用户名: 密码: 验证码:
水稻植质钵育秧盘过热蒸汽干燥机理与工艺参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻育秧方式是水稻实现机械化种植的关键,水稻钵育栽植技术由于其抗低温和增产优势非常适合我国北方寒带水稻种植,受到广大稻农的欢迎,为此,我校自主研制了具有低碳高效农业特点水稻植质钵育秧盘及其配套插秧机械。水稻植质钵育秧盘就是利用水稻的秸秆作为原料,采用相应的秧盘成型工艺制成水稻育秧的载体,此项技术水稻增产幅度大,稻米品质高,对于解决水稻高产、稳产,发展水稻高产机械化模式具有广阔的应用前景。
     植质钵育秧盘是水稻钵育栽植技术的核心环节,但在利用秧盘育秧过程中,发现秧盘易折断,力学强度不够,为克服这种现象,需利用过热蒸汽干燥技术对秧盘进行干燥处理,以提高秧盘的力学强度。为此,研制了植质钵育秧盘过热蒸汽干燥试验台。该试验台成本低、结构简单、性能可靠、易于操作,控制系统精度高,显示直观,易于采集和读取试验数据。
     通过对比试验研究得知热风干燥的干、湿强度值明显小于过热蒸汽干燥的值,表明过热蒸汽干燥要优于热风干燥;研究讨论了干燥的各个影响因素对秧盘力学强度和干燥速度的影响规律;考虑各个关键影响因素对植质钵育秧盘强度性能的综合影响效果,获得优化的过热蒸汽干燥参数组合方案为:干燥时间为15.4min,干燥温度为145.11℃,质量流量为2.2Kg·m-2·s-1;通过验证试验得到的强度性能指标接近于理论值,表明回归模型可靠。实际强度大于自重模拟强度值,表明强度能满足秧盘不断裂的要求。
     为了对植质钵育秧盘干燥过程的传热传质规律进行研究,以植质钵育秧盘的片状结构材料作为研究对象,对植质钵育秧盘干燥过程的传热传质进行了理论分析,建立植质钵育秧盘干燥过程传热传质数学模型,确定了模型中的参数,通过试验验证,表明模型具有很好的准确性。
     对植质钵育秧盘尺寸稳定性进行了研究,研究表明:随着干燥温度的升高,片材干缩率逐渐增大,湿胀率逐渐减小,吸湿率有所下降,因此,提升干燥温度有利于提高尺寸的稳定性和耐水性。
Rice seedling growth modes is the key to realize the rice planting mechanization of ricebreeding, rice bowl brood planting technology is very suitable for China's northern boreal riceplanting and welcomed by the majority of rice farmers for its resistance to low temperature andyield advantage. Therefore, low carbon and high efficient agricultural characteristics of rice plantbowl-seeding tray and related transplanting machine have been developed independently in ourschool. Plant bowl-seeding tray is rice seedlings carrier by taken rice straw as raw material andadopted trays molding process, the technology has a large range of rice yield and high-qualityrice. The technology can realize the returning straw to soil fertility and two saving and twoincreasing, that is to save soil and seeds, to increase production and efficiency, tray is made ofstraw, when straw is decay which will become fertilizer, so the technology has greatdevelopment potential, and application prospects to develop high yield of rice machine mode andsolve the problem of rice stable and high yield.
     Plant bowl-seeding tray is a core link of rice breeding planting technology, but in theprocess of using tray to seed, the seedling tray is broken easily, the mechanical strength is notenough, in order to overcome these problems, it is need to dry plant bowl-seeding tray, by usingthe superheated steam drying technology to study seedling tray deeply, in order to improve theperformance quality of seedling tray.
     In order to make use of superheated steam drying to improve performance quality of theplant seedling-growing tray, achieve the research of superheated steam drying technology andverify the simulation analysis, the plant bowl-seeding tray of superheated steam drying testbench is developed. The test bench is low cost, simple structure, reliable performance, easyoperation, high precision control system, visual display, easy to collect and read the test data.
     It is draw a conclusion that hot air drying of the dry and wet strength value is smaller thanthe value of the superheated steam drying, indicating that superheated steam drying is superior tohot air drying; the seedling tray appearance is not neat after hot air drying, can appear warping,crack phenomenon, the seedling tray edge is rough, even have burr appear; the seedling trayexternal shape is better after the superheated steam drying, is not has shrinkage and deformation,warping, crack edge and burr phenomenon.
