用户名: 密码: 验证码:
Tiam 1对胃癌侵袭转移的影响及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:胃癌是常见的恶性肿瘤,其预后较差,生存率低,癌的侵袭转移是术后复发和导致患者死亡的重要原因。胃癌侵袭转移是一个多阶段、多步骤的复杂生物学过程,其中癌细胞的运动及侵袭能力是产生转移的必要条件。T 淋巴瘤侵袭转移诱导因子1(Tiam 1)作为Dbl癌基因家族重要成员,通过诱导Rho蛋白分子Rac 1的生物激活,发挥调节细胞骨架结构重组、形体极化、运动与迁移的功能。近年的研究显示,Rho蛋白是细胞信号传导通路中的转换器和分子开关,能够调节细胞诸多基础生命活动,积极参与了肿瘤侵袭、转移等病生理过程。因此,作为Rac 1 的上游调控分子,Tiam 1与肿瘤侵袭转移的关系及其在该过程中发挥何种影响等问题就愈发突出,对其功能研究的需要也日益迫切。同时,目前对Tiam 1 在调节细胞骨架结构与运动行为之外,还具有哪些生物功能尚缺乏了解。为此,本课题以胃癌为例,首先观察Tiam 1 在胃癌组织中的表达及其与胃癌临床病理参数的关系,然后检测Tiam 1 在来源相同但侵袭转移表型有异之胃癌细胞中的表达,分析其与胃癌细胞侵袭转移能力的相关性,接着采用反义寡脱氧核苷酸基因阻断技术,特异抑制胃癌细胞中Tiam 1 表达,观察由此引发的胃癌细胞侵袭转移能力及其相关调控因子的改变情况。期望通过以上研究,初步探讨Tiam 1 对胃癌侵袭转移的影响及机制,为临床防治提供新靶点与理论依据。
    方法:(1) 收集60 例外科手术切除胃癌标本及距病灶约3~5cm 的癌旁正常胃粘膜组织,应用免疫组化技术检测Tiam 1 及其下游分子Rac 1 的表达,分析其与胃癌临床病理参数的关系;(2) 采用层粘连蛋白(LN)粘附法,由胃癌MKN-45 细胞株中筛选出对LN 亲和力高或低的细胞亚株,观察两者间在细胞骨架形态学以及增殖能力、细胞周期分布和体内、外侵袭转移能力等生物学特性方面的差异,然后应用RT-PCR、流式细胞仪和细胞免疫组化技术检测并分析Tiam 1 表达与胃癌细胞侵袭转移能力的关系;(3) 合成针对Tiam 1 mRNA 特异靶点的反义寡脱氧核苷酸,以脂质体为载体转染进入胃癌高转移细胞,应用流式细胞仪和RT-PCR 技术检测Tiam 1 表达受抑程度,同时观察转染后胃癌高转移细胞在形态学以及生长活力、粘附特性和体内、外侵袭转移能力方面的改变情况,并应用流式细胞仪和细胞免疫组化技术检测转染与未转染胃癌高转移细胞以及胃癌低转移细胞三者间Rac 1、层粘连蛋白受体(Integrin β1 和67kDa
Objective: Gastric cancer is one of the most common malignant tumors, its prognostic bad and survival rate low, the invasion and metastasis of which is one of the most important causes related to recurrence after surgery and high mortality. The invasion and metastasis of gastric cancer is a complex biological process with multiple phases and steps, in which locomotion and invasiveness are necessary for gastric cancer cells to metastasize. T lymphoma invasion and metastasis inducing factor 1(Tiam 1) is an important member of Dbl oncogene family, whose biological function is to regulate cytoskeletal reorgnization, body polarization, motion and migration, which is mediated by Rac 1,an important member of Rho oncogene family. Recent studys showed that proteins of Rho family were transducers and cellular switchs in vital movement, and they actively took part in the pathobiological process of tumor invasion and metastasis. As an upstream regulator of Rac 1, the possible roles of Tiam 1 in tumor invasion and metastasis became more and more outstanding and caught the attention of researchers. But up to now, these questions are still not clear. So in this study, we firstly detected the expression of Tiam 1 in gastric cancer tissues and analysed its relationship with the clinicopathological parameters. Then we examined the expression of Tiam 1 in gasric cancer cells with different invasive and metastatic potentials and analysed the correlations between them. Thirdly, we down-regulated the expression of Tiam 1 gene in gastric cancer cells and observed subsequent changes in their biological characters and the expressions of related factors. Through this research, We hope to explore the possible role of Tiam 1 in the invasion and metastasis of gstric cancer and its mechanism.
