用户名: 密码: 验证码:
介孔磷酸钛正极材料的合成、结构和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚阴离子型正极材料因具有稳定的框架结构和易于调变的电位平台等优点,因而具有良好的电化学性能,有可能被推动成为第三代锂离子电池正极材料。但是,由于这类材料电导率低,材料的大电流充放电性能差,限制了它在实际中的应用。为了改善这类材料的大电流充放电性能,对材料进行了包碳、掺杂等处理,来提高其电子电导率。本论文也是基于要改善这类材料的离子传输性能,采用一种不同于传统的新方法,即把介孔结构引入到材料中,通过改善该材料的微观结构来克服其电导率低的缺点,最终实现其大电流放电性能的目的。
     我们采用溶胶凝胶模板结合煅烧的方法合成出了具有介孔结构的磷酸钛正极材料。材料的制备是一个复杂的过程,受到诸多因素的影响,本实验组曾对材料制备过程中的前驱体制备阶段的一些因素(诸如:磷源、温度、湿度、溶剂的蒸发速度及溶胶放置陈化的时间等)进行了研究,研究发现,溶剂蒸发过快或溶胶陈化时间太短都不利于介孔结构的形成,尤其是长程有序介孔结构的形成;三氯化磷是一种较好的磷源;温度或湿度太高不利于介孔结构的形成。
     为了制备长程有序介孔结构,本论文对上述方法进行了优化,并成功制得一系列介孔磷酸钛材料,同时并对模板剂、溶剂,及前驱体煅烧处理阶段中除模板剂时间、煅烧温度、煅烧时间和煅烧方式等因素对介孔结构的影响进行了研究,结果发现,用疏水基链长较长的P123模板剂合成得到的介孔材料具有较好的长程有序性,并且比表面积和孔容都较大,介孔结构呈平面六方排列;而用亲水基链长较长的F108模板剂合成得到的介孔材料孔径分布比较集中,孔道的孔壁变厚,介孔结构呈立方相排列;用强亲水性的乙醇做溶剂时,对形成长程有序的介孔结构有利;长时间除模板剂处理或长时间的煅烧都会使介孔材料的比表面积和孔容变小;煅烧温度是煅烧处理阶段中的主要影响因素,适当的煅烧处理有利于介孔结构的优化,但过高的煅烧温度(如:800℃)则使材料介孔结构坍塌,而且材料完全晶体化;相比一步焙烧法而言,两步焙烧法煅烧得到的介孔材料具有较大的比表面积和孔容。
     在对具有不同介孔结构的磷酸钛材料电化学性能的研究中,实验结果显示,与没有孔结构的磷酸钛材料相比,具有介孔结构的磷酸钛材料具有较好的循环性能,尤其是大电流下的充放电性能。此外,与长程有序性差的或孔径小的介孔磷酸钛材料相比,长程有序性好的或孔径较大的介孔磷酸钛材料具有相对较好的大电流循环性能和大电流充放电性能。
Poly-anion compounds have advantages of steady framework and easily adjustable potential plat, and thus give good cyclic performance. Because of this, they may become a third era lithium ion battery cathode materials. However, the low electrical conductivity is bad for the poly-anion compounds electrochemical performace at the high current density. In order to improve their performance, carbon coating and metal doping are two conventional methods. We have investigated some materials with mesoporous structure for improving their ionic transport behaviour. Mesoporous structure has distinct effects on the electrode materials' performance, and then overcome the drawback of the low electrical conductivity of the materials. The sol-gel template combinded with the calcination method was used in our study. During this preparation process, there are many factors, such as a suitable phosphorus source, temperature, humidity, solvent vaporizing speed and aging time of the sol, have some influence on mesoporous structure synthesis. It was found that both solvent-vaporing speed and too short sol-aging time wouldn't build ordered mesoporous structure, and PCl_3 is a better phosphorus source, and it was unadvisable to use too high temperature and too high humidity.
     In order to get ordered mesostructure, a modified sol-gel template method was established to synthesize mesoporous materials. We successfully synthesized a series of different mesoporous titanium phosphate materials, and at the same time, other effects were also considered, such as template, solvent, template removing time, calcination temperature and calcination method during the synthesis. In our study, it is confirmed that P123 with larger hydropobic PO units were used as template resulting in a highly ordered hexagonal mesoporous titanium phosphate materials, and these materials were in possession of a larger surface area and a larger pore volume. And on the other hand, F108 with a larger hydrophilic EO chain is good for synthesizing titanium phosphate with a narrower pore size and a cubic mesostructure. Ethanol as solvent can get long-range ordering of the mesopore. The longer time was spent on removing template or calcination, and the smaller surface area and pore volume of mesoporous titanium phosphate materials were made. Compared with one step calcination, two steps calcination made mesoporous titanium phospahte with a larger surface area and pore volume. In addition, it was proved that calcination temperature is a key factor during the calcination process, and calcination can optimize titanium phosphate mesostructure, and however, too high calcination temperature, for example 800℃, results in collapse of materials mesostructure, and at the same time amorphous titanium phosphate slowly changed into cystalline titanium phosphate.
     In our study on titanium phosphate electrochemical performance, it was showed that mesoporous titanium phosphate, compared with no porous titanium phospahte, gave a better performance especially at the high current density. Mesoporous titanium phosphate, which had either highly ordered mesostructure or larger pore size, can deliver higher capacity especially at the hugh current density.
引文
[1]T.Nagaura,K.Tozawa,Lithium ion rechargeable battery.[J].Prog.Batteries Solar Cells.1990,9:209.
    [2]汪继强,陈立泉,《新能源材料》[M].天津大学出版社,2000.
    [3]吴宇平,万春荣,姜长印等编著,《锂离子二次电池》[M].化学工业出版社,北京,2002.
    [4]J.M.Tarascon,M.Armand,Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
    [5]http://www.lithiumtech.com
    [6]Bruce P.G Solid-state chemistry of lithium power sources[J].Chem.Commun.1997,19:1817-1824.
    [7]张忠如,厦门大学理学博士学位论文[D],厦门:2003.
    [8]Broussely M,Biensan P,Simon B.Lithium insertion into host materials:the key to success for Li ion batteries[J].Electroehimica Acta,1999,45(1-2):3-22.
    [9]M Endo,C Kim,K Nishimura,et al,Carbon,2000,38:183
    [10]M Winter,J O Besenhard,P Novak,et al,[J].Advanced Materials,1998,10(10):725
    [11]Z Takehara,K Kanamura,[J].Electrochimica Acta,1993,38(9):1169
    [12]Mabuchi A,Tokumitsu K,Fujimoto H,et al.Charge-discharge characteristics of the mesocarbon microbeads heat treated at different temperatures[J].J Electrochem Soc,1995,142(4):1041.