     The effect of the dry influence factors on the rate of the seedling tray drying, the study showthat: the drying rate increased significantly with the increase of temperature, to enhance thetemperature of the superheated steam drying can enhance the rate of drying; drying rate increaseswith the increase of superheated steam mass flow, the results show that increase superheated steam mass flow can improve the drying efficiency.
     The effect of the effects of various factors on mechanical strength of the seedling tray isstudied, the results show that: the dry and wet strength with the rise of temperature increase firstand then decrease gradually, the seedling tray strength reach to maximum when dryingtemperature is about145℃, when temperature is too high, the seedling tray is become friable,mechanical strength weakened. The seedling tray along with the growth of the drying time, dryand wet strength increase first and then decrease gradually, with the increase of superheatedsteam mass flow, the seedling tray dry and wet strength gradually increase, with the increase ofthe seedling tray initial moisture content, the seedling tray dry and wet strength value will dropslightly, but not obvious; contrast dry and wet of the seedling tray mechanical strength, it isknown that the value in wet condition is smaller than in dry condition, the strength declined, thisis due to the seedling tray in water and soil in the long-term soaking.
     The effect of all the key influence factors on the plant bowl-seeding tray strengthperformance of comprehensive is considered, the orthogonal tests are studied, through theanalysis of the model, the dry and wet strength effect size order is as followed: drying time>drying temperature> mass flow; Through the optimization of the regression equation whichestablish by the seedling tray mechanical strength performance, the best superheated steamdrying parameter combination scheme is acquired, the results are as followed: drying time was15.4min, drying temperature is145.11℃, mass flow rate is2.2Kg·m-2·s-1; Through theverification test, strength performance is got which close to the theoretical value, indicating thatthe regression model is reliable. Actual strength is greater than the weight simulation strengthvalue, indicating that strength can meet the requirements of the seedling tray doesn't break.
     In order to study the heat and mass transfer law during drying of plant bowl-seeding tray,taking the sheet structural plant bowl-seeding tray materials as the subjects, the heat and masstransfer of plant bowl-seeding tray are analyzed theoretically, according to the energyconservation law and mass conservation law, heat and mass transfer mathematical model isestablished during drying of sheet structural material, parameters are determined in two models,differential equations are discretized by the finite difference method, mathematical models aresolved by numerical methods in MATLAB programming, the prediction results of heat and masstransfer model during drying of plant bowl-seeding tray are obtained. The sheet structuralmaterial of plant bowl-seeding tray is tested under the conditions of the drying chambertemperatures of120℃,140℃,160℃, the test datas of the temperature and moisture contentvariation with time through the test are obtained, variation of temperature and moisture on sheetstructural material of plant bowl-seeding tray in the drying process a re analyzed and discussed. we found that theoretical modeling values are consistent with the experimental values bycomparing theoretical analog values and experimental values. This indicates that the model hasgood accuracy, which can provide a mathematical method for practical application and will be agreat significance for the regulation and development of the scientific basis of the dryingprocess.
     Dimensional stability of plant bowl-seeding tray was studied, research showed that: as thedrying temperature is increased, the shrinkage rate of the sheet material is also increased,swelling rate is gradually decreased, absorption rate is decreased, and therefore, improve thedrying temperature is conducive to improve the dimensional stability and water resistance.
引文
[1]叶红.2010年的插秧机市场真给力[J].当代农机.2011(1):32~34.
    [2]叶红.迎接插秧机市场新的高潮[J].农机市场.2011(1):29~32.
    [3]张文毅,袁钊和,吴崇友等.水稻种植机械化进程分析研究——水稻种植机械化由快速向高速发展的进程[J].中国农机化2011(1):19~22.
    [4]蒋欣.水稻生产全程机械化[J].畜牧与饲料科学,2009,30(9):187~188.
    [5]甘露,潘亚东,孙士明.我国农业机械化发展态势分析[J].农机化研究,2011(2):203~208.
    [6]张文毅,袁钊和,吴崇友,等.水稻种植机械化进程分析研究[J].中国农机化,2011(1):19~22.
    [7]鹿新梅,孔令华,宋观峰.发展农业机械化建设社会主义新农村[J].农业技术与装备.2007(04):37~41.
