用户名: 密码: 验证码:
造血细胞产生的活性蛋白LL-37/hCAP-18和EDAG功能和临床意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造血系统的发生和功能调节涉及造血细胞产生的众多活性蛋白。本文研究其中的两种活性蛋白LL-37/hCAP-18和EDAG的功能和临床意义。
     多肽抗生素LL-37/hCAP-18是天然防御系统的重要组成成分之一,是已发现的人类唯一的cathelicidin家族成员,主要由中性粒细胞产生。LL-37的前体是一个19.3 kD的前原肽,含信号肽,保守的cathelin结构域和37个氨基酸残基的活性肽,除去信号肽后的表观分子量为18 kD,称为hCAP-18。机体感染或受伤后在丝氨酸蛋白酶-3和其他蛋白水解酶的作用下释放出有活性的LL-37。LL-37具有广谱抗菌作用和中和内毒素作用,其功能受损或表达下降会减弱机体对病原微生物的抵抗能力,与很多疾病直接相关。但LL-37/hCAP-18在血液病中的表达情况和临床意义尚不清楚。
     我们用ABC免疫组化方法检测了143例血液病患者和50例正常人外周血涂片中LL-37/hCAP-18蛋白的表达,发现LL-37/hCAP-18在AML患者外周血白细胞中的表达水平明显低于正常人白细胞中的表达,分类计数表明在AML患者中性粒细胞中的阳性率仅为26.6±12.8%,感染者阳性率更低,而正常人为93.8±3.5%。提示AML患者外周血不仅有中性粒细胞量的减少,也存在着功能的缺陷。LL-37蛋白的低表达可能是急性白血病患者容易感染的原因之一。研究中还发现白血病细胞的LL-37/hCAP-18蛋白表达与mRNA表达不一致,提示其表达调控主要在转录后水平,我们检测了人白血病细胞系Raji,NB4,HL-60,J6-1及U937中的LL-37/hCAP-18基因5’-UTR序列,结果与文献报导的正常人的5’-UTR序列相符,初步排除了这些白血病细胞系因5’-UTR突变而引起翻译阻滞的可能。
     近年文献报道,LL-37/hCAP-18除了直接的抗菌作用外,还有免疫调节作用,如趋化作用和调节树突状细胞功能等。防御素也是一种多功能抗菌肽,有促进免疫反应效应,但是,cathelicidin有无类似作用尚无报道。我们利用我室已有的人-鼠嵌合肿瘤模型,构建以LL-37为分子佐剂的抗肿瘤DNA疫苗,进行实验治疗研究。以分别带有M-CSFR和LL-37cDNA片段的重组质粒为模板,扩增M-CSFR信号肽和胞外三个免疫球蛋白(Ig)样结构域的编码基因,插入
The ontogeny and function of hematopoietic system concerns numerous proteins produced by hematopioetic cells. In this study, we explored the function and clinical significance of two of the proteins, LL-37/hCAP-18 and EDAG.
    Antimicrobial peptide LL-37/hCAP-18 that is mainly produced by neutrophils, is important in host innate-immune defense. LL-37/hCAP-18 is synthesized as a pre-pro-peptide with 19.3 kD including a signal peptide, a cathelin-Iike domain and a 37-residue antimicrobial domain. The pro-peptide is 18 kD and is designated as hCAP-18. Cleavage of hCAP-18 by proteinase 3 liberates its C-terminal, active biologic domain (LL-37) from the conserved cathelin-Iike prosequence. LL-37 exhibits potent antimicrobial activity against Gram-negative and Gram-positive bacteria. It also has the ability to bind and neutralize the biological activity of lipopolysaccharide (LPS). Its deficiency may increase the susceptibility to infection. Involvement of LL-37 in pathological processes has been reported in many diseases. However, the knowledge of the expression of LL-37/hCAP-18 in hematological diseases and its clinical relevance is limited.
    We detected LL-37/hCAP-18 expression in the peripheral blood smears of 50 healthy donors and 143 patients with various hematological diseases. Compared with that in the healthy donors, expression of the protein in the neutrophils was significantly lower in patients with AML(93.8±3.5% versus 26.6±12.8%, p<0.05), especially those with infection. LL-37/hCAP-18 has been shown to play a role in host defense, and its deficiency in AML may be one of the explanations for their susceptibilities to infection among these patients. However, no significant difference was detected on the mRNA level between the neutrophils of the healthy donors and the AML patients suggesting that post-transcriptional mechanisms govern the expression of LL-37/hCAP-18 protein. Since 5'-UTR contains elements which are important in the regulation of translation, we detected the 5'-UTR sequences of LL-37/hCAP-18 gene in Raji, NB4, HL-60, J6-1 and U937 cells. There was no abnormality in the 5'-UTR sequences in these leukemia cell lines.
    Recently, other effects of LL-37 related to immune response have been gradually unveiled. LL-37 is chemotactic for human monocytes, neutrophils and T lymphocytes and acts as a potent modifier of DC differentiation. It was reported that defensin, another multifunctional antimicrobial peptide with chemotactic responses, could enhance the immunogenicity of the tumor antigen or viral antigen when fused with these antigens in DNA vaccination. Whether LL-37 has similar effects in antitumor immunity remains unclear. Previously, our lab constructed an M-CSFR DNA vaccine, which could induce humoral and cellular immunity against M-CSFR bearing SP2/0 cells in a murine model and markedly prolong the survival of mice challenged with M-CSFR+ tumor. In this study, we also used this model with necessary modification and investigated whether LL-37 could enhance the antitumor activities of the vaccines against M-CSFR by altering the
引文
1. Koczulla AR, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs. 2003;63(4):389-406.
    2. Kamysz W, Okroj M, Lukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003; 50(2):461-9.
    3. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272(24):15258-63.
    4. Ganz T, Lehrer RJ. Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 1999; 5:292-7.
    5. Chmiel D. Mode of action of antimicrobial peptides. Adv Cell Biol. (Suppl.). 2001; 16:261-73.
    6. Zanetti M, Gennaro R, Romeo D () Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995;374:1-5
    7. Zanetti M, Gennaro R, Scocchi M, Skerlavaj B Structure and biology of cathelicidins. Adv Exp Med Biol, 2000;479:203-218
    8. Ritonja A, Kopitar M, Jerala R, Turk V Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 1989;255:211-214
    9. Sorensen O, Arnljots K, Cowland JB, et al The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood, 1997, 90(7):2796-803
    10. Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 2001, 97(12):3951-9
    11. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347:1151-60.
    12. Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M. The human cationic antimicrobial protein (hCAP-18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999; 67:2561-6.
    13. Bals R, Weiner DJ, Meegalla RL, et al. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest, 1999,103(8):1113-7
    14. Putsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet. 2002 Oct 12;360(9340):1144-9.
    15. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003; 120(3):379-89.16. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger R, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 2003; 111:1665-1672.
    17. Heilborn JD, Nilsson MF, Jimenez CI, Sandstedt B, Borregaard N, Tham E, Sorensen OE, Weber G, Stable M. Heilborn JD. Antimicrobial protein hCAP18/LL-37 is highly expressed in breast cancer and is a putative growth factor for epithelial cells. Int J Cancer. 2005; [Epub ahead of print]
    18. Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, Shibata T, Hirata M, Isogai H. C-terminal domain of human CAP 18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett. 2004;212(2):185-94.