    [13]李宝华,李开喜,吕春祥,等.热处理时间对锂离子电池阳极用中间相炭微球充放电性能的影响[J].石油大学学报,2001,25(6):81.
    [14]C Kim,T Fujino,K Miyashita,et al.Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads[J].J.Electrochem.Soc.,2000,147(2):1257.
    [15]Sato K.et al.A mechanism of lithium storage in disorder carbons.Science,1994,264(22):556
    [16]Matthew s M J et al.Raman spectra of polyparaphenylene-carbon prepared at low heat-treatment temperatures.[J].App l.Phys.L ett,1996,68(8):1078
    [17]Giselle Sandi,Randall E Winans,Kathleen A Carrado.New carbon electrodes for secondary lithium batteries,[J].J.Electrochem.Soc,1996,143(5):L95.
    [18]M Winter,J O Besenhard,P Novak,et al,Insertion Electrode Materials for Rechargeable Lithium Batteries,[J].Advanced Materials,1998,10(10):725
    [19]G che,B Lakshmi,C Martin,et al,Metal-Nanocluster-Filled Carbon Nanotubes:Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production[J].Langmuir,1999,15:750
    [20]Y Idota,T Kubota,A Matsufuji,et al,Tin-based amorphous oxide:A high capacity lithium-ion-storage material,[J].Science,1997,276(5317):1395
    [21]P Poizot,S Laruelle,S Grugeon,et al,Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries,[J].Nature,2000,407(6803):496
    [22]刘汉三,厦门大学理学博士学位论文[D],厦门:2003.
    [23]Y.S.Fung,R.Q.Zhou,Room temperature molten salt as medium for lithium battery.J.Power Source,1999,81-82:891-895
    [24]G.Y.Gu,S.Bouvier,C.Wu,et al,2-Methoxyethyl(methyl) carbonate-based electrolytes for Li-ion batteries.[J].Electrochim.Acta,2000,45:3127
    [25]S.Iinou,M.Handa,Y.Sasaki,Electrolytic properties and application to lithium batteries of 3-propyl-4-methylsydnone-based binary solvent electrolytes.Electrochemistry,1999,67:22-26
    [26]X.Wang,E.Yasukawa,S.Mori,Electrochemical Behavior of Lithium Imide/Cyclic Ether Electrolytes for 4V Lithium Metal Rechargeable Batteries.J.Electrochem.Soc.,1999,146:3992
    [27]X.Wang,E.Yasukawa,S.Kasuya,Lithium Imide Electrolytes with Two-Oxygen-Atom-Containing Cycloalkane Solvents for 4V Lithium Metal Rechargeable Batteries.J.Electrochem.Soc.,2000,147:2421-2426
    [28]L.A.Dominey,Lithium Batteries,Elsevier Science Publisher,Amsterdam,Netherlands,1994,Chapter 4:137
    [29]Hayamizu K,Aihara Y.Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO_2CF_3)(2)[J].Electrochimica Acta,2004,49(20):3397-3402.
    [30]Shin J H,Lim Y T,Kim K W,et al.Effect of ball milling on structural and electrochemical properties of (PEO)(n)(LiX=LiCF_3SO_3 and LiRF_4) polymer electrolytes[J].J Power Sources,2002,107(1):103-109.
    [31]Sasaki S,Yamaguchi H.Organic lithium phosphate,its manufacture,and low nonaqueous electrolyte and secondary nonaqueous electrolyte lithium battery using it[P].JP:99335382,1999-12-07.
    [32]Barthel J,Schmid A,Gores H J.A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes V.Synthesis and properties of lithium bis[2,3-pyridinediolato(2-)-O,O ']borate[J].J Electrochem.Soc.,2000,147(1):21-24.
    [33]吴宇平,戴晓兵,马军旗等.锂离子电池--应用与实践[M].北京:化学工业出版社,2004.
    [34]Winter M,Besenhard JO,Spahr ME,et al.Insertion electrode materials for rechargeable lithium batteries[J].Advanced Materials,1998,10(10):725-763.
    [35]施志聪,杨勇,聚阴离子型锂离子电池正极材料研究进展[J],化学进展,2005,17(4):604-613.
    [36]Santiago E I,Andrade A V C,Paiva-Santos C O,et al.Structural and electrochemical properties of LiCoO_2prepared by combustion synthesis[J].SolidState Ionics,2003,158(1-2):91-102.
    [37]Peng Z S,Wan C R,Jiang C Y.Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials[J].J.Power Sources,1998,72(2):215-220.
    [38]Chiang Y M,Jang Y I,Wang H F,et al.Synthesis of LiCoO_2 by decomposition and intercalation of hydroxides[J].J.Electrochem.Soc.,1998,145(3):887-891.
    [39]吴川,吴锋,陈实.锂离子电池正极材料的研究进展[J].电池2000,30(1):36-38.
    [40]Gopukumar S,Jeong Y,Kim K B.Synthesis and electrochemical performance oftetravalent doped LiCoO_2in lithium rechargeable cells[J].Solid State Ionics,2003,159(3-4):223-232.
    [41]Zou M J,Yoshio M,Gopukumar S,et al.Synthesis of high-voltage(4.5V) cycling doped LiCoO_2 for use in lithium rechargeable cells[J].Chem.Mater.,2003,15(25):4699-4702.
    [42]吴宇平,方世壁,刘昌炎.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-210.
    [43]Fey G T K,Weng Z X,Chen J G,et a1.Preforilled boehmite nanoparticles as coating materials for long-cycling LiCoO_2[J]J,Appl Electrochem.,2004,34(7):715-722.
    [44]Kim B,Lee J G Choi M,et al.Correlation between local strain and cycle-life performance of AlPO_4-coated LiCoO-2 cathodes[J]J Power Sources,2004,126(1-2):190-192.
    [45]Chen Z H,Dahn J R.Studies ofLiCoO_2 coated with metal oxides[J].Electrochem.Solid State Lett.2003,6(11):A221-A224.
    [46]山本司,能间俊之,古川修弘。日本特许公报,特开平 05282131,1993.
    [47]sun Y K,Oh I H,Hong s A.Synt hesjs of uJt rafjne LiCoO_2 powders by t he soI-gel met hod[J]Journal of Material s Science,1996,31(3):3617-3621
    [48]Chen H L,Qiu X P,Zhu WT,et al.Synt hesis and high rate properties of nanoparticles lithium cobalt oxides as t he cathode materjal for lithium ion battery[J].Elect rochemical Communications,2002.4:4882491.