    [8]吴乐红.皖西水稻生产机械化发展之问题及对策[J].南方农机.2011(03)[3]孙益远.浅谈社会主义新农村建设与农机化的联系[J].安徽农学通报.2006(04):18~19.
    [9]姬伟东,蒋晓旭.科学发展农业机械化加快实现农业现代化[J].吉林农业.2010(04):29.
    [10]杨云霄.市场经济条件下哈尔滨市郊农业机械化生产运行机制的探讨[J].农业开发与装备.2008(06):22~24.
    [11]庄怀宇,窦鹏飞,乔福成.大力推广水稻机插秧全力推进农业机械化[J].农业装备技术.2008(06):34~35.
    [12]李斯华.水稻耕种收综合机械化水平超过4成农业部强调加速推进水稻生产全程机械化[J].当代农机.2008(07):9~10.
    [13]冯山鸣,曹伟清.农机农艺配套推进水稻生产全程机械化[J].江苏农机化.2007(04):20~21.
    [14]王平.水稻生产全程机械化技术发展趋势[J].农业开发与装备.2011(01):29~30.
    [15]王吉祥.水稻塑料软盘稀植旱育秧技术[J].科学种养.2009.(2):12~13.
    [16]汪春.水稻植质钵育乳苗机械栽植技术的研究[J].黑龙江八一农垦大学学报,2003,15(3):40~43.
    [17]陈恒高,汪春,张吉军,董晓威.水稻植质钵育栽植技术的探讨[J].黑龙江八一农垦大学学报2004,16(3):38~41.
    [18]陈恒高.水稻植质钵育秧盘的研制[J].现代化农业,2005,314(9):31-32.
    [19]陈恒高,董晓威,张吉军.水稻植质钵育秧盘的研制[J].现代化农业,2005,(9):31~32.
    [20]张冬梅,汪春.水稻钵育机械化栽培技术研究现状及发展趋势[J].春理工大学学报,2009,4(7):175~176.
    [21]张欣悦.水稻植质钵育秧盘制备技术研究[D].大庆.黑龙江八一农垦大学,2010.
    [22]陈恒高.水稻钵育机械化栽培技术研究[M].哈尔滨:东北林业大学出版社,2005.
    [23]郝良纯。水稻植质钵育栽植技术为低碳农业助力。北大荒日报。2010/4/30第002版
    [24] Arun S.Mujumdar.Guide to industrial drying principles equipment and newdevelopments[M].Bei jing:China light industry press.2007:139~160
    [25]连政国,姜学东,王延耀.介绍国外两种典型的过热蒸汽干燥工艺[J].山东农机,2000(4):19~20.
    [26] MujumdarA S.Hand book of Industrial Drying.NewYork: Mareel Dekker[M].1995:1063~1065.
    [27]邹艳洁,徐立新.过热蒸汽干燥技术[J].国际造纸,2005,24(3):
    [28]蒋佳荔,吕建雄.木材干燥应力的研究方法与进展[J].木材工业,2005,19(2):6~16.
    [29]程万里.木材高温高压工艺学原理[M].科学出版社,2007:3.
    [30]白丽青,马晓建.蒸汽干燥及其在食品干燥中的应用[J].农机化研究,2008,9(9):158.
    [31] Mujumdar A S. Drying technologies in the future.[M]Drying of Solid.1992.
    [32] Mujumdar A S. Superheated steam drying. Handbook of Industrial Drying.1995∶1071~1087
    [33]潘永康等.现代干燥技术(第一版)[M].北京:科学出版社,1998:638~651.
    [34] Meinardo A.1992.Matehematical modeling of fluidized bed drying with superheatedsteam.In:Drying’92.
    [35] Salin.J.G.1985.Steam drying of wood particles for paticle board.In:Drying’85.
    [36]曹崇文.过热蒸汽干燥的现状和发展综述[J].中国农机化,1997,(12):30~39
    [37]连政国,曹崇文.过热蒸汽发展现状[J].农业机械学报,1996,27(4):136~141.
    [38] S. Barbieri ElustondoM, Urbicain M.. Retention of aroma compounds in basil driedwith low pressure superheated steam[J]. Journal of food engineering,2004,65(1):1091~1092.
    [39] Chatchai Nimmo, Sakamon DevahastinDrying and heat transfer behaviorf bananaundergoing combined low-pressure superheated steam and far-infrared radiation drying[J],2005,11(2):83.
