用户名: 密码: 验证码:
空间可展天线精度测量、热分析、可靠性分析及间隙影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可展结构作为一种新型结构形式,近些年来在许多领域都得到了广泛的应用,根据其用途不同可分为空间可展结构和地面可展结构。随着空间科技的发展,各相关学科对空间可展天线提出了更高的要求,主要体现在大口径、高精度两方面,为此各国研究机构研究并设计了多种形式的空间可展天线。本文对空间可展天线的精度测量、热分析、结构分析、可靠性分析、间隙影响及展开过程分析进行了深入系统的研究。
     论文首先在查阅大量国内外文献的基础上,介绍了空间可展天线的应用情况,分别从反射面精度测量、可展天线热-结构分析、可展天线可靠性分析、间隙对结构的影响分析和可展结构展开分析五个方面介绍了空间可展天线结构的研究现状,进而阐述了课题的研究意义。
     对摄影测量中影响系统测量精度的因素进行了分析,并对提高系统测量精度的方法进行了深入分析。利用最小二乘法原理推导了最佳吻合抛物面拟合公式,利用牛顿法推导了反射面形面精度RMS的数值计算方法,并通过程序实现。针对于尺寸较大反射面的精度测量,提出了分片测量拼装组合方法,并对此方法的测量过程及测量中的一些数值计算方法进行了研究。基于PhotoModeler软件构建了摄像测量系统,对3.2m口径的充气可展天线进行了精度测量试验,分别采用整体一次测量和分片测量拼装组合方法进行测量,两种方法所得结果十分接近,表明分片测量拼装组合的数值计算方法在天线反射面形面精度测量中具有足够的精度,可用于大口径天线反射面的精度测量。之后采用分片测量拼装组合的方法对一个6.2m口径的充气可展天线进行了精度测量试验。
     讨论了空间可展开天线的热传递方式和热平衡关系,讨论了三种空间外热流的计算,即太阳辐射外热流,地球反照外热流和地球红外辐射外热流,并从几何上推导了一种太阳同步轨道条件下三种外热流及阴影的数值计算方法。基于有限元理论,建立了一维两节点杆单元和二维三节点三角形单元的瞬态导热一辐射微分方程,通过引入边界条件得到了相应的泛函公式,进而建立了空间可展天线温度场计算迭代方程。利用上述理论编制了基于FORTRAN语言的有限元程序。针对一个算例计算了一种太阳同步轨道条件下在春分、夏至、秋分、冬至四个时刻在一个周期内结构的温度场随时间的动态变化关系。通过分析得出了此轨道条件下对天线不利的时刻,可用于指导热控制设计。
     对多场耦合问题的数学模型和耦合关系进行了深入分析。针对空间可展桁架天线结构的特点,利用非线性有限元理论,建立了结构热变形计算方程。将可展桁架天线热分析与结构分析进行了耦合,并编制了基于FORTRAN语言的程序。实现了热分析与结构分析的直接转化和耦合。利用上述理论对一个算例进行了分析,用反射面形面误差RMS作为衡量热变形的指标。针对一种太阳同步轨道条件,计算了春分、夏至、秋分、冬至四个特定时刻在一个周期内结构的温度场随时间和反射面形面误差RMS随时间的动态变化关系,通过分析得出对天线不利的时刻。利用ANSYS对结构进行了热致动力响应分析,比较了上述四个特定时刻在一个周期内节点加速度随时间的变化,通过分析验证了前面对天线不利的时刻的判断。
     构建了单元的失效概率函数;将天线系统看作是各个单元组成的串联系统,推导了串联系统中,单元的可靠度与整体系统的可靠度的关系。利用故障树理论构建了天线的失效模型,分析了底事件失效概率和重要度的计算方法,在此基础上利用概率理论建立了天线系统失效概率方程。利用动力学理论建立桁架式可展开天线展开分析方程,对不同位置处扭簧失效时天线的展开过程进行分析,进而得出失效时使天线无法完全展开或使其展开形面精度很差的扭簧位置和失效后对天线展开及其展开形面精度基本没有影响的扭簧位置,并将其引入到天线可靠性分析模型中。分别运用常规的故障树理论和基于模糊原理的故障树理论对天线的可靠度进行了分析。
     从几何上对桁架式可展天线节点间隙进行了推导,结合概率理论得到节点间隙引起杆长变化的概率分布函数。利用将杆件变形等效为单元内力的方法推导了确定天线形状的方法。构建了Monte Carlo随机分析模型。最后通过一个算例分析了节点间隙对天线形面精度的影响,得出结论,对于一般的天线来说,间隙所引起的形面变化对反射面精度的影响较小,设计时可以忽略;但对于高精度的天线来说,在结构设计时仍然需要考虑间隙的影响,并尽量减小其影响。
     从几何方面分析了二维折纸模型的折叠准则。从刚体运动学出发,用刚体来描述板壳结构,利用广义逆矩阵原理,推导了可展板壳结构运动分析方程。对基于二维折纸模型的二维可展板壳结构进行了分析,发现此类结构在折叠、展开过程中各块板之间需要发生一定的弹塑性变形,进行了相应的约束处理,并通过一个例子模拟了此类结构的展开过程。
As a new kind of structure, deployable structures are more and more widely used in many fields recent years. They can be divided into space deployable structures and ground deployable structures by differentiations. Following the development of the aerospace technology, higher performance requirements are brought forward to deployable antennas on satellites from each relative field, which mainly focus on larger caliber and less surface error. And because of it, many kinds of space deployable antennas are studied and designed by research institutes from many countries. Measurement of surface precision, thermal analysis, structural analysis, reliability analysis, influence of clearance and deployment process for space deployable antennas have been studied systematically in this dissertation.