    [49]Zhou Y K,Shen C M,Li H L.Synt hesis of high ordered LiCoO2 nanowire artays by AAO template [J].Solid State Ionics,2002,146:81-86.
    [50]Li Y X,Wan C R,Wu Y P,et a1.Synt hesis and characterization ofult ranne LiCoO_2 powers by a spray-drying method[J].Journal of Power Sources,2000,85:294-298.
    [51]M.M.Thackeray,Manganese oxides for lithium balteries.[J].Prog.Solid State Chem.,1997,25:1-71.
    [52]W DaVid,M.M.Thackerrdy,J.B.Goodenough,et al,Structure refinement of the spinel-related phases Li_2Mn_2O_4 and Li_(0.2)Mn_2O_4.J,Solid State Chem,1987,67:316-323.
    [53]A.Yamada,K.Miura,K.Hinokuma,et al,Synthesis and Structural Aspects of LiMn_2O_(4+/-delta) aS a Cathode for Rechargeable Lithium Batteries.J Electrochem.Soc.,1995,142:2149.
    [54]R J Gummow,A De Kock,M M Thackeray,Impmved capacity retention in rechargeable 4 V Iithium/lithium-manganese oxide(spinel)cells.Solid State Ionics,1994,69:59-67.
    [55]D H Y Jang,Y J shin,S M Oh,Dissolution of SpineI Oxides and Capacity Losses in 4 V Li/Li_xMn_2O_4 Cells.J Electrochem.Soc,1996.143:2204-2210.
    [56]D Guyomard,J M Tarascon,Li Metal-Free Rechargeable LiMn_2O_4/Carbon Cells:Their understanding and Optimizatiom J,Electrochem.Soc.,1992,139:937-947.
    [57]G G Amatucci,A.du Pasquier,A.Blyr,et al,The elevated temperature performance of the LiMn_2O_4/C system:failure and sOIutions.Electrochem.Acta,1999,45:255-271.
    [58]D Guyomard,J M TaraScon,The carbon/Li_(1+x)Mn_2O_4 System。Solid State Ionics,1994,69:222-237.
    [59]G G Amatucci,N.Pereira,T Zheng,et al,Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 cOmpOunds through the use of the LiAl_xMn_(2-x)O_(4-y)F_z solid solution.J.Electrochem.Soc.,2001.148:A171-A182.
    [60]Hwang B J,Sant hanam R,Liu D.G.,Characterizalion of nanopanicles of LiMn_2O_4 synthesized by citric acid sol-gel method[J].Journal of Power Sources,2001,97-98:433-446.
    [61]Hon Y M,Lin S P,Fung K Z,et al.Synt hesis and characterization of nano-LiMn_2O_4 powder by tartaric acid gel progress[J].Journal of European Ceramic Society,2002,22:653-660.
    [62]郭炳馄,徐徽,王先友,肖立新,《锂离子电池》[M].中南大学出版社,2002.
    [63]S.Passerini,D.B.Le,W.H.Snyrl,et al,XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels,[J].SolidState Ionics,1997,104:195-204.
    [64]K.West,B.Zachau-Christiansen,T.Jacobsen,S.Skaarup,Electrochem.Acta,1993,38:I215
    [65]Murphy,D.W.;Christian,P.A.;Disalvo,F.J.;Carides,J.N.Vanadium Oxide Cathode Materials for Secondary Lithium Ceils[J].J.Electrochem.Soc.1979,126:497-499.
    [66]Bergstrom,O;Gustafsson,T.;Thomas,J.Abstracts of the ⅩⅤⅡ International Union of Crystallography Congress,Seattle,WA;International Union of Crystallography(http://www.iucr.ac.uk/):Cambridge,U.K.,1996.
    [67]Bjork,H.;Lidin,S.;Gustafsson,T.;Thomas,J.O.Superlattice formation in the lithiated vanadium oxide phases Li_(0.67)V_6O_(13) and LiV_6O_(13)[J].Acta Crystallogr.2001,B57:759-765.
    [68]M.Stanley Whittingham,Lithium Batteries and Cathode Materials[J].Chemical Reviews,2004,104:4271-4301.
    [69]Jouanneau S,Verbaere A,Guyomard D.A combined X-ray and neutron Rietveld study of the chemically lithiated electrode materials Li_(27)V_3O_8 and Li_(4.8)V_3O_8[J]Journal of Solid State Chemistry,2005,178:22.
    [70]Gao Jian,Jiang Changyin,Wan Chunrong.Preparation and characterization of spherical Li_(1 + x) V_3O_8cathode material for lithium secondary batteries[J].Journal of Power Sources,2004,125:90.
    [71]Jin Kawakita,Hiroaki Mori,et al.Formation process and structural characteristics of layered hydrogen vanadium[J].SolidState Ionics,2000,131:229.
    [72]Liu En-Hui,Li Xin-Hai,et al.Chemical diffusion behaviors of lithium ion in t he LiV_3O_8 prepared by wet method reaction[J].physical chemistry,2004,20(4):377.
    [73]Jin K,Takashi M,Tomiya K.Lit hium insertion and extraction kinetics of Lil xV3O8[J].J Power Sources,1999,83:79.
    [74]Liu Ping,Zhang Ji-Guang,Turner John A.Potassium manganese-vanadium oxide cathodes prepared by hydrothermal synthesis[J].Journal of power sources,2001(92):204.
    [75]Benedek R,Thackeray M M,et al.First2principles calculation of atomic st ructure and electrochemical potential of Li_(1+x)V_3O_8[J].Journal of Power Sources,1999,81282:487.
    [76]West,K.;Zachau-Christiansen,B.;Skaarup,S.;Saidi,Y.;Barker,J;Olsen,I.I.;Pynenburg,R.;Koksbang,R.Comparison of LiV_3O_8 Cathode Materials Prepared by Different Methods[J].J.Electrochem.Soc.1996,143:820-825.
    [77]施志聪,厦门大学理学博士学位论文[D],厦门:2005.
    [78]Padhi A K,Nanjundaswamy K S,Goodenough J B,et al.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J Electrochem Soc,1997,144:1188-1194.
    [79]Padhi A K,Nanjundaswamy K S,Goodenough J B.Synthesis,redox potential evaluation and electrochemical characteriastics of NASICON-related-3D framework compounds[J].Solid State lonics,1996,92:1-10.
    [80]Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphate[J].J.Electrochem Soc.,1997,144:1609-1613.
    [81]Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J].J.Electrochem.Soc.,1997,144:2581-2586.
    [82]Andersson A S,Kalska B,Haggstrom L,et al.Lithium extraction/insertion in LiFePO_4:an X-ray diffraction and Mossbauer spectroscopy study[J].Solid State Ionics,2001,130(1-2):41-52.