    [40]曹崇文.农产品干燥工艺过程的计算机模拟[M].中国农业出版社,2001,98~99.
    [41]于才渊,王宝和,王喜忠.干燥装置设计手册[M].北京:化学工业出版社,2005.
    [42]陈锦祥,陈时若,陈建勇,茧干燥机的现状及展望[J].浙江丝绸工学院学报,1996(5):44~47)
    [43] Nomura T,Hyodo T.Behavior of inversion point temperature and new applications ofsuperheated vapor drying[J],1985:517~522.
    [44] Potter O E,Beeby C.Scale-up of steam drying [J].Drying Technology,1994,12:179~215.
    [45] Mujumdar,A.S.,1992,Superheated Steam Drying Principles[J].Preal,actice andPotential for Use of Electricity Canadian Electrical Association Report,Montreal,Quebec,Canada.
    [46] Mujumdar, A.S.. Superheated Steam Drying. Handbook of IndustrialDrying.1995:1801~1091.
    [47]连政国.过热蒸汽干燥理论和试验研究:[博士学位论文].北京:中国农业大学,1998.
    [48] Kutra,T.,,Recent Development in Drying[J],Annual Conerence of the Indian Instituteof Chemical Engineering,2001,15:193.
    [49]史勇春,李捷,李选友等.过热蒸汽干燥技术的研究进展[J].干燥技术与设备,2012,10(1):3~9.
    [50] Wongsakpairod, T.,2000, Bamboo Shoot Drying Using Superheated Steam[J]. M. Eng.Thesis, School of Enery and Material, King Mongkut’s University of Technology Thonburi,Bangkok, Thailand.
    [51]连政国,曹崇文.过热蒸汽干燥的发展现状[J].农业机械学报,1996(4):136~141.
    [52] Mujumdar, A.S..工业化干燥原理与设备[M].三河:中国轻工业出版社,2007.
    [53] Lujan—Acosta J, Moreira R G, Seyed-J Air-impingement drying of tortillachips[J].Drying Technology,1997,15(1):881.
    [54]连政国,曹崇文.蒸汽干燥系统及其开发方向[J].中国农业大学学报,1996,1(4):35.
    [55] Wimmerstedt R. Steam drying-history and future. Drying technology,1995,13(5~7):1059~1077.
    [56]中国石化集团上海工程有限公司组织编写.干燥器[M].北京:化学工业出版社,2008.
    [57]上海科学技术情报研究所编.干燥技术进展:综述.第一分册[M].上海:上海科技教育出版社,2004.
    [58]金先德.过热蒸汽供茧对茧丝品质的影响[J].浙江丝绸工学院学报,1993,(4):l9~25.
    [59] Devahastin S, Suvarnakuta P, SoponronnaritS, eta.l. A com-parative study oflow-pressure superheated steam and vacu-um drying of a heat-sensitivematerial[J].Dryingtechnology,2004,22(8):1845.
    [60] ChatchaiNimmo, Sakamon Devahastin, Thanit Swasdisev, eta.l. Drying and heattransferbehaviorofbanana undergoingcombined low-pressure superheated steam andfar-infraredradiation drying[J]. Applied Thermal Engineering,2007,27(14-15):2483~2494.
    [61] Mujumdar. A S. Superheated Steam Drying of Paper:Principles, Status andPotential[M]. Science Publisher, New York.1992.
    [62] David,M. Exploratory Study of Effect of Superheated Steam Drying on Properties ofPaper, M.Eng.Thesis[D], Chemical Engineering Department, McGill University, Montreal,Canada,1987.
    [63]艾木野,崔兆玉.木材实用干燥技术[M].哈尔滨:东北林业大学出版社,2003.
    [64] Jensen,A.S.,1992,Pressurized Drying in a Fluid Bed with Steam[M].1593~1601.
    [65] Caixeta,A.T., Moreira., Castell-Perez,M.E.. Impingement drying of potatochips[J],Journal of Food Process Engineering,2002(11):63.
    [66] Jensen,A.S.,Pressurized Drying in a Fluid Bed with Steam[M] Moreira,2001.
    [67] Moreira,R.G.. Impingement drying of foods using hot air and superheatedsteam[J].Food Engineering,2005(49):291.