    Methods: (1) SABC immunohistochemistry were used to evaluate the expressions of Tiam 1 and Rac 1 in 60 gastric cancer tissues and normal paracarcinoma gastric mucosa(part from 3~5cm), meanwhile relationships among Tiam 1, Rac 1 and clinicopathological parameters were investigated. (2) Two subpopulations with different affinity to laminin(LN) were separated from human gastric cancer cell line MKN-45 by adhesion screening in vitro, the differences in cytoskeletal morphology, the composition of cell cycles and the invasive and metastatic potentials both in vitro and in vivo between them
    were observed. Then the expressions of Tiam 1 mRNA and protein were detected by RT-PCR, flowcytometry and cellular immunohistochemistry, at the same time correlations between the expression of Tiam 1 and the invasive and metastatic potentials of gastric cancer cells also were analysed. (3) A 18mer ASODN, trgeted to the specific sequence of Tiam 1 mRNA, was designed and transfected into gastric cancer cells with higher invasive and metastatic potentials using DOTAP liposomal transfection reagent. The expressions of Tiam 1 mRNA and protein were detected by RT-PCR and flowcytometry, meanwhile changes in cellular morphology, proliferation activity, cellular affinity and the invasive and metastatic potentials both in vivo and in vitro after transfection were observed too. Then the expressions of Rac 1, integrinβ1, 67kDa LNR, NF-κB and MMP-2 / -9 in transfected or no transfected gastric cancer cells with higher invasive and metastatic potentials and cells with lower invasive and metastatic potentials, were detected using flowcytometry and cellular immunohistochemistry technology. Results: (1) There was negative staining of Tiam 1 protein in paracarcinoma gastric mucosa, while positive staining was detected in gastric cancer tissues(P < 0.01). The positive staining rate of Rac 1 in gastric cancer tissues was significantly higher than that in paracarcinoma gastric mucosa(P < 0.01). As the degree of histologic differentiation of gastric cancer decreased, depth of invasion increased, stage of TNM upgraded or lymph node metastasis appeared, positive staining rates of Tiam 1 and Rac 1 proteins in gastric cancer tissues significantly increased(P < 0.05 or P < 0.01), meanwhile there were positive correlations between their expression(r = 0.567,P < 0.01). (2) Two subpopulations with different affinity to laminin(LN) could be separated from human gastric cancer cell line MKN-45 by adhesion screening in vitro. The one with lower affinity possessed a more regular cytoskeletal network, fewer actin bodys and pseudopodia, but the other one with higher affinity was superior in proliferation activity and the invasive and metastatic potentials both in vitro and in vivo(P < 0.05 or P < 0.01). The expression of Tiam 1 in cells with higher affinity was more intensive than that in cells with lower affinity(P < 0.05), meanwhile positive correlations existed between the expression of Tiam 1 and the invasive and metastatic potential of gastric cancer cells(r = 0.995~1,P < 0.01). (3) The expressions of Tiam 1 mRNA and protein were decreased markedly after Tiam 1 ASODN transfection using DOTAP liposomal transfection reagent( P < 0.01) and the inhibitive ratio was 79.8%