    [83] Amine K, Yasuda H, Yamachi M. Olivine LiCoPO_4 as 4.8 V electrode material for lithium batteries [J]. J.Electrochem. Solid-State Lett., 2000, 3(4): 178-179
    [84] kada S, Sawa S, Egashira M, et al. Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries[J]. J Power Sources, 2001, 97-98: 430-432.
    [85] Azuma H, Tohda M. LiMPO_4 as the cathode for lithium batteries [J]. J. Electrochem. Solid-State Lett., 2002, 5(6):A135-A137
    
    [86] 施志聪,李晨,杨勇,LiFePO_4新型正极材料电化学性能的研究[J],电化学, 2003, 9(1): 9-14.
    [87] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO_4 for lithium battery cathodes [J]. J. Electrochem. Soc, 2001, 148: A224-A229
    [88] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Material, 2002, 101: 123-128.
    
    [89] Nanjundaswamy K S , Padhi A K, Goodenough J B , et al. [J]. Solid State Ionics, 1996, 92(1-2): 1 -10
    [90] Huang H , Yin S C , Nazar L F. Electrochem. [i].Solid State Lett., 2001, 4(10): A170 -A172
    [91] Yamada A , Hosoya M, Chung S C, et al. J. Power Sources ,2003, 119P121 : 232 -238
    
    [92] Shim J, Striebel K A. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO_4 [J]. J. Power Sources, 2003, 119-121:955-958.
    
    [93] Arnold G, Garche J, Hemmer R et al. Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique [J]. J. Power Sources, 2003, 119-121:247-251.
    [94] Barker J ,Saidi M Y,Yazid S JI Lithium metal fluorophosphate materials and preparation thereof [P]. US : 6855462,2005-02-151
    [95] Barker J, Saidi M Y,Yazid S J, et al 1 Methods of making transition metal compounds useful as cathode active materials [P]. US : 6730281 , 2004 - 05 - 041
    [96] Yang S F, Song Y N, Katana N, et al. Performance of LiFePO_4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. J. Power Sources, 2003 , 119 - 121 : 239 - 2461
    [97] Park. S., Son J. T., Chung H. T., et al. Synthesis of LiFePO_4 by coprecipitation and microwave heating [J ]. Electrochemistry Communications, 2003 , 5 (10): 839 - 8421
    [98] Arnold G, Garche J, Hemmer R, et al1 Fine2particle lithium iron phosphate LiFePO_4 synthesized by a new low cost aqueous precipitation technique [J]. J. Power Sources, 2003, 119 -121 : 247 - 2511
    [99] Wang G X , Bewlay S L , Konstantinov K, et al1 Physical and electrochemical properties of doped lithium iron phosphate electrodes [J]. Electrochimica Ada, 2004, 50 (2 -3): 443 - 4471
    [100] Sylvain F, Le Cras F , Bourbon C , et all Comparison between different LiFePO_4 synthesis routes and their influence on its physicochemical properties [J]. J. Power Sources , 2003 , 119 -121 : 252 - 2571
    [101] Chen Z, Dahn J R. Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J. Electrochem. Soc, 2002, 149 (9): A1184-A1189.
    [102] Franger S, Le Cras F, Bourbon C et al. LiFePO_4 synthesis routes for enhanced electrochemical performance [J].J.Electrochem.Solid-State Lett. 2002, 5(10):A231-A233.
    [103] Barker J, Saidi M Y, Swoyer J L. Lithium iron(II) phosphor-olivines prepared by a novel carbothermal reduction method [J]. J. Electrochem. Solid-State Lett.,2003, 6(3):A53-A55.
    [104] Higuchi M, Katayama K, Azuma Y et al. Synthesis of LiFePO_4 cathode material by microwave processing [J]. J. Power Sources, 2003, 119-121:258-261.
    [105] Prosini P. P., Carewska M., Scaccia S. et al. A new synthetic route for preparing LiFePO_4 with enhanced electrochemical performance [J]J.Electrochem.Soc, 2002, 149(7):A886-A890.
    [106] Croce F, D'Epifanio A D, Hassoun J et al. A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode[J].J.Electrochem.Solid-State Lett.,2002,5(3):A47-A50.
    [107]Franger S,Cras F L,Bourbon C et al.Comparison betweem diffemet LiFePO_4 synthesis routes and their influence on its physico-chemical properties[J].J.Power Sources,2003,119-121:252-257.
    [108]Barker J,Methods of making transition metal compounds useful as cathode active materials using electromagnetic radiation[P].US:20040016632,2004-01-291
    [109]Barker J,Saidi M Y,Yazid S J,et all Alkali/transition metal phosphates and related electrode active materials[P].US:20050058905,2005-04-171
    [110]Barker J.,Saidi M.Y.,Yazid S.J.,Alkali/transition metal halo-and hydroxy-phosphates and related electrode active materials[P].US:20030027049,2003-02-061
    [111]Atsuo Y.,Mamoru H.,Chung S.C.,et al.Olivine-type cathodes achievements and problems[J].J.Power Sources,2003,119-121:232-2381
    [112]Stefania P.,Bruno S.,Mario W.,et al.Nanotechnology for the progress of lithium batteries R &D[J].J.Power Sources,2004,129(1):90-951
    [113]Goodenough J.B.,Manivannan V.,Padhi A.K.,Tuning the position of redox couples in materials with NaSICON structure by anionic subsitiution[J].J Electrochem.Soc.,1998,145(5):1518-1520.
    [114]Barker J.,Gover R.K.B.,Bums P.,et al.Structural and electrochemical properties of lithium vanadium fluorophosphates LiVPO_4F[J].J Power Sources,2005,146:516-520.
    [115]Naniundaswamy K.S.,Padhi A.K.,Goodenough J.B.,et al.et al.Synthesis,redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J].Solide State Ionics,1996,92:1-10.
    [116]Whittingham M.S.Lithium batteries and cathode materials[J].Chem.Rev.,2004,104:4271-4301.
    [117]Morcrettem,Leriche J.B.,Pautoux S.,et al.In situ X-ray diffraction during lithium extraction from rhombohedral and monoclinic Li_3V_2(PO_4)_3[J].Electrochemical and Solid-State Letters,2003,6(5):A 80-A84.
    [118]Bark J.,Saidi M.Y.,Swoley J.L.A carbothermal reduction method for the preparation of electroactive materials for Lithium ion applications[J].J Electrochem.Soc.,2003,150:A 684-A 688.