    [68] MujumdarA S.Hand book of Industrial Drying.NewYork: Mareel Dekker[M].1995:1063~1065.
    [69] Mujumdar A S. Drying technologies of the future[J].Drying Technology,1999,9(2):325~347.
    [70] Martley J F.Moisture movement through wood,The steady state.For Proc ResTech,Paper2,Lendon,1926.
    [71] Stillwall S T C.The movement of moisture with reference to timber seasoning.ForProd Res.Technology,London,1926,Paper No.2.
    [72] Beeby C, Potter O E. Steam drying. Drying '85,1985:41~58.
    [73] Chu J C, Lane A M. Evaporation of liquids into their superheated vapors. Industrial andengineer-ing chemistry,1953,45(7):1586~1591.
    [74] Pang S.High·temperature drying of radiata pinus boards in a batch kiln.Ph.D.thesis,1994.
    [75] Pang S et a1.Moisture content gradient in softwood during drying:Simulation from a2-D model and measurement.Wood Science&Technology,1996,30(3):165~178.
    [76] Pang S S.Keey R B,Langrish T A G,Walker J C F.Airflow reversals in high—temperature kiln drying of Pinus radiata boards,1:Drying of a single board.New.Zealand—Journal—of-Forestry-Science.1994,24(1):83~103.
    [77] Shibata H, Mada J, Shinoara H. Drying mechanism of sinter of glass beads insuperheated steam.Industrial and engineering chemistry,1988,27(12):2352~2362.
    [78] A. K. Haghi. A Mathematical Model of the Drying Process [J]. Acta Polytechnica.2001,41(3):20~23.
    [79] Dincer I.,Dost S.Determination of moisture diffusions and moisture transfercoefficients for wooden slabs SBbject to drying.Wood Science and Technology,1996,30(4):245~251.
    [80] Bramhall G.Sorption diffusion in wood.Wood Science Technology,1994,28(1):86·88.
    [81] Bramhall G.Diffusion and the drying of wood.Wood Science Technology,l995.29(3):209~215.
    [82] Patrick P,,and I,wl Turner,A3-D version of TransPore:a comprehensive heat andmass computational model for simulating the drying of porous media[J],Int.J.Heat MassTransfer.1999,42(24):401~452.
    [83]Hunter A J. On the activation energy of diffusion of water in wood. WoodScience&Technology,1992,26(2):73-82.
    [84] Hunter A J.The evaporation of water from wood at high temperature.WoodScience&Technology,1997,31(6):73~76.
    [85]王维斌,傅宪辉,李选友,等.过热蒸汽干燥传热传质特性的理论分析与试验[J].农机化研究,2010(10):33~36.
    [86]腾通廉等.短周期工业材干燥过程中木材内部水分迁移特点的研究.木材工业,1998,12(4):3~7.
    [87]李业波,秦玉昌,李业德.土豆干燥过程中内部传热传质的数值模拟[J].农业工程学报.1996(03):52~55.
    [88]李阳春,陈光明,王剑锋,等.含湿多孔生物材料干燥过程的传热传质分析[J].农业机械学报.2003,34(4):82~85.
    [89]杜雪亭,汪春,车刚等.植质钵育秧盘蒸汽烘干工艺参数的优化研究[J].农机化研究.2011(10):107~110
    [90]于海明,汪春,张伟等.水稻秧盘干燥装置中干燥介质供给系统的研究[J].农机化研究.2011(12):20~23.
    [91]金国淼.干燥设备[M].北京:化学工业出版社,2002.
    [92]刘广文.干燥设备选型及采购指南[M].北京:中国石化出版社,2004.
    [93]岑海堂,樊万本.干燥工艺及设备的现状与发展.农机与食品机械,1999(1):4~5.
    [94] Mujumdar A S.Drying technologies of the future[J].Drying Technology,1999,9(2):325~347.
    [95]曹崇文,连政国.过热蒸汽干燥的机理与特性[J].南京林业大学学报,1997,21(增刊):35~38.
    [96]陈宇.常压过热水蒸气在食品加工中的应用[J].食品与机械,2001(6):6~9.
    [97]连政国,曹崇文.过热蒸汽干燥特性的试验研究[J].农业机械学报,2000,31(1):66~68.
    [98]孙妍,薛长湖,齐祥明等.干燥前预处理对海参干燥过程及产品品质的影响[J].中国海洋大学学报,2006,36.(增刊Ⅱ):57~61.
