, N McKeown. Analysis of a cell switch with memories running slower then the line rate., in: Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, vol. 2: 529-537
    [104] S Iyer and N McKeown. Making parallel packet switches practical. in: Proc. IEEE INFOCOM 2001, Anchorage, AK, 2001: 1680-1687.
    [105] Saad Mneimneh, Vishal Sharma. Switching Using Parallel Input-Output Queued Switches With No Speedup.IEEE/ACM Transactions on Networking.2002,10(5):653-665
    [106]孙行刚.输入缓冲交换开关的多步调度策略.软件学报.2001,12(8):1170-1176
    [107]吴俊,陈晴,罗军舟.线路速率缓存的重端口交换机方案及行为分析.软件学报.2003,14(12):2060-2067
    [108]Hyoung-II Lee,Seung-Woo Seo.A practical Approach for Statistical Matching of Output Queueing.IEEE Journal on Selected Areas in Communications.2003,21(4):616-629
    [109]Hyoung-Il Lee,Seoung-Woo Seo.Matching output queueing with a multiple input/output-queued switch,in:Proc.INFOCOM 2004.March 2004,Vol.2:1135-1146
    [110]SINGHAL V,et al.High-speed buffered crossbar switch design using virtex-EM devices.http://www.xilinx.com/xapp/xapp240.pdf,2000
    [111]Abel F.,Minkenberg C.et al.A Four-Terabit Single-Stage Packet Switch with Large Round-Trip Time Support.In Proceedings Hot Interconnects'10,Symposium on High Performance Interconnects(HOT-I'02),Palo Alto,CA.,August 2002.pp.5-14
    [112]Yoshigoe,K.Christensen,K.Jacob,A.The RR/RR CICQ switch:hardware design for 10-Gbps link speed,in:Proc.IEEE International Conference on Performance,Computing,and Communications,2003:481-485
    [113]K Yoshigoe,KJ Christensen.An evolution to crossbar switches with virtual output queuing and buffered cross points.IEEE Networks,2003,17(5):48-56
    [114]F Gramsamer.Scalable Flow Control for Interconnection Networks.PhD Thesis,Computer Engineering and Networks Laboratory,ETH Zurich,TIK-chriftenreihe No.52,Diss.ETH Zurich No.15020,March,2003:pp.7-14.
    [115]I Radusincivic,M Pejanovic,Z Petrovic.Impact of scheduling algorithms on performance of buffered crossbar switch Fabric.In:Proc.IEEE ICC'02.New York,NY,USA,2002.vol.4:2416-2420
    [116]T Javadi,R Magill,T Hrabik.A high-throughput algorithm for buffered crossbar switch fabric,in:Proc.IEEE ICC'01.Helsinki,Finland,2001,Vol.6:1586-1591.
    [117]P Goyal,S S Lam,H M Vin.Determining end-to-end delay bounds in heterogeneous networks,in Proc.IEEE NOSSDAV'95,Durham,NH,Apr,1995,287-298.
    [118]P Goyal,S S Lam,H M Vin.Determining end-to-end delay bounds in heterogeneous networks.ACM/Springer-Verlag Multimedia System,1997,5(3):157-163
    [119]P Goyal,H M Vin.Generalized guaranteed rate scheduling algorithms:A framework.IEEE/ACM Trans on Networking,1997,5(4):561-571
    [120]D Stiliadis and A Vara.Latency rate servers:a general model for analysis of traffic scheduling algorithms.IEEE/ACM Trans.Networking,1998,6(5):611-624
    [121]Jiang Yuming.Relationship Between Guaranteed Rate Server and Latency Rate Server.Computer Networks.2003,43(3):307-315.
    [122]J Y Le Boudec and A Charny.Packet scale rate guarantee for non-FIFO nodes.IEEE/ACM Trans.on Network,Oct.2003,11(5):810-820
    [123]G.Rizzo and J Y Le Boudec.Pay bursts only once' does not hold for non-FIFO guaranteed rate nodes.Performance Evaluation,Oct.2005,62(1-4):366-381
    [124]J C R Bennett,C Partridge and N Shectman.Packet reordering is not pathological network behavior.IEEE/ACM Trans.on Networking,Dec.1999,7(6):789-798
    [125]杨明川,钱华林.包交换网络中调度方法进展:扩展性分析.计算机科学.2002,Vol.29(12):20-25.
    [126]Keslassy I,Chuang ST,Yu K,Miller D,Horowitz M,Solgaard O,McKeown N.Scaling Internet routers using optics,in:Feldmann A,ed.Proc.of the Special Interest Group on Data Communication(SIGCOMM).Karlsruhe:ACM Press,2003.189-200.
    [127]A Charny and J-Y Le Boude.Delay bound in a network with aggregate scheduling.In Proceedings of QOFIS,Sept.2000,pp.1-13
    [128]Yuming Jiang.Delay Bounds for a Network of Guaranteed Rate Servers with FIFO Aggregation.Computer Networks,Elsevier Science,2002,40(6):683-694
    [129]D Pan,Y Yang.Credit Based Fair Scheduling for Packet Switched Networks.in:Proc.of INFOCOM'05,Miami:IEEE press,2005.Vol.2,843-854.
    [130]C E Koksal,R G Gallager,C E Rohrs.Rate quantization and service quality over single crossbar switches,in:Proc.of the IEEE INFOCOM,Hong Kong:IEEE Press,2004,Vol.3:1962-1973.
    [131]Y Li,S Panwar,HJ Chao.On the performance of a dual Round-Robin switch,in:Ammar M,ed.Proc.of the IEEE INFOCOM.Anchorage:IEEE Communications Society,2001,Vol.3:1688-1697.