    [119]Yin S.C.,Gronder H.,Strobel P.,et al.Electrochemical property:structure relationships in monoclinic L_(i3)_yV_2(PO_4)_3[J].J.Am.Chem.Soc.,2003,125:10402--10411.
    [120]Mineo S.,Hirokazu O.,Kenji Y.,et al.Enhancement of discharge capacity of Li_3V_2(PO_4)_3 by stabilizing the orthorhombic phase at room temperature[J].Solid State Ionics,2000,135:137-142.
    [121]Saidi M.Y.,Barker J.,Huang H.,et al.Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries[J].Electrochemical and Solid-State Letters,2002,5(7):A 149-A 151.
    [122]Saidi M.Y.,Barker J.,Huang H.,et al.Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries[J].J.Power Sources,2003,119-121:266-272.
    [123]刘素琴,李世彩,唐联兴,等.Li3V2(PO4)3的溶胶凝胶法合成及其性能研究[J].无机化学学报,2006,22(4):645-650.
    [124]Patoux S.,Wurm C.,Morcrettem,et al.A comparative structural and electro chemical study of monoclinic Li_3Fe_2(PO_4)_3 and Li_3V_2(PO_4)_3[J].J Power Sources,2003,119-121:278-284.
    [125]Eguchem,Ozawa K.,Sakka Y.,Preparation and lithium insertion property of layered Li_xV_2O_5n H_2O[J].J Power Sources,2003,119-121:201-204.
    [126]Morgan D.,Ceder G.,Saidi M.Y.,et al.Experimental and computational study of the structure and electrochemical properties of monoclinic Li_xM_2(PO_4)_3 compounds[J].J.Power Sources,2003,119-121:755-759.
    [127]Huang H.,Yin S.C.,Kerr T.,et al.Nanostructured composites:a high capacity,fast rate Li_3V_2(PO_4)_3/C cathode for rechargeable Lithium batteries[J].Adv.Mater.,2002,14:1525-1528.
    [128]Wu,S.Q.;Zhang,J.H.;Zhu,Z.Z.;Yang,Y.Curr.Appl.Phys.2007,7,611.
    [129]Larsson,P.;Ahuia,R.;Nytén,A.;Thomas,[J].Electrochem.Commun.2006,8,797.
    [130]Nytén,A.;Kamali,S.;Haggstrom,L.;Gustafsson,T.;Thomas,[J]..J.Mater.Chem.2006,16,2266.
    [131]Zaghib,K.;Salah,A.A.;Ravet,N.;Mauger,A.;Gendron,F.;Julien,C.M.J.Power Sources 2006,160,1381.
    [132]Gong,Z.L.;Li,Y.X.;Yang,Y.Electrochem.SolidState Lett.2006,9,A542.
    [133]Nyten A.,Abouimrane A.,Armand M.et al.Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material[J].Electrochem.Comm.2005,7:156-160.
    [134]A.Nytén,A.Abouimrane,M.Armand,T.Gustaffson,J.O.Thomas,Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material.Electrochem.Commun.2005,7,156-160.
    [135]Zhou F.,Cococcioni M.,Kang.K.et al.The Li intercalation potential of LiMPO_4 and LiMSiO_4 olivines with M = Fe,Mn,Co,Ni[J].Electrochem.Comm.2004,6:1144-1148.
    [136]徐如人,庞文琴等,分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [137]Kresge C.T.,Leonowicz M.E.,Roth W.J.,et al.Ordered mesoporous molecular sieves synthesized by aliquid cystal template mechanism 〔J〕.Nature,1992,359:710-712.
    [138]Beck J.S.,Vartuli J.C.,Roth WJ,et al.A new family of mesoporous molecular sieres prepared with liqued crystal templates 〔J〕.Am.Chem.Soc.,1992,114:10834-10843.
    [139]Ying J.S.,Mehnert C.P.,Wong M.S.,Synthesis and applications of super amolecular-templated mesoporous materials 〔J〕.Angew Chem.Iit,Ed,Engl,1999,38:56-77.
    [140]Ciesla U,Schuth F.Ordered mesoporous maberiols 〔J〕.Micro.Meso.Mate.r,1999,27:131-149.
    [141]Pang J B,Qiu K Y,Wei Y.Chinese J.Synthesis ofmesoporous poly(Styrene-co-maleic anhydride) /silica hybrid materials Via a nonsurfactant-templated sol-gel process 〔J〕.Polym.Sci,2000,18(5):469 -472.
    [142]Zhou W Z,Thomas J M,Shephard D S,et al.Ordering of ruthenium cluster carbonyls in mesoporous silica 〔J〕.Science,1998,280:705-708.
    [143]Kageyama K,Tamazawa Jichi,Aida T.Extrusion polymerization:catalyzed synthesis of crystalline liner polyethylene nanofibers within a mesoporous 〔J〕.Science,1999,285:2113-2115.
    [144]H Elhouichet,A Moadhen,M Oueslati,et al.Photoluminescence properties of Tb~(3+) in porous silicon 〔J〕.Journal of Luminescence,2002,97(1):34-39.
    [145]Schüth F.Non-siliceous mesostructured and mesoporous materials[J].Chem.Mater.2001,13:3184-3195.
    [146]Soler-Illia G.,Crepaldi E.,Grosso,D.et al.Block copolymer-templated mesoporous oxides[J].Curr.Opin.Sol.St.Mater.Sci.,2003,8:109-126.
    [147]Yang P.,Zhao D.,Margolese D.et al.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J].Nature,1998,396:152-155.
    [148]Kresge C.T.,Leonowicz M.E.,Roth W.J.et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J],Nature.1992,359:710-712.
    [149]Beck J.S.,Kresge C.T.et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J.Amer.Chem.Soc.1992,114:10834-10843.
    [150]Vartuli J.C.,Schmitt K.D.,Kresge C.T.et al.Development of a formation mechanism for M41s materials[J].Zeolites and Related Microporous Mater:State of the Art,1994,53-60.
    [151]Chen C Y,Li H X,Davis M E.Studies on mesoporous materials synt hesis and characterization of MCM-41 [J]. Micropor. Mater., 1993,2 : 17-26.
    [152] Steel A, Carr S W, Anderson M W. 14NNMR study of surfactant mesophases in t he synt hesis of mesoporous silicates [J]. Chem. Commun., 1994 :1571-1572.
    [153] Monnier A, Schut h F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in t he synt hesis of silicate mesostructures [J]. Science, 1993,261 : 1299-1303.
    [154] Huo Q, Margolese D I, Ulrike C, et al. Generalized synthesis of periodic surfactant/ inorganic composite materials [J]. Nature, 1994,368 : 317-321.