    [99]肖志锋等.过热蒸汽流化床干燥装置[J].干燥技术与设备,2005(3):126~128.
    [100]潘永康.现代干燥技术[M].北京:化学工业出版社,2007:73~786.
    [101]刘广文.干燥设备设计手册[M].北京:机械工业出版社,2009.
    [102] Mujumdar A S. Techno-economic assessment of potential super-heated steam dryingapplication in Canada. Reports1994.
    [103] Tarnawski W Z, Mitera J, Borowski P, Klepaczda. Energy analysis on use of air andsuperheated steam as drying media Drying Tech-nology Vol.14No.7~8p1733~17501996.
    [104] Mujumdar A S. Drying technologies in the Future, Drying of Solid,1992.
    [105] Svensson C, Potter O E. Industrial applications for new steam dry-ing processinForest and Agricultural Industry, Hemisphere Publish-ing Corporation New York Drying1985p415~4191985.
    [106] Beefy C, Potter O E. Steam Drying Hemisphere Publishing Corpo-ration, New Yorkp41~58Krying851985.
    [107]连政国,李栋,蒋金琳等.玉米过热蒸汽干燥规律的试验研究[J].粮油加工与食品机械.2000(01):23~26.
    [108] Mujumdar A S. Tech no-economic assessment of potential superheated steam dryingapplication in Can ada. Report s1994.
    [109] Tarnaw ski W Z, Mitera J, Borow ski P, Klepaczda. Energy analysis on us e of air andsuperheated steam as drying media Drying Technology Vol.14No.7~8p1733~17501996.
    [110] Mujumdar A S. Drying technologies in the Future, Drying of Solid,1992.
    [111] Svensson C, Potter O E. Industrial applicat ions for new steam drying processinForest an d Agricultural In dustry, Hemisphere Publishing Corporation New York Drying1985p415~419,1985.
    [112] Mujumdar A S. Sup erheated steam drying, Handbook of Industrial Drying,hemisphere Publishing Corporation, New York p1071~1085,1995.
    [113] Beefy C, Potter OE. Steam Drying Hemisphere Publishing Corporation, New Yorkp41~58Krying851985.
    [114]连政国,蒋金琳,姜学东.过热蒸汽与热风干燥对比的试验研究[J].粮油加工与食品机械.2000(02):14~24.
    [115] Wenal L,White R. Drying Granular Solids in Superheated steam.Industrial andEngineering Chemistry,1951, Vol43No8:1829~1837
    [116] Chu J C, Lane A M, Conklin D. Evaporation of Liquids in t o their superheatedVapors. Industrial and Engineering Chemistry,1953.Vol.45No7:1586~1591.
    [117] Yoshida T, Hyodo T. Evaporat ion of Water in Air, Humid Air, and SuperheatedSteam. Industry and Engineering Chemistry Process Design Development,1963, Vol2No1:52~56.
    [118] Fabe E F, Heyenrych M D, Seppa R U I. A Techno-Economic Comparison of Air an dSteam Drying. Drying’85588~594Hemisphere Publishing Corporation. New York,1985.
    [119]匙宝成,芋头片微波干燥失水特性试验研究[J].农机化研究,2009(6):121~125.
    [120] Namtip Leeratanarak, Sakamon Debahastin, Naphaporn Chiew chan. Drying kineticsand quality of potato chips undergoing different drying techniques[J]. Journal of FoodEngineering,2006,77(3):635~643.
    [121] Phet Pimpaporn, Sakamon Devahastin, Naphaporn Chiewchan. Effects of combinedpretreatments on drying kinetics and quality of potato chips undergoing low-pressurebrewers'spent grain[J].Bio-systems Engineering,2004,87(1):67~77.
    [122] Martinello MA,Crapiste G. Superheated steam drying of parsley:A fixed bed modelfor predicting drying performance [J].LATIN AMERICN APPLIEDRESEARCH,2003,33(3):333~337.
    [123] Pronyk C,Cenkowski S,Muir WE. Drying food stuffs with superheatedsteam[J].DRYING TECHNOLOGY,2004,22(5):899~916.
    [124] Zanoelo EF,Cardozo-Filho I,Cardozo EL, Superheated steam-drying of mate andeffect of drying conditions[J].Journal of food process Engineerin,2006,29(3):253~268.