    19. Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 2001; 69:691-697.
    20. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000;96(9):3086-93.
    21. De Yang, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000; 192(7):1069-74.
    22. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002; 106(1):20-6.
    23. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 2002; 169:3883-91.
    24. Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol. 2003; 171(12):6690-6.
    25. Bowdish DM, Davidson DJ, Speert DP, Hancock RE. The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol. 2004; 172(6):3758-65.
    26. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004; 172:1146-1156.)
    27. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 2001;167:6644-53.28. Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 2002;100:1153-9.
    29. Wu KF, Zhang YQ, Song YH, Feng BZ. Establishment and characterization of human leukemia cell lines (J6-1, J6-2 and J6-3) Proc CAMS PUMC 1986:214-218
    30. Gudmundsson GH, Agerberth B, Odeberg J, et al. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes [J]. Eur J Biochem, 1996, 238:325
    31. Ying-Hua Yang, Guo-Guang Zheng, Ge Li, Bin Zhang, Yu-Hua Song, Ke-Fu Wu Expression of LL-37/hCAP18 gene in human leukemia cells. Leukemia research 2003;27(9)
    32. Kuijper PHM, Gallardo HIT, Lammers JWJ, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet and Fibrin Deposition at the Damaged Vessel Wall: Cooperative Substrates for Neutrophil Adhesion Under Flow Conditions. Blood. 1997; 89:166-175.
    33. Mario C, Radek CS. Translational pathophysiology: a novel molecular mechanism of human disease. Blood, 2000, 95:3280
    34. James WL, Jaehag L, Shihwin M, et al. Structural, functional analysis and localization of the human CAP 18 gene. FEBS Letters, 1996, 398:74
    35. Wang MH, Zheng GG, Wu KF, Li G, Lin YM, Rao Q, et al. Co-immunization with M-CSFR and mM-CSF DNA vaccines is better than M-CSFR-mM-CSF fusion DNA vaccine. Haematologica. 2002; 87:1087-94.
    36. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: Signal? 3.0. J Mol Biol 2004; 340:783-95.
    37. Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PD, Schlom J. Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 1991; 51:3657-62.
    38. Wang Y, Zheng GG, Wu KF, Li G, Rao Q. Construction of macrophage colony-stimulating factor receptor DNA vaccine. Haematologica 2001; 86:1219-20.
    39. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. science. 2002; 298(5595):1025-9.
    40. Lillard JW Jr, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci USA 1999; 96:651-6.
    41. Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, et al. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol 2000; 12:691-700.
    42. Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17:253-8.1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870):389-95.
    2. Kamysz W, Okroj M, Lukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003; 50(2):461-9.
    3. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272(24): 15258-63.
    4. Ganz T, Lehrer RI. Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today. 1999; 5: 292-7.
    5. Chmiel D. Mode of action of antimicrobial peptides. Adv Cell Biol. (Suppl.). 2001; 16: 261-73.
    6. Hancock RE, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999; 43: 1317-23.
    7. Levy O. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood. 2000; 96:2664-72.
    8. Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc.Biol. 2001; 69: 691-697.
    9. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood.??2000;96(9):3086-93.
    10. De Yang, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000; 192(7):1069-74.
    11. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002; 106(l):20-6.
    12. Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000; 68(1):9-14.
    13. Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, Funakoshi S, Asai O, Herrmann SH, Wang JM, Kwak LW, Oppenheim JJ. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol. 2000; 12:691-700
    14. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999; 286(5439):525-8.
    15. Ganz T. Defensins and host defense. Science. 1999;286(5439):420-1
    16. Niyonsaba F, Ogawa H, Nagaoka I. Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology. 2004; 111(3):273-81.
    17. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol. 2002; 14(4):421-6.
    18. Huang HJ, Ross CR, Blecha F. Chemoattractant properties of PR-39, a neutrophil antibacterial peptide. J. Leukoc. Biol. 1997; 61:624-629.
    19. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem. 1996; 271:2935-40.
    20. Chertov O, Ueda H, Xu LL, Tani K, Murphy WJ, Wang JM, Howard OM, Sayers TJ, Oppenheim JJ. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J.Exp.Med 1997; 186:739-747.
    21. Tani K, Ogushi F, Kido H, Kawano T, Kunori Y, Kamimura T, Cui P, Sone S. Chymase is a potent chemoattractant for human monocytes and neutrophils. J. Leukoc. Biol. 2000; 67:585-89.
    22. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 2002; 169:3883-91.
    23. Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol.??2003; 171(12):6690-6.
    24. Bowdish DM, Davidson DJ, Speert DP, Hancock RE. The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol. 2004; 172(6):3758-65.
    25. Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS. Effect of defensins on interleukin-8 synthesis in airway epithelial cells Am J Physiol. 1997;272:L888-96.
    26. van Wetering S, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS. Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res. 2002; 51(1):8-15.
    27. Sakamoto N, Mukae H, Fujii T, Ishii H, Yoshioka S, Kakugawa T, Sugiyama K, Mizuta Y, Kadota J, Nakazato M, Kohno S. Differential effects of alpha- and beta-defensin on cytokine production by cultured human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2005; 288(3):L508-13.
    28. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Stricter RM. Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J Immunol. 2001; 167(2):623-7.
    29. Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J. The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. J Biol Chem. 2002; 277(40):37647-54.
    30. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ. Many chemokines including CCL20/MIP-3(?) display antimicrobial activity. J Leukoc Biol. 2003; 74(3):448-55.
    31. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 2004; 172:1146-1156.)
    32. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. science. 2002; 298(5595):1025-9.
    33. Ganz T. science. Immunology. Versatile defensins.2002; 298(5595):977-9.
    34. Yomogida S, Nagaoka 1, Saito K, Yamashita T. Evaluation of the effects of defensins on neutrophil functions. Inflamm Res. 1996; 45(2):62-7.
    35. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001;31(4):1066-75.
    36. Caccavo, D., Pellegrino, N. M., Altamura, M., Rigon, A., Amati, L., Amoroso, A., Jirillo, E. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J. Endotoxin Res. 2002; 8:403-417.
    37. Farnaud, S., Evans, R. W. Lactoferrin-a multifunctional protein with antimicrobial properties. Mol. Immunol. 2003; 40:395-405.
    38. Miyauchi, H., Hashimoto, S., Nakajima, M., Shinoda, I., Fukuwatari, Y., Hayasawa, H. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of??its active domain. Cell. Immunol. 1998; 187:34-37.
    39. Adamik, B., Zimecki, M., Wlaszczyk, A., Berezowicz, P., Kubler, A. Lactoferrin effects on the in vitro immune response in critically ill patients. Arch. Immunol. Ther. Exp. 1998; 46:169-176.
    40. Caccavo, D., Pellegrino, N. M., Altamura, M., Rigon, A., Amati, L., Amoroso, A., Jirillo, E. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J.Endotoxin Res. 2002; 8:403-417.
    41. (Debbabi, H., Dubarry, M., Rautureau, M., Tome, D. (1998) Bovine lactoferrin induces both mucosal and systemic immune response in mice. J. Dairy Res. 65, 283-293).