     Firstly, after referring a lot of pertinent literature worldwidely, applications of space deployable antennas are introduced and the research actuality on measurement of surface precision, thermal analysis, structural analysis, reliability analysis, influence analysis of clearance and deployment process analysis for space deployable antennas are summarized, then the research significance is presented.
     Factors which affect measuring accuracy of the system in photogrammetry are analyzed, and methods that can improve measuring accuracy of the system are analyzed systematically. Fitting formulas for the best fitting paraboloid are deduced, and numerical computation method on surface error of the reflector'RMS'is deduced based on Newton method, and the program is made. According to surface precision measurement of the reflector with large caliber, the method by which each part of the reflector is measured independently then combined together is proposed, measuring process of the method and some numerical computation methods in the measuring process are studied. A non-contact photogrammetric measure system is built on the base of Photomodeler software packages, and a surface precision experiment on a membrane inflatable antenna with 3.2m caliber is made. The method by which the whole reflector is measured once and the method by which each part of the reflector is measured independently then combined together are both used. And the two results obtained through the two methods are very close, and it is concluded that the method by which each part of the reflector is measured independently then combined together is precise enough for surface precision measurement of the antenna, and it can be used in surface precision measurement of antennas with large caliber. Then using the method by which each part of the reflector is measured independently then combined together, another surface precision experiment on a membrane inflatable antenna with 6.2m cal iber is made.
     Heat transfer, heat balance, computation of three kinds of space external thermal flow, external thermal flow of sun, external thermal flow of earth shine and external thermal flow of earth infrared radiation are discussed. And a numerical computation method on the three kinds of external thermal flow and shadow for an antenna in a sun-synchronous orbit is deduced based on geometric theory. Based on finite element theory, the transient conduction-radiation differential equation is established using one-dimensional bar element with two nodes and two-dimensional triangular element with three nodes. Corresponding functional formulas are obtained through introducing boundary conditions. Then iterative equations for temperature field computation of deployable antennas are established. Using FORTRAN, a finite element program based on the theory above is built. According to an example, temperature fields changing with time for an antenna in a sun-synchronous orbit in a cycle are calculated respectively at vernal equinox, summer solstice, autumn equinox and winter solstice. Time that is unfavorable for the antenna in the orbit is concluded through analysis, and it can be used for thermal controlling design.