    and 71.3% respectively. After transfection,the cytoskeletal network of cells with higher invasive and metastatic potentials changed from disorder to regularity, and the actin bodys, cellular surface projections or pseudopodia diminished. Meantime, the cellular affinity to extracellular matrix and the invasive and metastatic potentials both in vitro and in vivo also decreased in some degree(P < 0.05 or P < 0.01). Examinations showed the expressions of Rac 1, integrinβ1, 67kDa LNR, NF-κB and MMP-2 / -9 in cells with higher invasive and metastatic potentials were more significantly intensive than that in cells with lower invasive and metastatic potentials(P < 0.05 or P < 0.01), but obvious differences only existed in the expressions of 67kDa LNR, NF-κB and MMP-2 / -9 in Tiam 1 ASODN transfected or no transfected cells with higher invasive and metastatic potentials(P < 0.05 or P < 0.01). Conclusions: ①As tight correlations existed between the expressions of Tiam 1, Rac 1 and the pathobiological behavior of gastric cancer, both of them maybe acted as reference indexes for judging the invasive and metastatic state of gastric cancer and forecasting the prognostic of patients. ②Positive correlations existed between the expressive intensity of Tiam 1 and the invasive and metastatic potentials of gastric cancer cells. ③Expressive restraint of Tiam 1 gene could directly result in reorganization of cytoskeleton and impair the invasive and metastatic potentials of gastric cancer cells both in vitro and in vivo. ④Based on our studys and other researchers’reports, the effects of Tiam 1 on the invasion and metastasis of gastric cancer cells, not only exhibited in changes of cellular morphology, but also originated from such cellular biological fundations as the activation of Rac 1 and the up-regulated synthesis of 67kDa LNR, NF-κB or MMP-2 / -9 proteins, which were induced or promoted by Tiam 1.
引文
1. Berardi R, Scartozzi M, Romagnoli E, et al. Gastric cancer treatment: a systematic review. Oncol Rep, 2004, 11(4):911-916.
    2. 李诚, 周健, 裘炯良.胃癌流行病学与分子生物学病因的研究进展. 肿瘤防治研究, 2004, 31(2):115-118.
    3. Dickson JL, Cunningham D. Systemic treatment of gastric cancer. Eur J Gastroenterol Hepatol, 2004, 16(3):255-263.
    4. Yeh KH, Cheng AL. Recent advances in therapy for gastric cancer. J Formos Med Assoc, 2004, 103(3):171-185.
    5. Kyrlagkitsis I, Karamanolis DG. Genes and gastric cancer. Hepatogastroenterology, 2004, 51(55):320-327.
    6. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med, 2003, 3(7):659-671.
    7. Pawlak G, Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev, 2001, 11(1):41-47.
    8. Mertens AE, Roovers RC, Collard JG. Regulation of Tiam1-Rac signalling. FEBS Lett, 2003, 546(1):11-16.
    9. Kawauchi T, Chihama K, Nabeshima Y, et al. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J, 2003, 22(16):4190-4201.
    10. Kunda P, Paglini G, Quiroga S, Kosik K, Caceres A. Evidence for the involvement of Tiam1 in axon formation. J Neurosci, 2001, 21(7):2361-2372.
    11. Minard ME, Kim LS, Price JE, et al. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat, 2004, 84(1):21-32.
    12. Bourguignon LY, Zhu H, Shao L, et al. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J Cell Biol, 2000, 150(1):177-191.
    13. Malliri A, van der Kammen RA, Clark K, et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature, 2002, 417(6891):867-871.
    14. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 2002, 16(13):1587-1609.
    15. Bokoch GM. Regulation of cell function by Rho family GTPases. Immunol Res, 2000, 21(2-3):139-148.
    16. Etienne MS, Hall A. Rho GTPases in cell biology. Nature, 2002, 420(6916):629-635.
    17. Tatsuno I, Hirai A, Saito Y. Cell-anchorage, cell cytoskeleton, and Rho-GTPase family in regulation of cell cycle progression. Prog Cell Cycle Res, 2000, 4:19-25.
    18. Malliri A, Collard JG. Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol, 2003, 15(5):583-589.
    19. Ridley AJ. Rho proteins and cancer. Breast Cancer Res Treat, 2004, 84(1):13-19.
    20. 全国胃癌协作组. 胃癌病理诊断的诊断规范. 沈阳: 辽宁人民出版社, 1980:18-20.