    [155] M. S. Sander., A L Prieto, R Gronsky, et al. Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates, [J]. Adv. Mater., 2002, 14(9): 665-667
    [156] Liu Z.C., Weng L.H., Zhou Y.M., Zhao D. Y, Synthesis of a new organically templated zeolite-like zirconogermanate (C4N2H12)[ZrGe4O10F2] with cavansite topology [J]. J. Mater. Chem., 2003, 13 (2): 308-311
    [157] Han YJ, KimJ M, Stucky GD. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA215 [J]. Chem.Mater., 2000, 12 (8): 2068-2069
    [158] Tanev P. T., PinnavaiaT. J., A neutral templating route to mesoporous molecular sieves, [J]. Science, 1995, 267(5199): 865
    
    [159] Tanev P. X, Chibwe M., PinnavaiaT. J., [J]. Nature, 1994, 368:321
    [160] Seong Su Kim, Wenzhong Zhang. Thomas J. Pinnavaia. Ultrastable Mesostructured Silica Vesicles ,[J]. Science, 1995, 268: 1242
    
    [161] Attard G S., Glyde J. C, Goltner C. G Liquid-crystalline phases as templates for the synthesis of mesoporous silica, [J]. Nature, 1995, 378(6555) :366
    [162] Huo Q. S., Margolese D. J., Ciesla U., et al, Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays, [J]. Chem. Mater., 1994, 6:1176
    [163] Huo Q. S., Lee R., Petroff P. M., et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array, [J]. Science, 1995, 268(5215) :1324
    [164] Chen Fanglin, Liu Meilin. Preparation of mesoporous tin oxide for electrochemical applications, [J]. Chem. Commun. ,1999:1829
    [165] Wei Qi, Chen Zengxiang, Nie Zuoren ,et al. Mesoporous activated alumina layers deposited on FeCrAl metallic substrates by an in situ hydrothermal method, J. Alloys and Compounds ,2005 ,396 : 283
    [166] Srivastava D V , Perkas N ,et al. Sonochemical Synthesis of Mesoporous Iron Oxide and Accounts of Its Magnetic and Catalytic Properties, J. Phys. Chem. B, 2002,106 .1878
    [167] Monnier A., Schuth P., Hui Q. S., et al. Cooperative formation of inorganic-organic interfaces in the synthesis silicate mesostuctures, Science, 1993, 261(5126) :1299
    [168] Ulagapan N., Neeraj, Raju B. V. N., et al. [J]. Chem. Commun., 1996, 2 : 243
    [169] Zhao D Y, Luan Z H, Kevan L Y. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves, [J]. Chem Commun ,1997 :1009
    [170] Feng P Y,Xia Y,Feng J L ,et al. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route, Chem. Commun. ,1997 :949
    [171] Z.C. Shi, Q. Wang, W.L. Ye, Y.X. Li, Y. Yang, Synthesis and Characterization of Mesoporous Titanium Pyrophosphate as Lithium Intercalation Electrode Materials, [J]. Microporous and Mesoporous Materials, 2006, 88 (1-3): 232-237
    [172] Z.C. Shi, Y.X. Li, W.L. Ye, Y. Yang Mesoporous FePO_4 with Enhanced Electrochemical Performance as Cathode Materials of Rechargeable Lithium Batteries, [J]. Electrochemical and Solid State letter, 2005, 8 (8): A396-A399.
    
    [173] Doi T, Migake T., [J]. Chem. Commun., 1996, 1: 635
    
    [174] Sayari A., Moudrakovski J., Reddy J. S., et al. Synthesis of Mesostructured Lamellar Aluminophosphates Using Supramolecular Templates, [J]. Chem. Mater., 1996, 8 : 2080
    
    [175] Sayari A., Karra V. R., Reddy J. S., et al. [J]. Chem. Commun., 1996, 4:11
    
    [176] 王良御,廖送生 液晶化学[M],北京:科技出版社,1988: 149-152.
    
    [177] Israelachvili J.N., Mitchell D.J., Ninham B.W,[J]. J. Chem. Soc. Faraday Trans. 2.1976, 72:1525-1568.
    [178] Zhao D. Y., Feng J. L., Huo Q. S., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279:548-552.
    [179] Pei L. H., Kurumada K. I., Tanigakim, et al. Effect of drying on the mesoporous structure of sol - gel derived silica with PPOPEOPPO template block copolymer[J]. Journal of Colloid and Interface Science, 2005, 284:222-227.
    [180] Yamada T., Zhou H. S., Asai K., et al. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates [J]. Materials Letters, 2002, 56:93-96.
    [181] KitazawaN., Namba H., Aonom, et al. Sol- gel derived mesoporous silica films using amphiphilic triblock copolymers[J]. Journal of Non-crystalline Solids, 2003, 332:199-206.
    [182] Peidong Yang, Dongyuan Zhao, et al, Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework [J]. Chem. Mater. 1999,11: 2813-2826
    [183] Peidong Yang, Dongyuan Zhao, et al, Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998. 396( 6707): 152-155
    [184] Christine G. S., Non-ionic templating of silica: formation mechanism and structure[J]. Current Opinion in Colloid & Interface Science, 2002, 7:173-178.
    [185] Sato Y., Nakanishi K., Hirao K.., et al. Formation of ordered macropores and templated nanopores in silica sol- gel system incorporated with EO- PO- EO triblock copolymer[J]. J. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2001, 187-188: 117-122.
    [186] Pius Kipkemboi, Andrew Fogden, et al, Triblock Copolymers as Templates in Mesoporous Silica Formation: Structural Dependence on Polymer Chain Length and Synthesis Temperature [J]. Langmuir 2001,17: 5398-5402
    [187] Bernd Smarsly, Sebastian Polarz, et al, Preparation of Porous Silica Materials via Sol-Gel Nanocasting of Nonionic Surfactants: A Mechanistic Study on the Self-Aggregation of Amphiphiles for the Precise Prediction of the Mesopore Size, [J]. J. Phys. Chem. B, 2001,105, 10473-10483
    
    [188] Katarina Flodstr€om , Viveka Alfredsson, Influence of the block length of triblock copolymers on the formation of mesoporous silica, [J]. Microporous and Mesoporous Materials, 2003, 59: 167-176
    [189] Shi Z.C, Li Y.X., Ye W.L., et al., Mesoporous FePO_4 with enhanced electrochemical performance as cathode materials of rechargeable lithium batteries [J]. Electrochem. Solid-State. Lett, 2005, 8(8) A396-A399.
    [190] Peng Z, Shi Z, Lin M. Mesoporous Sn-TiO_2 composite electrodes for lithium batteries[J]. Chem Comm, 2000(12):2125-2126.