     Mathematical models for coupling of many fields and coupling relationships are analyzed in detailed. According to characteristics of space deployable truss antennas, using non-liner finite element theory, formulations to analyze thermal deformation are established. Then the thermal analysis and structural analysis for deployable truss antennas are coupled, and a program is made based on FORTRAN. Direct conversion and coupling from thermal analysis to structural analysis for deployable truss antenna is real ized. An example is analyzed by the theory above, the reflector surface error RMS is used as the index to reflect the deformation. Temperature fields and reflector surface errors RMS changing with time for an antenna in a sun-synchronous orbit in a cycle are calculated respectively at vernal equinox, summer solstice, autumn equinox and winter solstice. Time that is unfavorable for the antenna in the orbit is concluded through analysis. Dynamic responses by temperature fields are analyzed. Accelerations of a joint changing with time in a cycle at four special times above are compared and the time obtained before that is unfavorable for the antenna in the orbit is verified.
     The failure probability function of an element is established. The antenna is a serial system made up of each element. The relationship between reliability degree of an element and that of the whole system in a serial system is deduced. Failure model of the truss deployable antenna is established using faulty tree theory, computational methods for failure probability and importance degree of basic events are analyzed and based on it failure probability formulations for the antenna are established using probability theory; deployment analysis formulations for deployable truss antenna are established using dynamic theory and deployment process of the antenna is analyzed when there are torsional spring failures at different positions, then those positions where the antenna could not deploy fully or the surface error is very high when torsional springs fail are obtained, and those positions where the antenna could deploy smoothly and the surface error is low when torsional springs fail are also obtained. These results and reliability analysis are combined. The reliability analysis on the antenna is made using conventional faulty tree theory and faulty tree theory based on fuzzy theory relatively.
     The clearance at the joint of the truss deployable antenna is calculated based on geometric theory. And combing probability theory, the probability distribution function of elongation of the rod caused by clearance is obtained. A model for random analysis is established based on Monte Carlo theory. The effect of clearance at the joint on reflector surface precision is analyzed through an example. And it is concluded that the effect of clearance on reflector surface precision is weak for a common antenna, it can be neglected. But the effect should be considered during design for antennas with high precision, and the effect should be reduced.
     Folding code of 2D paper-folding models is analyzed based on geometric theory. Based on rigid body kinematics, equations for motion analysis of deployable panel and shell structures are deduced using Moore-Penrose generalized inverse matrix theory. Two-dimensional deployable panel and shell structures based on a two-dimensional paper-folding models are analyzed. It is shown that there are elastic-plastic deformations between panels in these kinds of structures during folding and deployment process, and the deformations are simulated by corresponding constraint handling. The deployment process is simulated through an example.
引文
[1]Hedgepeth J M, R Adams L. Design concepts for large reflector antenna structures [R]. NASA Contractor report, NASA-CR-3663,1983.
    [2]Hedgepeth J M. Pactruss support structure for precision segmented reflectors [R]. NASA Contractor report, NASA-CR-181747,1989.
    [3]Escrig F. Expandable space structures [J]. International Journal of Space Structures,1985,1(1):79-91.
    [4]Escrig F, Valcarcel J P. Geometry of expandable space structures [J]. International Journal of Space Structures,1993,8(1/2):71-84.
    [5]Calladine C R, PellegrinoS. First-order infinitesimal mechanisms [J]. International Journal of Solids and Structures,1991,27(4):505-515.
    [6]Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix [J]. International Journal of Sol ids and Structures,1993,30(21):3025-3035.
    [7]Pellegrino S, You Z. Foldable bar structures [J]. International Journal of Solids and Structures,1997,34(15):1825-1847.
    [8]Gantes C, Conner J J, Logcher R D. A systematic design methodology for deployable structures [J]. International Journal of Space Structures,1994, 9(2):67-86.
    [9]Tibert G. Deployable Tensegrity structures for space applications. Ph. D Dissertation, Royal Institute of Technology Department of Mechanics, Sweden. 2002.
    [10]Freeland R E. Survey of deployment antenna concepts:large space antenna systems technology, NASA-2269, Part Ⅰ,1983.
    [11]Chew M, Kumar P. Conceptual design of deployable space structures from the viewpoint of symmetry [M], Int. J. Space Structures,1993.
    [12]侯国勇.桁架式展开结构设计、分析及试验:[浙江大学博士学位论文].杭州: 浙江大学,2008.