    21. Kennedy BJ. The unified international gastric cancer staging classification system. Scand J Gastroenteral, 1987, 22(suppl 133):11-14.
    22. 蔡文琴, 王伯云. 实用免疫细胞化学与核酸分子杂交技术. 成都: 四川科学技术出版社, 1994:72-89.
    23. 许良中, 杨文涛. 免疫组织化学反应结果的判断标准. 中国癌症杂志, 1996, 6(4):229-231.
    24. Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci, 2001, 26(12):724-732.
    25. Yamamura K, Kibbey MC, Kleinman HK. Melanoma cells selected for adhesion to laminin peptides have different malignant properties. Cancer Res, 1993, 53(2):423-428.
    26. Kim WH, Lee BL, Jun SH, et al. Expression of 32/67-kDa laminin receptor in laminin adhesion-selected human colon cancer cell lines. Br J Cancer, 1998, 77(1):15-20.
    27. Kim WH, Jun SH, Kibbey MC, et al. Expression of beta 1 integrin in laminin-adhesion-selected human colon cancer cell lines of varying tumorigenicity. Invasion Metastasis, 1994-1995, 14(1-6):147-155.
    28. 陈向荣, 任卫平, 童菊芳, 等. 粘附法筛选胃癌细胞亚株. 胃肠病学, 2000, 5(2):116-118.
    29. 司徒镇强, 吴军正. 细胞培养. 西安: 世界图书出版公司, 1996:58-90, 173-196.
    30. 张进华, 丁彦青, 杨学皆. 介绍一种细胞骨架蛋白改良染色法. 诊断病理学杂志, 1996, 3(4):235-236.
    31. 左连富. 流式细胞术样品制备技术. 北京: 华夏出版社, 1991:46-104.
    32. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res, 1987, 47(12):3239-3245.
    33. 高进. 癌的侵袭与转移-基础研究与临床. 北京: 北京医科大学中国协和医科大学联合出版社, 1996:53-63.
    34. 金冬雁, 黎孟枫, 等译. 分子克隆实验指南(第二版). 北京: 科学出版社, 1992:366.
    35. Lleonart ME, Martin-Duque P, Sanchez-Prieto R, et al. Tumor heterogeneity: morphological, molecular and clinical implications. Histol Histopathol, 2000, 15(3):881-898.
    36. Greller LD, Tobin FL, Poste G. Tumor heterogeneity and progression: conceptual foundations for modeling. Invasion Metastasis, 1996, 16(4-5):177-208.
    37. Yokozaki H. Molecular characteristics of eight gastric cancer cell lines established in Japan. Pathol Int, 2000, 50(10):767-777.
    38. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med, 2003, 3(7):659-671.
    39. Cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta, 2001, 1552(1):39-45.
    40. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol, 2002, 12(3):197-207.
    41. Kim WH, Lee BL, Kim DK, et al. Laminin-1-adherent cancer cells show increased proliferation and decreased apoptosis in vivo. Anticancer Res, 1999;19(4B):3067-3071.
    42. Kim WH, Lee BL, Jun SH, et al. Expression of 32/67-kDa laminin receptor in laminin adhesion-selected human colon cancer cell lines. Br J Cancer. 1998;77(1):15-20.
    43. Kim WH, Jun SH, Kibbey MC, et al. Expression of beta 1 integrin in laminin-adhesion-selected human colon cancer cell lines of varying tumorigenicity. Invasion Metastasis, 1994-95;14(1-6):147-55.
    44. Yamamura K, Kibbey MC, Kleinman HK. Melanoma cells selected for adhesion to laminin peptides have different malignant properties. Cancer Res, 1993, 53(2):423-428.
    45. Danen EH, van-Muijen GN, van-de-Wiel-van-Kemenade E, et al. Regulation of integrin-mediated adhesion to laminin and collagen in human melanocytes and in non-metastatic and highly metastatic human melanoma cells. Int J Cancer, 1993, 54(2):315-321.