    42. Damiens, E., Mazurier, J., el Yazidi, I., Masson, M., Duthille, I., Spik, G., Boilly-Marer, Y. Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cells. Biochim. Biophys. Acta 1998; 1402:277-287.
    43. Conneely, O. M. Antiinflammatory activities of lactoferrin. J. Am. Coll. Nutr. 2001; 20 (Suppl. 5):389S-395S.
    44. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 2001;167:6644-53.
    45. Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 2002; 100:1153-9.
    46. An LL, Yang YH, Ma XT, Lin YM, Li G, Song YH, et al. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFRJ6-1 DNA vaccine. Leuk Res 2005;29:535-43.
    47. Davidson DJ, Currie AJ. Letting the CAThelicidin out of the bag, as a therapeutic modulator of the adaptive immune system. Leuk Res. 2005; 29(5):477-9.
    48. Zhang K, Lu Q, Zhang Q, Hu X. Regulation of activities of NK cells and CD4 expression in T cells by human HNP-1, -2, and -3. Biochem Biophys Res Commun. 2004; 323(2):437-44.
    49. Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW. Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol. 1993; 155:408-13.
    50. Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS. Human neutrophil defensins induce lung epithelial cell proliferation in vitro.J Leukoc Biol. 2002; 72:167-74.
    51. Heilborn JD. Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003; 120(3):379-89.
    52. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 2003; 111:1665-1672.
    53. Winder D, Gunzburg WH, Erfle V, Salmons B. Expression of antimicrobial peptides has an??antitumor effect in human cells. Biochem Biophys Res Commun. 1998; 242:608-12.
    54. Jacob L, Zasloff M. Potential therapeutic application of magainins and other antimicrobial agents of animal origin. Ciba Found Symp. 1994; 186:197-223.
    55. Mizukawa N, Sugiyama K, Fukunaga J, Ueno T, Mishima K, Takagi S, Sugahara T. Defensin-1, a peptide detected in the saliva of oral squamous cell carcinoma patients. Anticancer Res. 1998; 18(6B):4645-9.
    56. Lundy FT, Orr DF, Gallagher JR, Maxwell P, Shaw C, Napier SS, Gerald Cowan C, Lamey PJ, Marley JJ. Identification and overexpression of human neutrophil alpha-defensins (human neutrophil peptides 1, 2 and 3) in squamous cell carcinomas of the human tongue. Oral Oncol. 2004;40(2):139-44.
    57. Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer. 2005 19;5(1):8.
    58. Nam MJ, Kee MK, Kuick R, Hanash SM. Identification of defensin alpha6 as a potential biomarker in colon adenocarcinoma. J Biol Chem. 2005;280(9):8260-5.
    59. Muller CA, Markovic-Lipkovski J, Klatt T, Camper J, Schwarz G, Beck H, Deeg M, Kalbacher H, Widmann S, Wessels JT, Becker V, Muller GA, Flad T. Human alpha-defensins HNPs-1, -2, and -3 in renal cell carcinoma: influences on tumor cell proliferation. Am J Pathol. 2002; 160(4):1311-24.
    60. Donald CD, Sun CQ, Lim SD, Macoska J, Cohen C, Amin MB, Young AN, Ganz TA, Marshall FF, Petros JA. Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab Invest. 2003;83(4):501-5.
    61. Mizukawa N, Sawaki K, Yamachika E, Fukunaga J, Ueno T, Takagi S, Sugahara T. Presence of human beta-defensin-2 in oral squamous cell ca rcinoma. Anticancer Res. 2000; 20(3B):2005-7.
    62. Nishimura M, Abiko Y, Kurashige Y, Takeshima M, Yamazaki M, Kusano K, Saitoh M, Nakashima K, Inoue T, Kaku T. Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J Dermatol Sci. 2004; 36(2):87-95.
    63. Heilborn JD, Nilsson MF, Jimenez CI, Sandstedt B, Borregaard N, Tham E, Sorensen OE, Weber G, Stable M. Heilborn JD. Antimicrobial protein hCAP18/LL-37 is highly expressed in breast cancer and is a putative growth factor for epithelial cells. Int J Cancer. 2005; [Epub ahead of print]
    64. Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, Shibata T, Hirata M, Isogai H. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett. 2004;212(2):185-94.
    65. Charp PA, Rice WG, Raynor RL, Reimund E, Kinkade JM Jr, Ganz T, Selsted ME, Lehrer RI, Kuo JF. Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochem Pharmacol. 1988; 37:951-6.
    66. Blomqvist M, Bergquist J, Westman A, Hakansson K, Hakansson P, Fredman P, Ekman R. Identification of defensins in human lymphocyte nuclei. Eur J Biochem. 1999; 263:312-8.
    67. Pereira HA, Moore P, Grammas P. CAP37, a neutrophil granule-derived protein stimulates protein kinase C activity in endothelial cells. J Leukoc Biol. 1996; 60:415-22.68. Kirsch K, Kensinger M, Hanafusa H, August A.A p130Cas tyrosine phosphorylated substrate domain decoy disrupts v-crk signaling. BMC Cell Biol. 2002; 3: 18.
    69. Tanaka K, Fujimoto Y, Suzuki M, Suzuki Y, Ohtake T, Saito H, Kohgo Y. P13-kinase p85alpha is a target molecule of proline-rich antilnicrobial peptide to suppress proliferation of ras-transformed cells. Jpn J Cancer Res. 2001; 92:959-67.
    70. Hobta A, Lisovskiy I, Mikhalap S, Kolybo D, Romanyuk S, Soldatkina M, Markeyeva N, Garmanchouk L, Sidorenko SP, Pogrebnoy PV. Epidermoid carcinoma-derived antimicrobial peptide (ECAP) inhibits phosphorylation by protein kinases in vitro. Cell Biochem Funct. 2001; 19: 291-8.
    71. Ruslan Medzhitov, Charles Janeway Jr. Innate immune recognition:mechanisms and pathways. Immunological Reviews. 2000; 173:89-97.
    72. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response.Nature. 2000; 406:782-787.
    73. Means TK, Golenbock DT, Fenton MJ. The biology of Toll-like receptors Cytokine Growth Factor Reviews.2000; 11:219-232
    74. Tsutsumi-lshii Y, Nagaoka I. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J.Leukoc.Biol. 2002; 71: 154-62
    75. Cole, A. M., Shi, J., Ceccarelli, A., Kim, Y. H., Park, A., Ganz, T. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 2001; 97: 297-304.
    76. Sorensen, O. E., Follin, P., Johnsen, A. H., Calafat, J., Tjabringa, G. S.,Hiemstra, P. S., Borregaard, N. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001; 97:3951-3959.
    77. El Ouriaghli, F., Fujiwara, H., Melenhorst, J. J., Sconocchia, G., Hensel.N., Barrett, A. J. Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis. Blood 2003; 101: 1752-1758.
    78. Cai, T. Q., Wright, S. D. Human leukocyte elastase is an endogenous ligand for the integrin CR3 and modulates polymorphonuclear leukocyte adhesion. J. Exp. Med. 1996; 184: 1213-1223.