    [13]Bush H G, Herstrom C L, Stein P A, Johnson R R. Synchronously deployable tetrahedral truss reflector [R]. Langley Research Center,1985,85N23827.
    [14]Shintate Kyoji, Terada Koji, Usui Motofumi, Tsujihata Akio, Miyasaka Akihiro. Large deployable antenna [J]. Journal of the National Institute of Information and Communications Technology,2003,50 (3/4):33-39.
    [15]Thomson M W. Astromesh deployable reflectors for ku-and ka-band commercial satellites [J]. AIAA-2002-2032.
    [16]赵孟良.空间可展结构展开过程动力学理论分析、仿真及试验:[浙江大学博士学位论文].杭州:浙江大学,2007.
    [17]Satoshi Harada, Akira Meguro, Masazumi Ueba. Tendon-reinforced ultralight large antenna reflector [J]. NTT Technical Review,2007,5(1): 70-77.
    [18]http://www.ilcdover.com
    [19]汪有伟.薄膜平面阵天线的结构设计与分析:[浙江大学博士学位论文].杭州:浙江大学,2009.
    [20]Lin J K H, Cadogan D P. An inflatable microstrip reflect array concept for ka-band applications [A].41th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA-2000-1831, April,2000. Atlanta, Georgia:1-13.
    [21]Freeland R E, Bilyeu G. IN-STEP Inflatable Antenna Experiment [J]. Presented at the 43rd Congress of the International Astronautical Federation, IAF-92-0301,1992, Washington, D. C.:1-12
    [22]Willey C E, Schulze R C .A hybrid inflatable dish antenna system for spacecraft [A],42th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA-2001-1258, April 2001. Seattle, WA:1-9.
    [23]Pappa R S, Giersch L R, Quagliaroli Jessica M. Photogrammetry of a 5m inflatable space antenna with consumer digital cameras [J]. NASA TM-2000-210627, December 2000:1-11.
    [24]Danthy P M. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques [A]. AIAA-2003-648.2003:1-16.
    [25]Giersch L R M. Pathfinder Photogrammetry Research for Ultra-Lightweight and Inflatable Space Structures [R]. NASA/CR-2001-211244.2001:25-76
    [26]Pappa R S, Jones T W, Black J T, et al. Photogrammetry Methodology Development for Gossamer Spacecraft Structures [J]. S V Sound and Vibration.2002,36(8):12-21
    [27]Dharamsi U K. Comparing Photogrammetry with a Conventional Displacement Measurement Technique on a 0.5m Square Kapton Membrane [A]. AIAA 2002-1258. 2002,1(0273-4508):463-472
    [28]Pai P F, Hu J Z. Camera-based Digital Real-time Static and Dynamic Testing of Deployable/Inflatable Structures [J]. Proc SPIE Int Soc Opt Eng. 2005,5758(0227-786X):209-218.
    [29]Fang H F. Eastwood Im. Mechanical Technology Development on a 35-m Deployable Radar Antennna for Monitoring Hurricanes.
    [30]王森虎.基于近景摄影测量的三维模型可视化系统研制:[西安科技大学硕士学位论文].西安:西安科技大学,2003.
    [31]汪磊.数字近景摄影测量技术的理论研究与实践:[中国人民解放军信息工程大学硕士学位论文].郑州:中国人民解放军信息工程大学,2002.
    [32]杨国强.数字近景摄影测量系统研究:[西安科技大学硕士学位论文].西安:西安科技大学,2005.
    [33]黄桂平.数字近景工业摄影测量关键技术研究与应用:[天津大学博士学位论文].天津:天津大学,2005.
    [34]付丽.充气展开天线形面精度分析:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [35]徐彦.充气可展开天线精度及展开过程分析研究:[浙江大学博士学位论文].杭州:浙江大学,2009.
    [36]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1985.
    [37]闵桂荣.卫星热控制技术[M].北京:宇航出版社,1991.
    [38]张淑杰.空间可展桁架结构的设计与热分析:[浙江大学博士学位论文].杭州:浙江大学,2001.
    [39]Boley BA, Weinen J H. Theory of thermal stressed [M], John Wiley & Sons, Inc.,1960.