    [191] Chen F, Shi Z, Lin M. Mesoporous Sn-TiO_2 composite electrodes for lithium batteries[J]. Chem Comm, 2000(11):2095-2096.
    [192] Yu A, Frech R. Mesoporous tin oxides as lithium intercalation anode materials[J]. J Power Sources,2002, 104(1):97-100.
    [193] Kim E, Son D, Kim T.C, et al. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries[J]. Angew Chem Int Ed, 2004,43:5 987-5 990.
    [194] Zhou H, Zhu S, Hibino M, et al. Lithium storage in ordered mesoporous carbon(CMK-3) with highreversible specific energy capacity and good cycling performance[J]. Adv Mater, 2003, 15(24):2107-2110.
    [195] Zhu S, Zhou H, Miyoshi T, et al. Self-assembly of the mesoporous electrode material Li_3Fe_2(PO_4)3 using a cationic surfactant as the template[J]. Adv Mater, 2004,16(22): 2012-2017.
    [196] Liu P, Lee S.H, Tracy C.E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide[J]. Adv Mater, 2002, 14(1):27-30.
    [197] Hogarth W., Costa J., Drennan J. et al. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications [J]. J Mater Chem., 2005,15: 754-758.
    [198] Hung I.M., Wang H.P., Lai W.H. et al. Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell [J]. Electrochin. Ada, 2004, 50: 745-748.
    [199] Miyasaka T. and Kijitori Y. Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesopous TiO_2 layers [J]. J. Electrochem. Soc., 2004,151(11): A1767-A1773.
    [200] Ito S., Makari Y. Kitamura T. et al. Fabrication and characterization of mesoporous SnO_2/ZnO-composite electrode for efficient dye solar cells [J].J Mater. Chem. 2004,14: 385-390.
    [201] Lee J., Yoon S., Hyeon T. et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem. Comm. 1999: 2177-2178.
    [1]Shi Z.C.,Li Y.X.,Ye W.L.,Yang Y.Mesoporous FePO_4 with Enhanced Electrochemical Performance as Cathode Materials of Rechargeable Lithium Batteries[J].Electrochem.Sol.Stat.Lett.,2005,8(8)A396-A399.
    [2]施志聪,李益孝,叶维玲等,有序纳米多孔磷酸钛正极材料的制备和电化学性能研究[J].稀有金属,2004,28(special issue):16-18.
    [3]TIAN B,LIU X,TU B,YU C,et al.Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J].Nat.Mater.,2003,2(3):159-163.
    [4]G.Wanka,et al,Phase Diagrams and Aggregation Behavior of Poly(ox yethylene)-Poly(oxypropylene)-Poly(oxyet hylene) Triblock Copolymers in Aqueous Solutions,[J].Macromolecules,1994,27:4145-4159
    [5]Paschallis Alexandridis,et al,Micellization of Poly(ethylene oxide)-Poly(propyleneoxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions:Thermodynamics of Copolymer Association,[J].Macromolecules,1994,27:2414-2425
    [6]Tian B,Liu X,Tu B,et al.Self-adjusted synthesis of ordered stable mesoporous mnerals by acid-base pairs[J].Nature Mater,2003,2(3):159-163.
    [7]施志聪,厦门大学理学博士学位论文[D],厦门:2005.
    [8]刘汉三,厦门大学理学博士学位论文[D],厦门:2003.
    [9]杨孙楷等.仪器分析实验[M].厦门:厦门大学出版社,厦门:1996.
    [10]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [11]梁栋材著.X射线晶体学基础[M].北京:科学出版社,1991.
    [12]徐如人,庞文琴等,分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [13]施志聪,李晨,杨勇,LiFePO_4新型正极材料电化学性能的研究[J],电化学,2003,9:9-14.
    [14]李晨,厦门大学理学硕士学位论文[D].厦门:2005.
    [15]周玉,武高辉,材料分析测试技术-材料X射线与电子显微分析,哈尔滨工业大学出版社,哈尔滨,1998.
    [16]张忠如.厦门大学理学博士学位论文[D].厦门:2004.
    [17]英国南安普顿电化学小组著:柳厚田等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992.
    [18]田昭武著.电化学研究方法[M].北京:科学出版社,1984.
    [1]Long J W,Dunn B,Rolison D R,et al.Three-dimensional battery architectures[J].Chem Rev,2004,104(10):4 463-4 492.
    [2]Nazar L F,Goward G,Leroux F,et al.Nanostructured materials for energy storage[J].Int J Inorg Mater,2001,3:191-200.
    [3]Panero S,Scrosati B,Wachtler M,et al.Nanotechnology for the progress of lithium batteries R&D[J].J Power Sources,2004,129(1):90-95.
    [4]Singhal A,Skandan G,Amatucci G,et al.Nanostructrued electrodes for next generation rechargeable electrochemical devices[J].J Power Sources,2004,129(1):38-44.
    [5]Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407(6803):496-499.
    [6]尤金跨,杨勇,舒东等,锂离子电池纳米电极材料研究[J].电化学,1998,4(1):94-100.
    [7]Yu C,Tian B,Zhao D.Recent dvances in the synthesis of non-siliceous mesoporous materials[J].Current Opinion in Solid State and Materials Science,2003,7:191-197.
    [8]Peng Z,Shi Z,Lin M.Mesoporous Sn-TiO_2 composite electrodes for lithium batteries[J].Chem Comm,2000,(21):2125-2126.
    [9]Kim E,Son D,Kim T C,et al.A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries[J].Angew Chem Int Ed,2004,43:5 987-5 990.
    [10]Zhou H,Zhu S,Hibino M,et al.Lithium storage in ordered mesoporous carbon(CMK-3) with high reversible specific energy capacity and good cycling performance[J].Adv Mater,2003,15(24):2107-2110.
    [11]Liu P,Lee S H,Yracy C E,et al.Preparation and lithium insertion properties of mesoporous vanadium oxide[J].Adv Mater,2002,14(1):27-30.
    [12]Hung I M,Wang H P,Lai W H,et al.Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell[J].Electrochim Acta,2004,50(2-3):745-748.
    [13]Lee J,Yoon S,Hyeon T,et al.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J].Chem Comm,1999,(21):2177-2178.
    [14]Yang Y,Shu D,You JK et al.Performance and characterization of lithium-manganese-oxide cathode material with large tunnel structure for lithium batteries[J].J Power Sources.1999,81-82:637-641
    [15]施志聪,杨勇,聚阴离子型锂离子电池正极材料研究进展[J].化学进展.2005,,17(4):604-613.
    [16]施志聪,李晨,杨勇,LiFePO4新型正极材料电化学性能的研究[J].电化学.2003,9(1):9-14.