    46. Song SY, Nomizu M, Yamada Y, et al. Liver metastasis formation by laminin-1 peptide (LQVQLSIR)-adhesion selected B16-F10 melanoma cells. Int J Cancer, 1997, 71(3):436-441.
    47. JassJR, HNPCC and sporadic MSI-H colorectal cancer: a review of the morphological similarities and differences. Fam Cancer, 2004, 3(2):93-100.
    48. Shibata D. Molecular tumor clocks and dynamic phenotype. Am J Pathol, 1997, 151(3):643-646.
    49. Kodama A, Lechler T, Fuchs E. Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol, 2004, 167(2):203-207.
    50. Chang L, Goldman RD. Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol, 2004, 5(8):601-613.
    51. Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol, 2004, 5(8):658-666.
    52. Schweitzer JK, D'Souza-Schorey C. Finishing the job: cytoskeletal and membrane events bring cytokinesis to an end. Exp Cell Res, 2004, 295(1):1-8.
    53. Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol, 2000, 126(12):682-692.
    54. Yokota J. Tumor progression and metastasis. Carcinogenesis, 2000, 21(3):497-503.
    55. Nicolson GL, Moustafa AS. Metastasis-Associated genes and metastatic tumor progression. In Vivo, 1998, 12(6):579-588.
    56. Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am, 2001, 10(2):383-392.
    57. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med, 2003, 3(7):631-642.
    58. Hernandez L, Kozlov S, Piras G, et al. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc Natl Acad Sci USA, 2003, 100(23):13344-13349.
    59. Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci, 2001, 58(12-13):1907-1922.
    60. Timar J, Csuka O, Orosz Z, et al. Molecular pathology of tumor metastasis. I. Predictive pathology. Pathol Oncol Res, 2001, 7(3):217-230.
    61. Orr FW, Wang HH. Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am, 2001, 10(2):357-381.
    62. Cavallaro U, Christofori G. Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N Y Acad Sci, 2004, 1014:58-66.
    63. Okegawa T. Li Y, Pong RC, et al. Cell adhesion proteins as tumor suppressors. J Urol, 2002, 167(4):1836-1843.
    64. Kleinman HK, Koblinski J, Lee S, et al. Role of basement membrane in tumor growth and metastasis. Surg Oncol Clin N Am, 2001, 10(2):329-338.
    65. Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer, 1996, 65(6):717-722.
    66. Effert PJ, Gastl G, Strohmeyer T. Current and future strategies to block tumor angiogenesis, invasion, and metastasis. World J Urol, 1996, 14(3):131-140.
    67. Todd R, Donoff RB, Wong DT. The molecular biology of oral carcinogenesis: toward a tumor progression model. J Oral Maxillofac Surg, 1997, 55(6):613-623.
    68. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 1999, 18(38):5356-5362.
    69. Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis, 1997, 15(3):272-306.
    70. Lu XG, Zhan LB, Feng BA, et al. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene. World J Gastroenterol, 2004, 10(14):2140-2144.
    71. Illert B, Otto C, Thiede A, et al. Detection of disseminated tumor cells in nude mice with human gastric cancer. Clin Exp Metastasis, 2003, 20(6):549-554.
    72. Cui JH, Kruger U, Vogel I, et al. Intact tissue of gastrointestinal cancer specimen orthotopically transplanted into nude mice. Hepatogastroenterology, 1998, 45(24):2087-2096.
    73. Munger K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis. Cancer Invest, 2002, 20(1):71-81.
    74. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck, 1998, 20(8):745-752.
    75. Ben-Ze'ev A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol, 1997, 9(1):99-108.
    76. Teoh G, Anderson KC. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am, 1997, 11(1):27-42.
    77. Smith L, Andersen KB, Hovgaard L, et al. Rational selection of antisense oligonucleotide sequences. Eur J Pharm Sci, 2000, 11(3):191-198.
    78. Schiavone N, Donnini M, Nicolin A, et al. Antisense oligonucleotide drug design. Curr Pharm Des, 2004, 10(7):769-784.