    [40]Boley B A. Approximate analysis of thermally induced vibrations of beams and plates [J]. Journal of Applied Mechanics,1972,39(1):212-216.
    [41]Frisch H P. Thermal bending plus twist of a thin walled cylinder of open section with application to gravity gradient booms. NASA TND-4069,1967.
    [42]Florio F A, Hobbs R B. An analytical representation of temperature distribution in gravity gradient rods [J], AIAA Journal,1968,6(1):99-102.
    [43]Thornton E A, Paul D B. Thermal-structural analysis of large space structures:an assessment of recent advance [J]. Journal Spacecraft and Rockets,1985,22 (4):385-393.
    [44]Lutz J D, Allen D H, Haisler W E. Finite-element model for the thermoelastic analysis of large composite space structures [J]. Journal spacecraft and rockets,1987,24(5):430.
    [45]Mahaney J, Tornton E A. Self-shadowing effects on the thermal-structural response of orbiting trusses [J]. Journal Spacecraft and Rockets,1987, 24(4):342-348.
    [46]Farmer J T, et al. Thermal distortion analysis of an antenna-support truss in geosynchronous orbit [J]. Journal Spacecraft and Rockets,1992, 29 (3):286-393.
    [47]Sharp R, LiaoM, Giriunas J, et al. Reflector surface distortion analysis techniques. N90-19267.
    [48]Warren A H, Arelt J E, Eskew W F, etc. Finite element-finite difference thermal/structure analysis of large space truss structure[C]//AIAA Paper 92-4763-CP, American Institute of Aeronautics and Astronautics, New York, 1992.
    [49]Akihiro Miyasaka, Jin Mitsugi. Thermal distortion of over 10 meter diameter reflectors formed by truss structure [J]. AIAA-97-2457:1-10.
    [50]Shin K B, Kim C G, et al. Thermal distortion analysis of orbiting solar array including degradation effects of composite materials [J]. Composites: Part B,2001,32:271-285.
    [51]Fang H F, Lou M, Huang J, et al. Thermal distortion analyses of a three-meter inflatable reflectarray antenna [C]. AIAA Paper 2003-1650, American Institute of Aeronautics and Astronautics, New York,2003.
    [52]Tizzi S. Numerical procedures for thermal problems of space antenna shells [J]. Acta Astronautica,2003,54:103-114.
    [53]韦娟芳,关富玲,赵人杰等.星载微带阵天线的热变形分析及实验验证[J].中国空间科学技术,2002,22(6):63-68.
    [54]安翔,冯刚,张铎.大型空间桁架结构热分析的有限元方法[J].强度与环境,2000,2:18-23.
    [55]麻慧涛,江海,刘强.大型展开式卫星天线的有限元热分析[C].第五届空间热物理会议论文集,2000:183-188.
    [56]张加迅,文耀普,李劲东.单自由度太阳帆板极月轨道月球卫星的初步热分析与热设计[J].空间科学学报,2004,24(1):51-56.
    [57]杨玉龙,关富玲,张淑杰.可展析架天线温度场和热变形分析[J].空间科学学报,2005,25(3):235-240.
    [58]杨玉龙.空间展开桁架结构设计理论和热控制研究:[浙江大学博士学位论文].杭州:浙江大学,2007.
    [59]陈志华.星载抛物面天线赋形方法及热分析研究:[浙江大学博士学位论文].杭州:浙江大学,2008.
    [60]朱敏波.星载大型可展开天线热分析技术研究:[西安电子科技大学博士学位论文].西安:西安电子科技大学,2007.
    [61]宋保维,系统可靠性设计与分析[M].西安:西北工业大学出版社,2000.
    [62]Kaufmann A. Introduction to the fuzzy subsets [M]. New York:Academic Press,1975.
    [63]Tanaka H, Fan L T, Lai E S, Toguchi K. Fault-tree analysis by fuzzy probability [J]. IEEE Transactions on Reliability,1983,32(5):453-457.
    [64]Shiraishi N, Furuta H. Reliability analysis based on fuzzy probability [J]. J. Eng. Mech,1983,109(6):32-38.