    [132]吴俊,陈晴,罗军舟.时隙间迭代的输入队列交换机Round-Robin调度算法.软件学报.2005,16(3):375-383
    [133]Kam AC,Siu KY.Linear-Complexity algorithms for QoS support in input-queued switches with no speedup.IEEE Journal on Selected Areas in Communications,1999,17(6):1040-1056.
    [134]Kam AC,Siu KY.Linear complexity algorithms for QoS support in input-queued switches with no speedup.Technical report,d'Arbeloff Laboratory for Information Systems and Technology,Massachusetts Institute of Technology,Cambridge MA,1998.http://citeseer.ist.psu.edu/kam98linear.html
    [135]X Zhang and L N Bhuyan.An efficient scheduling algorithm for combined input-crosspoint-queued(CICQ)switches,in:Proc.IEEE GLOBECOM '04,2004,Vol.2:1168-1173
    [136]Lotfi Mhamdi,Mounir Hamdi.MCBF:A High-Performance Scheduling Algorithm for Buffered Crossbar Switches.IEEE Communications Letters,2003,7(9):451-453.
    [137]R Rojas-Cessa,E Oki,Z Jing,H J Chao.On the Combined Input-Crosspoint Buffered Switch With Round-Robin Arbitration.in:IEEE Trans.on Commun.,2005,53(11):1945-1951
    [138]T Javadi,R Magill,T Hrabik.A high-throughput algorithm for buffered crossbar switch fabric,in:Proc.of IEEE ICC,June 2001,pp.1581-1591.
    [139]M Nabeshima.Performance evaluation of combined input-and cross-point-queued switch.IEICE Trans.Commun.,2000,vol.E83-B,no.3,737-741
    [140]郑燕峰,孙书韬,贺思敏,高文.基于双轮转指针的输入与交叉点联合排队型(CICQ)交换结构调度算法.计算机研究与发展,2006,43(7):1225-1232
    [141]李勇,罗军舟,吴俊,一种交叉点小缓存CICQ交换机高性能调度算法.计算机研究与发展,2006,43(12):2033-2040
    [142]C M Ozveren,R Simcoe,and G Varghese.Reliable and efficient hop-by-hop flow control.IEEE Journal on Selected Areas in Communications.1995,13(4):642-650
    [143]Chuanxiong Guo.SRR:an O(1)time-complexity EPF scheduler for flows in multiservice EPF networks.IEEE/ACM Transactions on Networking,2004,12(6):1144-1155.
    [144]Baker et al.Aggregation of RSVP for IPv4 and IPv6 Reservation.RFC 3175,Setp.2001
    [145]O.Schelen,S.Pink.Aggregating resource reservation over multiple routing domains.In:Proc.of IEEE IWQoS,May 1998,pp.29-32.
    [146]A.Terzis,L.Zhang,and E.L.Hahne.Reservations for aggregate traffic:Experiences from an RSVP tunnels implementation.In:Proc.of IEEE IWQoS,May 1998,pp.23-25.
    [147]S.Berson and S.Vincent.Aggregation of internet integrated services state.In:Proc.of IEEEE IWQoS,May 1998,pp.26-28.
    [148]J.Schmitt et al.Aggregation of guaranteed service flows.In:Proc.ofIEEE IWQoS,Jun. 1999.pp.147-155.
    [149]Jorge Arturo Cobb.Preserving Quality of Service Guarantees in Spite of Flow aggregation.IEEE/ACM Transactions on Networking,2002,10(1):43-53.
    [150]W.Sun and K.G.Shin.End-to-End Delay Bounds for Traffic Aggregates Under Guaranteed-Rate Scheduling Algorithms.IEEE/ACM Transactions on Networking,2005,13(5):1188-1201
    [151]Yuming Jiang.Link-Based Fair Aggregation:A Simple Approach to Scalable Support of Per-Flow Service Guarantees.Lecture Notes in Computer Science,2004,Vol.3042:1084-1095.
    [152]Yongning Yin,Gee-Swee Poo.Preserving quality of service guarantees with guaranteed rate fair aggregators(GRFA).In:Proc.of ICON 2004,Vol.1:381-385
    [153]J.-Y.L.Boudec and P.Thiran.Network Calculus.Springer-Verlag,2002.
    [154]Y.Jiang.Per-domain packet scale rate guarantee for Expedited Forwarding.In:Proc.of IWQoS 2003,2003,LNCS 2707,pp.422-439
    [155]Ji Li,Huaxin Zeng,Haiying Wang.A Rate-Controlled Fast Fair Scheduler based on Timeslot Reservation.In Proc.of CODS2007,July 22-24,Chengdu.
    [156]李季,曾华燊,郭子荣.基于时槽预定的加权公平调度策略.软件学报,2007,18(10):2605-2612.
    [157]李季,曾华燊.EPFTS中基于时槽加权的公平调度算法—TWFS.软件学报,2006,17(4):822-829.
    [158]李季,曾华燊,许登元.CICQ交换机中一类服务可保障的调度策略研究.计算机研究与发展,2007,44(11):1873-1880.
    [159]Ji Li,Huaxin Zeng,Dengyuan Xu.A New Smoothed Fair Scheduling Algorithm based on Timeslot Reservation.In Proc.of INFOSCALE 2007,June,6-8,Suzhou.
    [160]Ji Li,Huaxin Zeng,Hao Luo.PPFAS-A Port-Pair based Fair Aggregation and Scheduling in SUPANET.Accepted by INFOSCALE 2008,Vico Equense,Italy,June 4-6,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700