    79. Gautam, N., Olofsson, A. M., Herwald, H., Iversen, L. F., Lundgren- Akerlund, E., Hedqvist, P., Arfors, K. E., Flodgaard, H., Lindbom, L. Heparin-binding protein (HBP/CAP37): a missing link in neutrophil- evoked alteration of vascular permeability. Nat. Med. 2001; 7: 1123-1127.
    80. Levy O. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes.J Leukoc Biol. 2004; 76(5):909-25.
    81. Yui, S., Nakatani, Y., Mikami, M. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol. Pharm. Bull. 2003; 26: 753-760.
    82. Ge, Y. et al. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 1999; 43: 782-788.
    83. Koczulla AR, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs. 2003;63 (4):389-406.1. Yang LV, Nicholson RH, Kaplan J, Galy A, Li L. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev. 2001 Jun;104(1-2):105-11.
    2.闾军,许望翔,汪思应,等。EDAG-1,一种与造血调控密切相关新基因的分离和确认。生物化学与生物物理学报,2001,33(6):641-646
    3. Liu CC, Chou YL, Ch'ang LY. Down-regulation of human NDR gene in megakaryocytic differentiation of erythroleukemia K562 cells. J Biomed Sci. 2004 Jan-Feb; 11 (1):104-16.
    4. Zhou Y, Xu WX, Zhan YQ, el al. Expression of EDAG-1 Gene in Human Leukemia and Lymphoma Cell Lines, Chin J Cancer, 2004, 23(11):1238-1243
    5. Zhou Y, Xu WX, Zheng H, et al. Study of expression of EDAG-1 in human myeloblast leukemia cells.Acta Universitatis Medicinal Anhui, 2004, 39(3):173-177
    6. Lu J, Xu WX, Wang SY, Jiang Y, Li CY, Cai WM, Yang XM. [Overexpression of EDAG-1 in NIH3T3 cells leads to malignant transformation]Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2002 Jan;34(1):95-8.
    7. Li CY, Zhan YQ, Xu CW, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoplosis through the activation of nuclear factor-κB Cell Death Differ, 2004, 11: 1299-1308
    8. Yang LV, Henry H, Wan JM, et al. Alternative Promoters and Polyadenylation Regulate Tissue-Specific Expression of Hemogen lsoforms During Hematopoiesis and Spermatogenesis. Dev Dynam, 2003, 228:606-616
    9. Golay J, Basilico L, Loffarelli L, Songia S, Broccoli V, Introna M. Regulation of hematopoietic cell proliferation and differentiation by the myb oncogene family of transcription factors, Int J Clin Lab Res. 1996: 26:24-32.
    10. Szczylik C, Skorski T, Malaguarnera L, Herman J, Chen ST, Calabretta B. Inhibitionof in vitro proliferation of chronic myelogenous leukemia progenitor cells by c-myb antisense oligodeoxynucleotides. Folia H istochem Cytobiol 1996; 34:129-134.
    11. Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 2004 Mar;31(3):119-28.
    12. Venditti A, Del Poeta G, Maurillo L, Buccisano F, Del Principe MI, Mazzone C, Tamburini A, Cox C, Panetta P, Neri B, Ottaviani L, Amadori S. Combined analysis of bcl-2 and MDRI proteins in 256 cases of acute myeloid leukemia. Haematologica 2004; 89:934-939.
    13. Gopal V, Hulette B, Li YQ, Kuvelkar R, Raza A, Larson R, Goldberg J, Tricot G, Bennett J, Preisler H. c-myc and c-myb expression in acute myelogenous leukemia. Leuk Res. 1992 Oct;16(10):1003-11.
    14. Schnekenburger M, Morceau F, Duvoix A, Delhalle S, Trentesaux C, Dicato M, Diederich M. Increased glutathione S-transferase Pl-1 expression by mRNA stabilization in heroin-induced differentiation of K562 cells.Biochem Pharmacol. 2004 Sep 15; 68(6):1269-77.
    15. Nakatake M, Sasaki N, Murakami-Murofushi K, Yamada O. Transient posttranslational up-regulation of telomerase activity during megakaryocytic differentiation of K562??cells.Biochem Biophys Res Commun. 2004 Feb 20; 314(4):1080-5.
    16. Hass R, Prudovsky I, Kruhoffer M. Differential effects of phorbol ester on signaling and gene expression in human leukemia cells. Leuk Res. 1997 Jul;21(7):589-94.
    17. Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells.Mech Dev. 2001 Aug; 106(1-2):3-23.
    18. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 1999 Mar 15;27(6):1409-20.1. Cross Ma, Enver T. The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev. 1997; 7:609.
    2. Pandolfi PP.Transcription therapy for cancer. Oncogene. 2001;20(24):3116.
    3. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3(2):89.
    4. Gari M, Goodeve A, Wilson G, et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia.Br J Haematol. 1999; 105(4):894.
    5. Grignani F, Valtieri M, Gabbianelli M, et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood. 2000;96(4):1531.
    6. Warner JK, Wang JC, Hope K J, et al. Concepts of human leukemic development. Oncogene. 2004;23(43):7164.
    7. Britos-Bray M, Ramirez M, Cao W, et al. CBFbeta-SMMHC, expressed in M4eo acute myeloid leukemia, reduces p53 induction and slows apoptosis in hematopoietic cells exposed to DNA-damaging agents. Blood. 1998;92(11):4344.8. Levanon D, Negreanu V, Bernstein Y, et al. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 1994; 23:425.
    9. Ogawa E, Maruyama M, Kagoshima H, et al. PEBP/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 1993; 90:6859.
    10. Golling G, Li L, Pepling M, et al. Drosophila homologs of the proto-oncogene product PEBP2/CBF β regulate the DNA-binding properties of Runt. Mol Cell Biol 1996; 16:932.
    11. Chiba N, Watanabe T, Nomura S, et al. Differentiation dependent expression and distinct subcellular localization of the protooncogene product PEBP2β/CBFβ in muscle development. Oncogene 1997; 14:2543.
    12. Blake T, Adya N, Kim CH, et al. Zebrafish honolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scl and agta-1 in hematopoiesis. Blood 2000; 96:4178.
    13. Huang G, Shigesada K, Ito K, et al. Dimerization with PEBP2β protects RUNX1/AML1 from uviquitin-proteasome-mediated degradation. EMBO J 2001; 20:723.
    14. North, TE, Gu TL, Stacy T, et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126:2563.
    15. Ichikawa M, Asai T, Saito T, et al. AML-I is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004; 10(3):299.
    16. Elagib KE, Racke FK, Mogass M, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood. 2003; 101(11):4333.
    17. de Guzman CG, Warren AJ, Zhang Z, et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol. 2002; 22(15):5506.
    18. Hug BA, Lee SY, Kinsler EL, et al. Cooperative function of Aml1-ETO corepressor recruitment domains in the expansion of primary bone marrow cells. Cancer Res. 2002; 62(10):2906.
    19. Castilla LH, Garrett L, Adya N, et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet. 1999; 23(2):144.
    20. Fainaru O, Woolf E, Lotem J, et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 2004; 23(4):969.
    21. Lauzurica P, Zhong XP, Krangel MS, et al. Regulation of T cell receptor delta gene rearrangement by CBF/PEBP2.J Exp Med. 1997; 185(7):1193.