    [125] Taechapairoj C,Prachayawarakorn S,Soponronnarit S.Characteristics of rice dried insuperheated-steam fluidized-ed[J].DRYINGTECHNOLOGY,2004,22(4):719~743.
    [126] Chaiyong Taechapairoj. Superheated steam fluidised bed paddy drying[J].Journal offood Engineering,2003,5(1):67~73.
    [127] Prachyawarakorn S, Prachayawasin P,Soponronnari S. Effective diffusivity andkinetics of urease inactivation and color change during processing of soybeans withsuperheated-steam fluidizedbed[J].DRYING TECHNOLOGY,2004,22(9):2095~2118.
    [128] Somchart soponronnaril. Heating process of soybean using hot-air and superheatedsteam fluidized beddryers[J].LWT-Food Science andTechnology,2006,39(7):770~778.
    [129] CaixelaA T,Moreira R,Castell-Perez M E. Impingemen drying of potatochips[J].Journal of Food Proess Engineering,2002(25):63~90.
    [130] Iyotal H,Nishimura N,Onuma T,et al.Nomura, Drying of sliced raw potatoes insuperheated steam and hotair [J].Drying Technology,2001,19:1411~1424.
    [131] Tang Z, Cenkowski S. Comparison of the dehydrtion dynamics of potatoes insuperheatedsteam and hot air [J].Canadian Agricultural Engineering,2004,42(1):43~49.
    [132] Devahastin S,et al. A comparative study of low-pressure superheated steam andvacuumdrying of a heat-sensitive material[J]. Drying technology,2004,22(8):1845~1867.
    [133] Namsanguan Y,TiaW,Devahastin S,et al. Drying kinetics and quality of shrimpundergoing different two-stage drying process[J].DRYINGTECHNOLOGY,2004,22(4):759~778.
    [134] Siporn Methakhup. Effects of drying methods and conditions on drying kinetic sandquality of Indian gooselberry flake[J].LWT-FOODSCITECHNOL,2005,38(6):579~587.
    [135] Sawitree Panyawong Sakahastin. Determination of deformation of a food productundergoing different drying methods and conditions via evolution of a shape factor[J].Journal ofFood Engineering,2007,78(1):151~161.
    [136] Adisak Nathakaranakule. Comparative study of different combined superheated-steamdryingtechniques for chicken meat [J].Journal of Food Engineering,2007,80(4):1023~1030.
    [137] Suvarnakuta P. Drying kinetics and beta-carotene degradation in carrot undergoingdifferent drying process[J].Journal of food science,2005,70(8)S520~S526.
    [138] Leeratanarak,N,Devahastin, S,&Chiewchan,N.Drying kinetics and quality of potatochips undergoing different drying techniques. Journal of Food Engineering,77,635~643.
    [139] Barbieri S,et al.Retention of aroma compounds in basil dried with low pressuresuperheatedsteam[J].Journal of food engineering,2004,65(1):109~115.
    [140] Chen S R,Chen J Y,Mujurndar A S. Preliminary study of steam drying of silkwormcocooons[J].DryingTechnology,1992,10:251~260.
    [141]刘厚森,魏俊智.小麦茎的组织结构与力学性能[C].中国力学学会第二次细观力学试验技术与计算方法研讨会论文集.西安,1991,235~243.
    [142]王惠民.复合材料横向压缩性能的研究[J].复合材料学报,1994,11(l):85~93.
    [143]孙骊,赵豪杰,李锁牢.麦秸压缩剪切特性的研究[J].西北农业大学学报,1998,26(4):106~109.
    [144]李媛.新型秸秆揉切机的研究[D].中国农业大学硕士学位论文,1999.
    [145]马素玲.玉米秸秆揉切特性及其虚拟仪器测试系统的研究[D].中国农业大学硕士学位论文,2000.
    [146]高梦祥,郭康权,杨忠平等.玉米秸秆的力学特性测试研究[J].农业机械学报,2003,34(4):47~52.
    [147]刘庆庭,区颖刚,袁纳新等.甘蔗茎在弯曲载荷下的破坏[J].农业工程学报,2004,2(3):6~9.
    [148]崔英.实芯植物秸秆的力学模型及受压缩状态应力分析研究[D].中国农业大学硕士学位论文,2005.