    [65]Dhingra A K, Rao S S, Miura H. Application of fuzzy theories to formulation of muti-objective design problems. AIAA/AHS/ASEE AIRCRAFT DESIGN, SYSTEMS AND OPERATIONS CONFERENCE, Atlanta, USA,1988.
    [66]Viertl R. Reliability data col lection. In:Colombari V ed. Reliability Data Collection. Berlin:Springer Press,1980:206-211.
    [67]Viertl R. Statistics with non-precise data [J]. Journal of Computing and Information Technology.1996,4(4):215-224.
    [68]Kanagawa A, Ohta H. Fixed-time life tests based on fuzzy life characteristics [J]. IEEE Transact ions on Reliability,1992,41(2):317-320
    [69]Singer D. A fuzzy set approach to fault tree and reliability analysis [J]. Fuzzy Sets and Systems,1990,37(2):267-286.
    [70]Haldar A, Reddy R K. A random-fuzzy analysis of exist ing structures [J]. Fuzzy Sets and Systems,1992,48(2):201-210.
    [71]Masayoshi Misawa, Tetsuo Yasaka, Shojiro Miyake. Analytical and experimental investigations for satellite antenna deployment mechanisms [J]. J Spacecraft,1989,26(3):181-187.
    [72]金恂叔.论航天器的环境试验和可靠性[J].中国空间科学技术,1997,17(5):33-40.
    [73]Gerhard S S, Wolfgang H T. Practical procedures for reliability estimition of spacecraft structures and their components [J]. AIAA,1998, 36(8):1509-1515.
    [74]陈建军,张建国,段宝岩,王小兵.大型星载天线的展开系统失效树分析[J]. 机械设计与研究,2005,21(3):6-9.
    [75]陈建军,张建国,段宝岩等.周边桁架式大型星载天线的展开可能性分析[J].宇航学报,2005,26(Sup.):130-134.
    [76]陈建军,张建国,段宝岩等.大型星载天线机构中同步齿轮系防卡滞研究[J].西安电子科技大学学报,2005,32(3):329-334.
    [77]陈建军,王芳林,费小立,车建文.多工况下杆系结构的概率优化设计[J].工程力学,2001,18(2):113-119.
    [78]马洪波,陈建军,马孝松,梁震涛.基于体系可靠性的随机桁架结构优化设计[J].西安电子科技大学学报(自然科学版),2005,32(4):593-598.
    [79]陈建军,杜雷,催明涛等.基于概率的平面连续体结构拓扑优化[J].应用力学学报,2006,23(2):203-207.
    [80]陈建军,郜文文,赵丽琴等.随机参数弹性连杆机构运动功能的可靠性分析[J].机械设计与研究,2006,22(3):19-22.
    [81]张建国,陈建军,段宝岩,胡太彬.基于非概率模型的星载天线展开机构可靠性分析[J].西安电子科技大学学报(自然科学版),2006,33(5):739-743.
    [82]梁振涛,陈建军,胡太彬.星载天线展开机构系统可靠性分配的未确知方法[J].南京理工大学学报,2007,31(5):579-584.
    [83]占甫.天线结构homo1ogous变形设计与可展结构试验及间隙研究:[浙江大学博士学位论文].杭州:浙江大学,2007.
    [84]Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with clearances, Part 1:formation of dynamic model [J]. Trans. ASME, J. Eng., 1971,93B(1):305-309.
    [85]Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with clearances, Part 2:dynamic response [J]. Trans. ASME, J. Eng.,1971,93B (1): 310-316.
    [86]Mans our W M, Towns end M A. Impact spectra and intensities for high speed mechanisms [J]. Trans. ASME, J. Eng. Ind.,1975,97B:347-353.
    [87]Townsend M A, Mansour W M. A pendulating model for mechanisms with clearances in the revolutes [J]. Trans. ASME, J. Eng. Ind.,1975, 97B:354-358.
    [88]Soong K, Thompson B S A. theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudge on pin point [J]. J.Mech. Design,1990,112:183-189.
    [89]Li Z. A New Method of Predicting the Occurrence of Contact Loss in Mechanisms with Clearances [J]. Mechanism and Machine Theory,1992,27(3): 295-301.