    79. Giles RV. Antisense oligonucleotide technology: from EST to therapeutics. Curr Opin Mol Ther, 2000, 2(3):238-252.
    80. Mitsuhashi M. Strategy for designing specific antisense oligonucleotide sequences. J Gastroenterol, 1997, 32(2):282-287.
    81. Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene, 2003, 22(56):9087-996.
    82. Henry SP, Monteith D, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer: Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides and toxicological properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des, 1997, 12(5):395-408.
    83. Bennett CF. Efficiency of antisense oligonucleotide drug discovery. Antisense Nucleic Acid Drug Dev, 2002, 12(3):215-224.
    84. Baker BF, Condon TP, Koller E, et al. Discovery and analysis of antisense oligonucleotide activity in cell culture. Methods, 2001, 23(2):191-198.
    85. Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res, 1991, 51(18 Suppl):5054s-5059s.
    86. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol, 1999, 144(6):1235-1244.
    87. Banyard J, Anand-Apte B, Symons M, et al. Motility and invasion are differentially modulated by Rho family GTPases. Oncogene, 2000, 19(4):580-591.
    88. Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem, 1999, 68:459-486.
    89. Tapon N, Nagata K, Lamarche N, et al. A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signalling pathways. EMBO J, 1998, 17(5):1395-1404.
    90. Marinari B, Costanzo A, Viola A, et al. Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur J Immunol, 2002, 32(2):447-456.
    91. Ridley AJ. Rho proteins: linking signaling with membrane trafficking. Traffic, 2001, 2(5):303-310.
    92. De Corte V, Bruyneel E, Boucherie C, et al. Gelsolin induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBOJ, 2002, 21:6781-6789.
    93. Fujita J. Correlation between laminin and fibronectin on the basement membrane and tumor progression in early gastric cancer: an immunohistochemical study. Hokkaido Igaku Zasshi, 2000, 75(1):25-34.
    94. Felding-Habermann B. Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis, 2003, 20(3):203-213.
    95. Nakashio T, Narita T, Sato M, et al. The association of metastasis with the expression of adhesion molecules in cell lines derived from human gastric cancer. Anticancer Res, 1997, 17(1A):293-299.
    96. Kawamura T, Endo Y, Yonemura Y, et al. Significance of integrin alpha2/beta1 in peritoneal dissemination of a human gastric cancer xenograft model. Int J Oncol, 2001, 18(4):809-815.
    97. Matsuoka T, Yashiro M, Nishimura S, et al. Increased expression of alpha2beta1-integrin in the peritoneal dissemination of human gastric carcinoma. Int J Mol Med, 2000, 5(1):21-25.
    98. Fulop T, Larbi A. Putative role of 67 kDa elastin-laminin receptor in tumor invasion. Semin Cancer Biol, 2002, 12(3):219-229.
    99. Montuori N, Sobel ME. The 67-kDa laminin receptor and tumor progression. Curr Top Microbiol Immunol, 1996, 213 ( Pt 1):205-214.
    100.de-Manzoni G, Guglielmi A, Verlato G, et al. Prognostic significance of 67-kDa laminin receptor expression in advanced gastric cancer. Oncology, 1998, 55(5):456-460.
    101.Woodward TL, Lu H, Haslam SZ. Laminin inhibits estrogen action in human breast cancer cells. Endocrinology, 2000, 141(8):2814-2821.
    102.Li X, Talts U, Talts JF, et al. Akt/PKB regulates laminin and collagen IV isotypes of the basement membrane. Proc Natl Acad Sci USA, 2001, 98(25):14416-14421.
    103.Pellegrini R, Martignone S, Menard S, et al. Laminin receptor expression and function in small-cell lung carcinoma. Int J Cancer Suppl, 1994, 8:116-120.
    104.Sasaki T, Fassler R, Hohenester E. Laminin: the crux of basement membrane assembly. J Cell Biol, 2004, 164(7):959-963.
    105.Li S, Edgar D, Fassler R, et al. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell, 2003, 4(5):613-624.