    22. Taniuchi I, Osato M, Egawa T, et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 2002; 111(5):621.
    23. Sato T, Ito R, Nunomura S, et al. Requirement of transcription factor AML1 in proliferation of developing thymocytes. Immunol Lett. 2003; 89(1):39.
    24. Woolf E, Xiao C, Fainaru O, et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA. 2003; 100(13):7731.25. de Bruijn MF, Speck NA. Core-binding factors in hematopoiesis and immune function. Oncogene. 2004;23(24):4238.
    26. Stephen MH and Letizia F. Core binding factor genes and human leukemia. Hematologica 2002; 87:1307.
    27. Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell 1997; 89:325.
    28. Fisher AL, Caudy M. Groucho protein: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Gene Develop 1998; 12:1931.
    29. Britos-Bray M, Ramirez M, Cao W, et al. CBFbeta-SMMHC, expressed in M4eo acute myeloid leukemia, reduces p53 induction and slows apoptosis in hematopoietic cells exposed to DNA-damaging agents. Blood. 1998;92(11):4344.
    30. Friedman AD. Leukemogenesis by CBF oncoproteins. Leukemia. 1999;13(12):1932.
    31. Castilla LH, Wijmenga C, Wang Q, et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell. 1996; 87(4):687.
    32. Liu P, Seidel N, Bodine D, et al. Acute myeloid leukemia with Inv (16) produces a chimeric transcription factor with a myosin heavy chain tail. Cold Spring Harb Symp Quant Biol. 1994;59:547.
    33. Liu PP, Hajra A, Wijmenga C, et al. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood. 1995; 85(9):2289.
    34. Lutterbach B, Hou Y, Durst KL et al. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci USA. 1999; 96(22):12822.
    35. Durst KL, Lutterbach B, Kummalue T, et al. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain.Mol Cell Biol. 2003; 23(2):607.
    36. Tanaka Y, Fujii M, Hayashi K, et al. The chimeric protein, PEBP2 beta/CBF beta-SMMHC, disorganizes cytoplasmic stress fibers and inhibits transcriptional activation. Oncogene. 1998; 17(6):699.
    37. Peterson LF, Zhang DE. The 8;21 translocation in leukemogenesis. Oncogene. 2004;23(24):4255.
    38. Zhang J, Hug BA, Huang EY, et al. Oligomerization of ETO is obligatory for corepressor interaction.Mol Cell Biol. 2001;21(1):156.
    39. Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell. 2000; 5(5):811.
    40. Linggi B, Muller-Tidow C, van de Locht L, et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med. 2002; 8(7):743.
    41. Wang J, Hoshino T, Redner RL, et al. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A. 1998; 95(18):10860.
    42. Hildebrand D, Tiefenbach J, Heinzel T, et al. Multiple regions of ETO cooperate in transcriptional repression. J Biol Chem. 2001; 276(13):9889.43. Wood JD, Nucifora FC Jr, Duan K, et al. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J Cell Biol. 2000; 150(5):939.
    44. Melnick AM, Westendorf JJ, Polinger A, et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein.Mol Cell Biol. 2000;20(6):2075.
    45. McGhee L, Bryan J, Elliott L, et al. Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem. 2003; 89(5):1005.
    46. Chevallier N, Corcoran CM, Lennon C, et al. Epub 2003 Oct 9. ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood. 2004 Feb; 103(4):1454.
    47. Gelmetti V, Zhang J, Fanelli M, et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998; 18(12):7185.
    48. Odaka Y, Mally A, Elliott LT, et al. Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene. 2000; 19(32):3584.
    49. Rhoades KL, Hetherington CJ, Rowley JD, et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA. 1996; 93(21):11895.
    50. Klampfer L, Zhang J, Zelenetz AO, et al. The A ML 1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA. 1996; 93(24):14059.
    51. Shimizu K, Kitabayashi I, Kamada N. et al. AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon.Blood. 2000; 96(1):288.
    52. Pabst T, Mueller BU, Harakawa N, et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med. 2001; 7(4):444.
    53. Mao S, Frank RC, Zhang J, et al. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol. 1999; 19(5):3635.
    54. Morishita K, Parganas E, Douglass EC, et al. Unique expression of the human Evi-1 gene in an endometrial carcinoma cell line: sequence of cDNAs and structure of alternatively spliced transcripts. Oncogene. 1990; 5(7):963.
    55. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996; 10(5):788.
    56. Mitani K. Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene. 2004; 23(24):4263.
    57. Izutsu K, Kurokawa M, Imai Y, et al. The t(3;21) fusion product, AML1/Evi-1 blocks AML1-induced transactivation by recruiting CtBP. Oncogene. 2002; 21(17):2695.
    58. leukemias.Tanaka T, Mitani K., Kurokawa M, et al. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21).Mol Cell Biol. 1995;15(5):2383.59. Izutsu K, Kurokawa M, Imai Y, et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001; 97(9):2815.
    60. Kurokawa M, Mitani K, Imai Y, et al. The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells.Blood. 1998; 92(11):4003.
    61. Ogawa S, Kurokawa M, Tanaka T, et al. Structurally altered Evi-1 protein generated in the 3q21q26 syndrome. Oncogene. 1996; 13(1):183.
    62. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 2000; 19(12):2958.
    63. Kurokawa M, Ogawa S, Tanaka T, et al. The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene. 1995; 11(5):833.
    64. Fears S, Vignon C, Bohlander SK, et al. Correlation between the ETV6/CBFA2 (TEL/AML1) fusion gene and karyotypic abnormalities in children with B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1996; 17(2):127.
    65. Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood. 2000; 96(7):2557.
    66. Greaves MF, Maia AT, Wiemels JL, et al. Leukemia in twins: lessons in natural history. Blood. 2003; 102(7):2321.
    67. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA. 2002; 99(12):8242.
    68. Rompaey LV, Potter M, Adams C, et al. Tel induces a Gl arrest and suppresses Ras-induced transformation. Oncogene. 2000; 19(46):5244.
    69. Greaves MF and Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639.
    70. Tsuzuki S, Seto M, Greaves M, et al. Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA. 2004; 101(22):8443.
    71. Bernardin F, Yang Y, Cleaves R, et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res. 2002; 62(14):3904.
    72. Osato M, Asou N, Abdalla E, et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood. 1999; 93(6):1817.
    73. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999; 23(2):166.
    74. Matsuno N, Osato M, Yamashita N, et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the MO subtype. Leukemia. 2003; 17(12):2492.
    75. Silva FP, Morolli B, Storlazzi CT, et al. Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene. 2003; 22(4):538.
    76. Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia.??Oncogene. 2004; 23(24):4284.
    77. Dorn A, Affolter M, Gehring WJ, et al. Homeodomain proteins in development and therapy. Pharmacol Ther 1994;61:155.
    78. Gehring WJ, Affolter M, Burglin T. Homeodomain proteins. Annu Rev Biochem 1994; 63:487
    79. Owens BM, Hawley RG. HOX and non-HOX omeobox genes in leukemic hematopoiesis. Stem Cells 2002,20:364.
    80. Magli MC, Largman C, Lawrence HJ. Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997,173:168.
    81. Sauvageau G, Lansdorp PM, Eaves CJ et al. Differential expression of homeobox genes in functionally distinct CD34~+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994, 91:12223.