    [17]Uebou Y,Okada S,Egashira M,et al.Cathode properties of pyrophosphates for rechargeable lithium batteries[J].Solid State Ionics,2002,148(3-4):323-328.
    [18]Patoux S,Masquelier C.Lithium insertion into titanium phosphates,silicates,and sulfates[J].Chem Mater,2002,14(12):5 057-5 068.
    [19]He J,Yang X B,Evans D G et al.New methods to remove organic templates from porous materials,Mater Chem.Phys.2003,77:270-275
    [20]徐如人,庞文琴等,分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [21]Shi Z.C.,Li Y.X.,Ye W.L.,Yang Y.Mesoporous FePO_4 with Enhanced Electrochemical Performance as Cathode Materials of Rechargeable Lithium Batteries[J].Electrochem.Sol.Stat.Lett.,2005,8(8)A396-A399.
    [22]Paschallis Alexandridis,et al,Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly (ethylene oxide) Triblock Copolymers in Aqueous Solutions:Thermodynamics of Copolymer Association,[J].Macromolecules,1994,27:2414-2425
    [1]旅志聪,杨勇,聚阴离子型锂离予电池正极材料研究进展[J],化学进展,2005,17(4):604-613.
    [2]Yamada A.et al.Olivine-type cathodes achievements and problems[J].J.Power Sources,2003,19-121:232-238.
    [3]Tarascon J M,and Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359-367.
    [4]Chen Z,Dahn J R.Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy,volumetric energy,and tap density[J].J.Electrochem.Soc.,2002,149(9):A1184-A1189.
    [5]米常焕等,碳包覆LiFePO_4的一步固相法制备及高温电化学性能[J],无机化学学报,2005,21(4):556-560.
    [6]Croce F.,et al.Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells[J].J.Electrochem.Soc.,2003,150(5):A576-A581.
    [7]Chung S.Y.et al.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nature Material,2002,101:123-128.
    [8]Shi S.et al.Enhancement of electronic conductivity of LiFePO_4 by Cr dopong and its identification by first-principles calculations[J].Phys.Rev.B,2003,68(19):19518.
    [9]Peng Z,Shi Z,Lin M.Mesoporous Sn-TiO_2 composite electrodes for lithium batteries[J].Chem Comm,2000(12):2125-2126.
    [10]Attia A,Zukalova M,Rathousky J.et al.Mesoporous electrode material from alumina-stabilized anatasw TiO2 for lithium ion batteries[J].J Solid State Electrochem.2005(9):138-145.
    [11]Yu A,Frech R.Mesoporous tin oxides as lithium intercalation anode materials[J].J Power Sources,2002,104(1):97-100.
    [12]Kim E,Son D,Kim T.C,et al.A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries[J].Angew Chem Int Ed 2004,43:5987-5990.
    [13] Zhou H, Zhu S, Hibino M, et al. Lithium storage in ordered mesoporous carbon(CMK-3) with high reversible specific energy capacity and good cycling performance[J]. Adv Mater, 2003,15(24): 2107-2110.
    [14] [Zhu S, Zhou H, Miyoshi T, et al. Self-assembly of the mesoporous electrode material Li_3Fe_2(PO_4)_3 using a cationic surfactant as the template[J]. Adv Mater, 2004, 16(22): 2012-2017.
    [15] Liu P, Lee S.H, Tracy C.E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide[J]. Adv Mater, 2002, 14(1): 27-30.
    [16] Hogarth W., Costa J., Drennan J. et al. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications [J]. J Mater. Chem., 2005, 15: 754-758.
    [17] Hung I.M., Wang H.P., Lai W.H. et al. Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell [J]. Electrochin. Ada, 2004, 50: 745-748.
    [18] Miyasaka T. and Kijitori Y. Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesopousTiO_2 layers [J]. J. Electrochem. Soc., 2004,151(11): A1767-A1773.
    [19] Ito S., Makari Y. Kitamura T. et al. Fabrication and characterization of mesoporous SnO_2/ZnO-composite electrode for efficient dye solar cells [J]. J Mater. Chem. 2004,14: 385-390.
    [20] Zhang G. Q., Zhang X. G., Li H. L., Self-assembly preparation of mesoporous hollow nanospheric manganese dioxide and its application in zinc-air battery, [J]. J Solid State Electrochem., 2006( 10): 995-1001
    [21] Lee J., Yoon S., Hyeon T. et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem. Comm. 1999: 2177-2178.
    [22] Xing W., Liu X. M., Bai P., et al. Synthesis of novel ordered carbon nanorods and its application in electrochemical double layer capacitor, [J]. Science in china series e-technological sciences, 2006(49): 425-433
    [23] Woo S. W., Dokko K... Nakano H., et al. Bimodal porous carbon as a new negative electrode materials for lithium-ion capacitors, [J]. Electrochemistry, 2007(75): 635-640
    [24] Yang Y, Shu D, You JK et al. Performance and characterization of lithium-manganese-oxide cathode material with large tunnel structure for lithium batteries [J]. J Power Sources. 1999, 81-82: 637-641.
    [25] Guo Y. G., Hu Y. S., Maier J., Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries, [J]. Chemical Communications, 2006 (26): 2783-2785
    [26] Guo Y. G., Hu Y. S., Sigle W., et al. Superior electrode performance of nanostructured mesoporous TiO_2(anatase) through efficient hiearchical mixed conducting networks, [J]. Advanced Materials, 2007(19): 2087
    [27] Armstrong G., Armstrong A.R., Bruce P. G., et al. TiO_2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO_4 or LiNi0.5Mnl.5O4 cathodes and a polymer electrolyte, [J]. Advanced Materials, 2006( 18):2597
    [28] Hu Y. S., Kienle L.,Guo Y. G., et al.. High lithium electroactivity of nanometer-sized rutile TiO_2, [J]. Advanced Materials, 2006(18): 1421
    [29] Armstrong A. R., Armstrong G., Canales J., et al. Lithium-ion intercalation into TiO_2-B nanowires, [J]. Advanced Materials, 2005( 17):862
    [30] Hu Y. S., Adelhelm P., Smarsly B.M., et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability, [J]. Advanced Functional Materials, 2007(17): 1873-1878
    [31] Li B. X., Rong G. X., Xie Y., et al. Low-temperature synthesis of alpha-MnO_2 hollow urchins and their application in rechargeable Li~+ batteries, [J]. Inorganic chemistry, 2006(45): 6404-6410
    [32] Padhi, AK; Nanjundaswamy, KS; Masquelier, C; et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation, [J]. J. Elctrochemical Society, 1997(144) :2581-2586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700