    106.Ekblom P, Lonai P, Talts JF. Expression and biological role of laminin-1. Matrix Biol, 2003, 22(1):35-47.
    107.Pellegrini R, Martignone S, Tagliabue E, et al. Prognostic significance of laminin production in relation with its receptor expression in human breast carcinomas. Breast Cancer Res Treat, 1995, 35(2):195-199.
    108.Marques LA, Franco EL, Torloni H, et al. Independent prognostic value of laminin receptor expression in breast cancer survival. Cancer Res, 1990, 50(5):1479-1483.
    109.Hinz M, Krappmann D, Eichten A, et al. NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol, 1999, 19(4):2690-2698.
    110.Nagai S, Washiyama K, Kurimoto M, et al. Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J Neurosurg, 2002, 96(5):909-917.
    111.Wang W, Luo HS, Yu BP. Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World J Gastroenterol, 2004, 10(2):177-181.
    112.Pervaiz S, Cao J, Chao OS, et al. Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene, 2001, 20(43):6263-6268.
    113.Petruzzelli GJ. The biology of tumor invasion, angiogenesis and lymph node metastasis. ORL J Otorhinolaryngol Relat Spec, 2000, 62(4):178-185.
    114.Bohle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg, 1999, 384(2):133-140.
    115.Altorki N, Schwartz GK, Blundell M, et al. Characterization of cell lines established from human gastric-esophageal adenocarcinomas. Biologic phenotype and invasion potential. Cancer, 1993, 72(3):649-657.
    116.Senota A, Itoh F, Yamamoto H, et al. Relation of matrilysin messenger RNA expression with invasive activity in human gastric cancer. Clin Exp Metastasis, 1998, 16(4):313-321.
    117.Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003, 36(1):128-137.
    118.Bussemakers MJ, Schalken JA. The role of cell adhesion molecules and proteases in tumor invasion and metastasis. World J Urol, 1996, 14(3):151-156.
    119.Mizutani K, Kofuji K, Shirouzu K. The significance of MMP-1 and MMP-2 in peritoneal disseminated metastasis of gastric cancer. Surg Today, 2000, 30(7):614-621.
    120.Khasigov PZ, Podobed OV, Gracheva TS, et al. Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry-(Mosc), 2003, 68(7):711-717.
    121.Festuccia C, Giunciuglio D, Guerra F, et al. Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res, 1999, 11(1):17-31.
    122.Mullen P. The use of Matrigel to facilitate the establishment of human cancer cell lines as xenografts. Methods Mol Med, 2004, 88:287-292.
    123.Engers R, Springer E, Michiels F, et al. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem, 2001, 276(45):41889-41897.
    124.Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem, 2001, 276(19):16248-16256.
    125.d'Ortho MP, Stanton H, Butler M, et al. MT1-MMP on the cell surface causes focal degradation of gelatin films. FEBS Lett, 1998, 421(2):159-164.
    126.Will H, Atkinson SJ, Butler GS, et al. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem, 1996, 271(29):17119-17123.
    127.Sato H, Seiki M. Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem-(Tokyo), 1996, 119(2):209-215.
    128.Kinoshita T, Sato H, Okada A, et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem, 1998, 273(26):16098-16103.
    129.Lozano E, Betson M, Braga VM. Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays, 2003, 25(5):452-463.
    130.Nomura H, Sato H, Seiki M, et al. Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res, 1995, 55(15):3263-3266.
    131.Andela VB, Schwarz EM, Puzas JE, et al. Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Res, 2000, 60(23):6557-6562.
    132.Collier IE, Bruns GA, Goldberg GI, et al. On the structure and chromosome location of the 72-and 92-kDa human type IV collagenase genes. Genomics, 1991, 9(3):429-434.
    133.Huhtala P, Chow LT, Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem, 1990, 265(19):11077-11082.
    134.Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene, 1993, 8(2):395-405.
    135.Hah N, Lee ST. An absolute role of the PKC-dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2003, 305(2):428-433.
    136.Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett, 1998, 435(1):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700