    [90]Furuhashi T, Morita N, Matsuura M. Research on dynamics of four-bar linkage with clearances at turning pairs [J]. Bull. JSME,1978,21:518-523.
    [91]张跃明,张德强,唐锡宽.考虑构件弹性和转动副间隙的空间机构动力学研究[J].机械科学与技术,1999,18(4):532-534.
    [92]Seneviratne L D, et al. Analysis of a Four-bar Mechanism with a Radially Compliant Clearance Joint [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1996,210(3).
    [93]刘维明.间隙对天线结构系统固有频率的影响[J].无线电工程,1998,28(4):5-9.
    [94]杨玉龙,关富玲.可展桁架天线形面精度理论分析[J].空间科学学报,2009,29(5):529-533.
    [95]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [96]于永利,朱小冬,张柳.离散事件系统模拟[M].北京:北京航空航天大学出版社,2003.
    [97]刘军著,唐年胜,周勇,徐亮译.科学计算中的蒙特卡罗策略[M].北京:高等教育出版社,2009.
    [98]Hoker W W, Margulies G. The dynamics attitude equations for an n-body satellite [J]. Journal of Astronautical Science,1965,12(4):123-128.
    [99]Ando Kazuhide, Mitsugi Jin, Senbokuya Yurni. Analyses of cable-membrane structure combined with deployable truss [J]. Computers and Structures,2000, 74(1):21-39.
    [100]Singh R, Likins P. Interactive design for flexible multibody system control. IUTAM/IFTOMM Symposum on Dynamics of Multibody System, Udine, Italy, 1985.
    [101]Boland P. Stability analysis of interconnected deformable bodies with closed-loop configuration[J]. AIAA Journal.1975,13(7):864-867.
    [102]Lilov L. Dynamics of chains of rigid bodies and elastic rods with revolute and prismatic joints[J]. IUTAM/IFTOMM Symposum on Dynamics of Multibody System, Udine, Italy,1985.
    [103]Miyazaki Y, Kodama T. Formulation and interpretation of the equation of motion on the basis of the energy-momentum method. Proceedings of the Institution of Mechanical Engineers. Part K, Journal of Multi-Body Dynamics, 2004,218 (1):1-7.
    [104]韩克良.充气膜结构展开仿真及充气管展开过程研究:[浙江大学硕士学位论文].杭州:浙江大学,2008
    [105]Calladine C R, Pellegrino S. Further remarks on first-order infinitesimal mechanisms [J]. International Journal of Solids and Structures, 1991,29 (17):2119-2122.
    [106]Pellegrino S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures,1990,26(12):1329-1350.
    [107]Pellegrino S, Calladine C R. Matrix analysis of statically and kinematical ly indeterminate frameworks [J]. International Journal of Solids and Structures,1986,22(4):409-428.
    [108]Bayo E, Ledesma R. Augmented Lagrangian and mass-orthogonal project ion method for constrained multibody dynamics [J]. Nonlinear Dynamics,1996, 9(1-2):113-130.
    [109]Wehage R A, Haug E J. General ized coordinate part itioning for dimension reduction in analysis of constrained dynamic systems [J]. J. Mech. Design, 1982,104:247-255.
    [110]Fisette P, Vaneghem B. Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implict Newmark scheme [J]. Computer Meth. Appl. Mech. Eng.,1996,135:85-105.
    [111]Tanaka H, Hangai Y. Rigid body displacement and stabilization conditions of unstable truss structures [C]. Shells, Membrane and Space Frames, Proc of IASS Symposium. Osaka:IASS,1986,2:55-62.
    [112]吴明儿,关富玲.可展结构的展开分析[J].杭州电子工业学院学报,1993,13(2):13-21.
    [113]吴明儿,关富玲.可展结构的形态控制[J].应用力学学报,1995,12(2):23-27.
    [114]http://www.geodetic.com
    [115]http://www.metronor.com
    [116]http://www.aicon3d.de
    [117]韩冰,盛业华,张卡.基于多相对的近景摄影测量相机对标定[J].测绘科学,2007,32(6):24-26.
    [118]苗红杰,赵文吉,刘先林.数码相机检校和摄影测量的部分问题探讨[J].首都师范大学学报(自然科学版),2005,26(1):117-120.