    82. Thorsteinsdottir U, Sauvageau G, Hough MR et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997, 17:495.
    83. Izon DJ, Rozenfeld S, Fong ST et al. Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998,92:383.
    84. Crooks GM, Fuller J, Petersen D et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999,94:519.
    85. Sauvageau G, Thorsteinsdottir U, Hough MR et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997, 6:13.
    86. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002,109:29.
    87. Kappen C. Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am J Hematol 2000,65:111.
    88. Bijl J, van Oostveen JW, Kreike M et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996,87:1737.
    89. Shimada H, Arai Y, Sekiguchi S et al. Generation of the NUP98-HOXD13 fusion transcript by a rare translocation, t(2;11)(q31;p15), in a case of infant leukaemia. Br J Haematol 2000,110:210.
    90. Magli MC, Largman C, Lawrence HJ. Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997; 173:168-177.
    91. Kongsuwan K, Allen J, Adams JM. Expression of Hox-2.4 homeobox gene directed by proviral insertion in a myeloid leukemia. Nucleic Acids Res 1989,17:1881.
    92. Thorsteinsdottir U, Sauvageau G, Hough MR et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997;17:495.
    93. Antonchuk J, Sauvageau G Humphries RK. HOXB4-induced expansion of adult??hematopoietic stem cells ex vivo. Cell 2002;109:39.
    94. Sauvageau G, Thorsteinsdottir U, Hough MR et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997;6:13.
    95. Nakamura T, Largaespada DA, Shaughnessy Jr JD et al.Cooperative activation of Hoxa and Pbx1-related genes inmurine myeloid leukaemias. Nat Genet 1996;12:149.
    96. Kasper LH, Brindle PK. Schnabel CA et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999;19:764,
    97. Kroon E, Thorsteinsdottir U, Mayotte N et al. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001;20:350.
    98. Kamps MP, Murre C, Sun XH et al. A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in pre-B ALL. Cell 1990,60:547.
    99. Nakamura T, Largaespada DA, Shaughnessy Jr JD et al. Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996,12:149.
    100. Owens BM, Hawley RG. HOX and non-HOX omeobox genes in leukemic hematopoiesis. Stem Cells 2002,20:364.
    101. Kroon E, Krosl J, Thorsteinsdottir U et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998;17:3714-3725.
    102. Nakamura T, Largaespada DA, Shaughnessy Jr JD et al.Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996.
    103. Owens BM, Hawley RG. HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells. 2002;20(5):364.
    104. Bromleigh VC, Freedman LP. p21 is a transcriptional target of HOXA 10 in differentiating myelomonocytic cells. Genes Dev 2000; 14:2581.
    105. Raman V, Martensen SA, Reisman D et al. Compromised HOX A 5 function can limit p53 expression in human breast tumours. Nature 2000; 405:974.
    106. Blobel GA. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 2000;95:745.
    107. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000; 14:1553.
    108. Shen WF, Krishnan K, Lawrence HJ et al. The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol Cell Biol 2001; 21:7509.
    109. Chariot A, van Lint C, Chapelier M, et al. CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene. 1999; 18(27):4007.
    110. Asahara H, Dutta S, Kao HY et al. Pbx-Hox heterodimers recruit coactivator-corepressor complexes in an isoformspecific manner. Mol Cell Biol 1999;19:8219.
    111. Weinmaster G, The ins and outs of nothc signaling. Mol Cell Neurosci 1997, 9:91.
    112. Berry LW, Westlund B, Schedl T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family or receptors. Development 1997, 124:1747.
    113. Kojika S, Griffin JD. Notch receptors and hematopoiesis. Exp Hematol 2001, 29:1041.114. Maillard 1, Adler SH, Pear WS. Notch and the immune system.Immunity 2003;19:781.
    115. Radtke F, Wilson A, Mancini SJ, et al. Notch regulation of lymphocyte development and function. Nat Immunot 2004;5:247.
    116. Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183:2283.
    117. Pui JC, Allman D, Xu L, et al. Notchl expression in early lymphopoiesis influences B versus T lineage determination. Immunity 1999;11:299.
    118. Wilson A, MacDonald HR, Radtke F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 2001;194:1003.
    119. Saito T, Chiba S, Ichikawa M, et aI.Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage developnlent. Immunity 2003;18:675.
    120. Krebs LT, Xue Y, Norton CR, et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notchl mutation. Genesis 2003; 37:139.
    121. Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000;14:1343.
    122..Vercauteren SM and Sutherland HJ. Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo.Blood. 2004;104(8):2315.
    123. Hasserjian RP, Aster JC, Davi F, et al. Modulated expression of notchl during thymocyte development. Blood 1996; 88:970.
    124. Reizis B, Leder P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16:295.
    125. Wolfer A, Wilson A, Nemir M, et al.Inactivation of Notchl impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity 2002; 16:869.
    126. Felli MP, Maroder M, Mitsiadis TA, et al. Expression pattern of Notchl, 2 and 3 and Jagged 1 and 2 in lymphoid and stromal thyrnus components: distinct ligand-receptor interactions in intrathymic T cell development, Int Imlnunol 1999;11:1017.
    127. Bellavia D, Campese AF, Alesse E, el al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19:3337,
    128. Bellavia D, Campese AF, Checquolo S, et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirernent of preTCR for leukemogenesis. Proc Natl Acad Sci USA 2002; 99:3788.
    129. Huang EY, Gallegos AM, Richards SM, et al. Surface expression of Notchl on thymocytes: correlation with the double-negative to double-positive transition. J Immunol 2003, 171:2296.
    130. Kato H, Sakai T, Tamura K, et al. Functional conservation of mouse Notch receptor family members. FEBS Lett 1996; 395:221.
    131. Kao HY, Ordentlich P, Koyano NN, el al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 1998;12:2269.
    132. Kurooka H, Kuroda K, Honjo T. Roles of the ankyrin repeats and C-terminal region of the??mouse notch 1 intracellular region. Nucleic Acids Res 1998;26:5448.
    133. Kurooka H, Honjo T. Functional interaction between the mouse notch 1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem 2000; 275:17211.
    134. Kuroda K, Tani S, Tamura K, et al. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 1999;274:7238.
    135.de la Pompa J, Wakeham A, Correia KM, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 1997;124:1139.
    136. Ohtsuka T, Ishibashi M, Gradwohl G, et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 1999; 18:2196.
    137. Tanigaki K, Han H, Yamamoto N, et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 2002, 3:443.
    138. Saito T, Chiba S, Ichikawa M, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003, 18:675.
    139. Kuroda K, Han H, Tani S, et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 2003, 18:301.
    140. Tanigaki K, Kuroda K, Han H, Honjo T. Regulation of B cell development by Notch/RBP-J signaling. Seminars in Immunology. 2003; 15:113.
    141. Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183:2283.
    142. Aster JC, Xu L, Karnell FG, et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by Notch 1. Mol Cell Biol 2000;20:7505.