    [149]孔占峰,蒋恩臣.稻草秸秆力学特性研究[J].东北农业大学学报,2007,38(5):660~664.
    [150]王毅红,卜永红等.生土坯及生土坯砌体受力性能的试验研究[C].砌体结构与墙体材料基本理论和工程应用-2005年全国砌体结构基本理论与工程应用学术会议论文集,同济大学出版社.2005.
    [151]川庄一舟,黄承速.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2):22~25.
    [152]湛华.KPI型烧结页岩粉煤灰多孔砖墙体抗震抗剪性能试验研究[D].湖南大学硕士学位论文,2001.
    [153]梅国晖,任立义,任朝晖,刘锷.空气和过热蒸汽干燥特性的对比[J].东北大学学报.2001(03):275~278.
    [154] Beeby C, Potter E. Steam drying[A].In:Mujumdar A ed.Drying p85
    [C].Washington:Hemisphere Publishing Corporation,1985.41~54.
    [155] Maa J R. Evaporation coefficient of liquids[J].Ind Eng Chem Fundam,1967,6:504~518.
    [156] Chow L C, Chung J N. Evaporation of water into a laminar stream of air andsuperheated steam [J].Int J Heat Mass Transfer,1983,26:373~380.
    [157]李云雁,胡传荣.试验设计与数据处理[M].化学工业出版社,2008.
    [158]唐启义,冯明光著.使用统计分析及其DPS数据处理系统.北京:科学出版社.2002,146~170.
    [159]王万中.试验的设计与分析[M].北京高等教育出版社2004,120~160.
    [160]曹卫华,郭正编著.最优化技术方法及MATLAB的实现[M].北京:化学工业出版社,2004.
    [161] Balaban M. Effect of volume change in foods on the temperature and moisturecontent predications of simultaneous heat and mass transfer models.Journal of Food ProcessEngineering.1989.12:67~88.
    [162] Mulet A, Berna A and Rossello C. Drying of carrots. I. Drying models. DryingTechnology,1989,7(3):537~557.
    [163]李业波,刘登嬴.土豆在脱水过程中的内部传热传质研究[J].农业机械学报,1996,27(1):52~55
    [164]孙照斌.龙竹竹材的热压干燥及传热传质特性[D].南京:南京林业大学,2005.
    [165]贺志强,周永东,彭立民等.生产常用单板干燥机的热能利用分析[J].木材工业,2012,26(01):35~38.
    [166]张璧光.热压式单板干燥机组热效率测试.林产工业,2001,28(2)32:38~39
    [167]俞昌铭.木材加工计算传热传质学[M].北京:清华大学出版社,2003.
    [168]严家禄,王永青.工程热力学[M].北京:中国电力出版社,2004.
    [169]苏金明,阮沈勇. MATLAB6.1实用指南[M].北京:电子工业出版社,2002.
    [170]张智星. MATLAB程序设计与应用[M].北京:清华大学出版社,2002.
    [171]于红卫,愧敏,文桂峰.提高木材尺寸稳定性的方法[J].林业科技,2002,27(5):43-45.
    [172]杨家驹,杨帆.木材的胀缩[J].中国木材,2001(5):20~23.
    [173]丁涛,顾炼百,江宁.高温热处理实木地板的尺寸稳定性[J].木材工业,2008,22(6):37~39.
    [174]牛笑一.木材炭化的特点及应用[J].家具与室内装饰.2010(12):96~97.
    [175]涂登云,王明俊,顾炼百,等.超高温热处理对水曲柳板材尺寸稳定性的影响[J].南京林业大学学报,2010,34(3);13~116.
    [176]李贤军,傅峰,蔡智勇,等.热处理对木材吸湿性和尺寸稳定性的影响[J].中南林业科技大学学报,2010,30(6):92~96.
    [177]邓邵平,杨文斌,饶久平,等.热处理对人工林杉木尺寸稳定性的影响[J].中国农学通报,2009,258(7):103~108.
    [178]杨小军.木地板尺寸稳定化热处理的研究[J].西部林业科学,2004,33(2):81~83.
    [179]史蔷,鲍甫成,吕建雄等.热处理对圆盘豆木材尺寸稳定性的影响[J].中南林业科技大学学报.2011,31(07):24~28.
    [180]陆文达主编.木材改性工艺学[M].东北林业大学出版社.1993:4~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700