    [119]Lai C Y, Pellegrino S. Feasibility Study of a Deployable Mesh Reflector. Deployable Structure Laboratory Department of Engineering, University of Cambridge,2001.9.
    [120]王之卓.摄影测量原理[M].北京:测绘出版社,1979.
    [121]Mason S. Conceptual model of the convergent multistation network configuration task [J]. Photogrammetric record,1995,15(86):277-299.
    [122]Photomodeler 5 User Manual. Eos Systems Inc.,2004.
    [123]李有法.数值计算方法[M].北京:高等教育出版社,1996.
    [124]Vreeburg J P B, Delil A A M, Heemskerk J F. Handbook for the Thermal Modeling of Space Mechanisms by the Nodal Network Method. ESRO-CR-219,1974.
    [125]Lee H P. Application of Finite-Element Method in the Computation of Temperature with Emphacis on Radiative Exchanges [J], AIAA paper 72-274.
    [126]Lee H P, Jackson C E. Finite-Element Solution for a combined Radiative Conductive Analysis with Mixed Diffuse-Specular Surface Characteristics [J], AIAA paper 75-682.
    [127]孔祥谦,王传溥.有限单元法在传热学中的应用[M].北京:科学出版社,1981.
    [128]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981.
    [129]杨世铭.传热学[M].北京:高等教育出版社,1987.
    [130]张靖周.高等传热学[M].北京:科学出版社,2009.
    [131]陈洁,汤国建.太阳同步卫星的轨道设计[J].上海航天,2004,(3):34-38
    [132]王永谦.太阳同步轨道的太阳相对于轨道面入射角的计算方法[J].航天器工程,1995,4(4):65-73.
    [133]Robert Siegel, John R Howell著,曹玉璋等译.热辐射传热[M].北京:科学出版社,1990.
    [134]Shu C F, Chang M H. Integrated thermal distort ion analysis for satellite antenna reflectors [C].//AIAA Paper 84-0142, American Institute of Aeronautics and Astronautics, New York,1984.
    [135]Jenkins C H, Faisal S M. Thermal load effects on precision membranes [J]. Journal of spacecraft and rockets,2001,38(2):207-211.
    [136]宋少云.多场耦合问题的协同求解方法研究与应用:[华中科技大学博士学位论文].武汉:华中科技大学,2007.
    [137]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [138]Smith EM. From Russia with TRIZ [J]. Mechanical Engineering. New York: Mar 2003,125:18-20.
    [139]Mann D. Manufacturing technology evolution trends [J]. Integrated Manufacturing Systems. Bradford 2002,13:86~90.
    [140]岳建如,关富玲.大型可展构架式星载抛物面天线结构设计[J].浙江大学学报:工学版.2001,35(3):238-243.
    [141]赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报(工学版).2005,39(11):1669-1674.
    [142]赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析[J].空间科学学报.2006,26(3):220-226.
    [143]王远达,宋笔锋.系统可靠性预计方法综述[J].飞机设计,2008,28(1):37-42.
    [144]孙红梅,高齐圣,朴营国.关于故障树分析中集中典型重要度的计算[J].可靠性与环境适应性理论研究,2007,25(2):39-42.
    [145]董玉革.机械模糊可靠性设计[M].北京:机械工业出版社,2001.
    [146]陈举华.机械结构模糊优化设计方法[M].北京:机械工业出版社,2002.
    [147]Guest S D, Pellegrino S. Inextensional wrapping of flat membranes[C]. The First International Conference on Structural Morphology, Montpellier, France, September 1992.
    [148]Miura K. Novel form of paper maps enabling longitudinal access [C]. American Congress on Surveying & Mapping 2005 Conference Sessions, Las Vegas, US,2005.
    [149]Miura K. Folded map and atlas design based on the geometric principle [C]. Proceedings of the 20th International Cartographic Conference, Beijing, CHINA,2001.
    [150]罗尧治,刘晶晶.基于环形连杆机构原理的可展结构设计[J].工程设计学报,2006,13(3):145-149.
    [151]Miura K, Pellegrino S. Structural concepts [M]. Cambridge University Press, Cambridge, UK, (To appear).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700