    143. Izon DJ, Punt JA, Xu L, et al. Notch 1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 2001;14:253.
    144. Weng AP, Nam Y, Wolfe MS, et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003;23:655.
    145. Ciofani M, Schmitt TM, Ciofani A, et al. Obligatory role for cooperative signaling by pre-T cell receptor and Notch during thymocyte differentiation. J Immunol 2004; 172:5230.
    146. Bellavia D, Campese AF, Alesse E, et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19:3337.
    147. Rohn JL, Lauring AS, Linenberger ML, et al.Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J Virol 1996;70:8071.
    148. Witt CM, Hurez V, Swindle CS, et al. Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol Cell Biol 2003;23:8637.
    149. Hall MA, Curtis DJ, Metcalf D. et al. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci USA 2003, 100:992.
    150. Bellavia D, Campese AF, Checquolo S, et al. Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA 2002;99:3788.
    151. Hubmann R, Schwarzmeier JD, Shehata M, et al. Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia. Blood. 2002; 99(10):3742.
    152. Schwarzmeier JD, Hubmann R, Duchler M, et al. Regulation of CD23 expression by??Notch2 in B-cell chronic lymphocytic leukemia, Leuk Lymphoma. 2005; 46(2):157.
    153. Duechler M, Shehata M, Schwarzmeier JD, et al. Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia. 2005; 19(2):260.
    154. Troen G, Nygaard V, Jenssen TK, et al. Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma.J Mol Diagn. 2004; 6(4):297.
    155. Lopez-Nieva R Santos J, Fernandez-Piqueras J. Defective expression of Notchl and Notch2 in connection to alterations ofc-Myc and tkaros in gamma-radiation-induced mouse thymic lymphomas. Carcinogenesis. 2004;25(7):1299.
    156. Ye Q, Shieh JH, Morrone G, et al. Expression of constitutively active Notch4 (Int-3) modulates myeloid proliferation and differentiation and promotes expansion of hematopoietic progenitors.Leukemia. 2004:18(4):777.
    157. Yan XQ, Sarmiento U, Sun Y, et al. A novel Notch ligand D114 induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer, Blood 2001;98:3793.
    158. Dorsch M, Zheng G, Yowe D, et al. Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 2002;100:2046.
    159. Tohda S, Murata-Ohsawa M, Sakano S, et al. Notch ligands, Delta-1 and Delta-4 suppress the self-renewal capacity and long-term growth of two myeloblastic leukemia cell lines. Int J Oncol. 2003;22(5):1073.
    160. Murata-Ohsawa M, Tohda S. Nara N. Cellular analysis of growth suppression induced by the Notch ligands, Delta-1 and Jagged-1 in two myeloid leukemia cell lines. Int J Mol Med. 2004; 14(2):223.
    161. Murata-Ohsawa M, Tohda S, Kogoshi H, et al. The Notch ligand, Delta-1, reduces TNF-alpha-induced growth suppression and apoptosis by decreasing activation of caspases in U937 cells. Int J Mol Med. 2004; 14(5):861.
    162. Murata-Ohsawa M, Tohda S, Kogoshi It, et al. The Notch ligand, Delta-1, alters retinoic acid (RA)-induced neutrophilic differentiation into monocytic and redtices RA-induced apoptosis in NB4 cells. Leuk Res. 2005; 29(2): 197.
    163. Tohda S, Nara N. Expression of Notchl and Jaggedl proteins in acute myeloid leukemia cells. Leuk Lymphoma. 2001 Jul;42(3):467.
    164. Jundt F, Anagnostopoulos I, Forster R, et al. Activated Notchl signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002; 99:3398.
    165. Aster JC, Xu L, Karnell FG, et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by Notchl. Mol Cell Biol 2000;20:7505.
    166. Deftos ML, He YW, Ojala EW, et al. Correlating notch signaling with thymocyte maturation. Immunity 1998;9:777.
    167. Nam Y, Weng AP,Aster JC, et al. Structural requirements for assembly of the CSL.intracellular Notchl.Mastermind-like 1 transcriptional activation complex. J Biol Chem 2003 ;278:21232.
    168. Lieber T, Kidd S, Alcamo E, et al. Antineurogenic phenotypes induced by truncated Notch??proteins indicate a rote in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 1993:7:1949.
    169. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene is broken by chromosomal translocations in T lyrnphohlastic neoplasms. Cell 1991;66:649.
    170. Ma SK, Wan TS, Chan LC. Cytogenetics and molecular genetics of childhood leukemia. Hematol Oncol 1999;17:91.
    171. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCHI in human T cell acute lymphoblastic leukemia.Science. 2004; 306(5694):269.
    172. Wu L, Sun T, Kobayashi K, et al. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002;22:7688.
    173. Deftos ML, Huang E, Qjala EW, et al. Notchl signaling promotes the maturation of CD4 and CD8 SP thymocytes.hnmunity 2000;13:73.
    174. Kawamata S, Du C, Li K, et al. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 2002;21:3855.
    175. Izon DJ, Aster JC, He Y, et al. Deltexl redirects lymphoid progenitors to the B cell lineage by antagonizing Notchl. hnmunity 2002;16:231.
    176. Bellavia D, Campese AF, Checquolo S, et al. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA 2002;99:3788.
    177. Bain G, Engel I, Robanus Maandag EC, et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997;17:4782.
    178. Nie L, Xu M, Vladimirova A, et aI.Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 2003;22:5780.
    179. Talora C, Campese AF, Bellavia D,et al. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma.EMBO Rep 2003;4:1067.
    180. Talora C, Campese AF, Bellavia D, et al. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma.EMBO Rep. 2003;4(11):1067.
    181. Wang J, Shelly L, Miele L, et al.. Human Notch-1 inhibits NF-kappa B activity in the nucleus through a direct interaction involving a novel domain. J Immunol 2001;167:289.
    182. Felli MP, Vacca A, Calce A, et al. PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene. 2005; 24(6):992.
    183. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001;21:5925.
    184. Donnellan R, Chetty R. Cyclin D1 and human neoplasia. Mol Patho 1998;51:1.
    185. Sicinska E, Aifantis I, Le Cam L, el al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003;4:451.
    186. Jehn BM, Bielke W, Pear WS, et al. Protective effects of notch-1 on TCR-induced apoptosis. J Immunol 1999; 162:635.187. Sade H, Krishna S, Sarin A. The anti-apoptotic effect of notch-1 requires p561ck-dependent, Akt/PKB-mediated signalling in T cells. J Biol Chem 2003;279:2937.
    188. Smith E, Hargrave M, Yamada T, et al. Coexpression of SCL and GATA-3 in the V2 interneurons of the developing mouse spinal cord. Dec Dyn 2002, 224:231.
    189. Murre C, McCaw PS, Vaessin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989, 58:537.
    190. Robb L, Lyons I, Li R, et al. Absence of yolk sac hematiopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 1995, 92:7075.
    191. Porcher C, Swat W, Rockwell K, et at. The T-cell leukemia oncoprotein SCL/Tal-1 is essential for development of all hematopoietic lineages. Cell 1996, 86:47.
    192. Endoh M, Ogawa M, Orkin S, et al SCL/tal-1-dependent process determines a competence to select the definitive hematopoietic lineage prior to endothelial differentiation. EMBO J. 2002; 21 (24):6700.
    193. Kunisato A, Chiba S, Saito T, et al. Stein cell leukemia protein directs hematopoietic stem cell fate. Blood. 2004; 103(9):3336.
    194. Mikkola HK, Klintman J, Yang H, et al. Haematopoietic stein cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 2003;421:547-51.
    195. Lecuyer E, Hoang T. SCL: from the origin of hematopoiesis to stem cells and leukemia.Exp Hematol. 2004;32(1): 11.
    196. Bash RO, Crist WM, Shuster JJ, et al. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Blood. 1993; 81(8):2110.
    197..Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75.
    198. Delabesse E, Li J, Schnittger S, et al.Absence of SCL mutations in myeloid malignancies. Br J Haematol. 2003; 120(3):482.
    199. Herblot S, Steff AM, Hugo P, et al. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol. 2000;1 (2):138.
    200. Valge-Archer VE, Osada H, Warren AJ, et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA. 1994;91(18):8617.
    201. Dawid IB, Breen J J, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions.Trends Genet. 1998;14(4):156.
    202. Valge-Archer V, Forster A, Rabbitts TH. The LMO1 AND LDB1 proteins interact in human T cell acute leukaemia with the chromosomal translocation t(11;14)(p15;q11). Oncogene. 1998;17(24):3199.
    203..Wadman IA, Osada H, Grutz GG, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997; 16(11):3145.
    204. Grutz GG, Bucher K, Lavenir I, et al. The oncogenic T cell LIM-protein Lmo2 forms part??of a DNA-binding complex specifically in immature T cells. EMBO J. 1998; 17(16):4594.
    205. Ono Y, Fukuhara N, Yoshie O.Mol TALl and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3.Cell Biol. 1998;18(12):6939.
    206. Lecuyer E, Herblot S, Saint-Denis M, et al. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1.Blood. 2002; 100(7):2430.
    207. Goardon N, Schuh A, Hajar I, et al. Ectopic expression of TAL-1 protein in Ly-6E.1-htal-1 transgenic mice induces defects in B- and T-lymphoid differentiation. Blood. 2002; 100(2):491.
    208..Bain G, Engel I, Robanus Maandag EC, et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas Mol Cell Biol. 1997; 17(8):4782.
    209. Tremblay M, Herblot S, Lecuyer E, et al. Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem. 2003; 278(15):12680.
    210. Park ST, Nolan GP, Sun XH. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J Exp Med. 1999;189(3):501.
    211. O'Neil J, Billa M, Oikemus S, et al. The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene. 2001; 20(29):3897.
    212. Barndt RJ, Dai M, Zhuang Y. Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol Cell Biol. 2000;20(18):6677.
    213. O'Neil J, Shank J, Cusson N, et al. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell. 2004; 5(6):587.
    214. Huang S, Brandt SJ. mSin3A regulates murine erythroleukemia cell differentiation through association with the TALl (or SCL) transcription factor. Mol Cell Biol. 2000;20(6):2248.
    215. Hansson A, Manetopoulos C, Jonsson JI, et al. The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes.Biochem Biophys Res Commun. 2003;312(4): 1073.
    216. Rice AM, Li J, Sartorelli AC.Combination of all-trans retinoic acid and lithium chloride surmounts a retinoid differentiation block induced by expression of Scl and Rbtn2 transcription factors in myeloid leukemia cells. Leuk Res. 2004;28(4):399.
    217.郑正津 胡建达 黄淑桦等 SCL基因反义寡核苷酸对K562和CEM细胞系的作用中国实验血液学杂志.2002;10(5):404.
    218. Gonda TJ. The c-Myb oncoprotein. Int J Biochem Cell Biol. 1998, 30:547.
    219. Oh IH, Reddy Ep. The myb gene family in cell growth differentiation, differentiation and apoptosis. Oncogene. 1999, 18:3017.
    220. Sakura H, Kanei-Ishii C, Nagase T, et al. Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA 1989, 86:5758.
    221. Duprey SP, Boettinger D. Development regulation of c-myb in normal myeloid progenitro cells. Proc Natl Acad Sci USA 1985, 82:6937.
    222. Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for normal fetal hepatic hernatopoiesis. Cell 1991,65:677.
    223. Müller C, Yang R, Idos G, et al. c-myb Transactivates the Human Cyclin A1 Promoter and??Induces Cyclin A1 Gene Expression. Blood 1999, 94: 4255.
    224. Melotti P, Ku DH, Calabretta B. Regulation of the expression of the hematopoietic stem cell antigen CD34: role ofc-myb. J Exp Med 1994, 179: 1023.
    225. Krause DS, Mucenski ML, Lawler AM, et al. CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb.Exp Hematol. 1998; 26(11): 1086.
    226. Ramirez JM, Houzet L, Koller R, et al. Activation of c-myb by 5' retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD') in gag. Virology. 2004; 330(2):398.
    227. Andersson KB, Kowenz-Leutz E, Brendeford EM, et al. Phosphorylation-dependent down-regulation of c-Myb DNA binding is abrogated by a point mutation in the v-myb oncogene. J Biol Chem. 2003; 278(6):3816.
    228. Dvorakova M, Kralova J, Karafiat V, et al. An ex vivo model to study v-Myb-induced leukemogenicity. Blood Cells Mol Dis. 2001; 27(2):437.
    229. Tomita A, Watanabe T, Kosugi H, et al. Truncated c-Myb expression in the human leukemia cell line TK-6. Leukemia. 1998; 12(9):1422.
    230. Dahle O, Bakke O, Gabrielsen OS. c-Myb associates with PML in nuclear bodies in hematopoietic cells. Exp Cell Res. 2004; 297(1):118.
    231. Yi HK, Nam SY, Kim JC, et al. Induction of apoptosis in K562 cells by dominant negative c-myb. Exp Hematol. 2002;30(10):1139.
    232. Reddy MA, Yang BS, Yue X, et al. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fins) genes. J Exp Med. 1994; 180(6):2309.
    233. McCracken S, Leung S, Bosselut R, et al. Myb and Ets related transcription factors are required for activity of the human lck type 1 promoter. Oncogene. 1994; 9(12):3609.
    234. Hedge SP, Kumar A, Kurschner C, et al. c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol Cell Biol. 1998; 18(5):2729.
    235. Ratajczak MZ, Perrotti D, Melotti P, el al. Myb and ets proteins are candidate regulators of c-kit expression in human hematopoietic cells.Blood. 1998; 91 (6):1934.
    236. Melotti P, Calabretta B. Ets-2 and c-Myb act independently in regulating expression of the hematopoietic stein cell antigen CD34. J Biol Chem. 1994; 269(41):25303.
    237. Schmidt M, Nazarov V, Stevens L, et al. Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol Cell Biol, 2000;20(6):1970.
    238. Wolff L, Schmidt M, Koller R, et al. Three genes with different functions in transformation are regulated by c-Myb in myeloid cells.Blood Cells Mol Dis. 2001;27(2):483.
    239. Lutz PG, Houzel-Charavel A, Moog-Lutz C, et al. Myeloblastin is an Myb target gene: mechanisms of regulation in myeloid leukemia cells growth-arrested by retinoic acid. Blood. 2001;97(8):2449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700