用户名: 密码: 验证码:
晶粒析出长大的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料科学和计算机技术的进步,使得材料研究正从定性描述进入定量描述阶段。近年来,国内外研究者提出了许多基于蒙特卡洛方法(MC法)和元胞自动机方法(CA法)的晶粒长大的模型,为晶粒长大的研究开辟了一条新途径。为此,本论文应用改进蒙特卡洛方法,模拟了晶粒长大过程。
     首先,应用Monte Carlo(MC)法模拟在周期性边界条件下的晶粒长大行为。利用MC法模拟时,晶界处格点的迁移引起晶粒的长大,根据这一主要特征提出一种精确快速的测定晶粒度的新方法—递归统计法,然后采用递归统计方法测量晶粒度,并与截点法比较。结果表明,递归统计法测得的晶粒度比截点法的更精确,而且测量精确度不受模型的格点类型以及晶粒的尺寸、形状等的影响,测量速度比其他统计方法要快。其次,运用Radhakrishnan等人改进的算法重现了正常晶粒长大的模拟过程,接着运用该算法首次研究了弥散相第二相粒子存在情况下的正常晶粒长大,结果表明改进算法一样适合于模拟这种情况下的晶粒生长,而且模拟效率比Srolovitz基本算法高,结果也和理论符合的很好。然后,运用改进的算法探索了异常晶粒长大的过程,经改进的算法运用在异常晶粒长大的模拟上仍然有比较高的模拟效率并且得到与理论符合得比较好的结果。
The advancement of material science and computer technique is changing the research manners of material science, so that more and more quantitative investigation manners will be adopted rather than qualitative investigation manners usually used today along with the developments of computer models and emulation techniques.
     In recent years, the experimental literature clearly shows that MC simulation procedure and CA simulation procedure are employed to study grain growth. The researcher combines the manifestation technique of the calculator picture, reappearing material microstructures to turn into process vividly by picture, and develops a new path for the grain growth research.
     First, Monte Carlo Method is used to simulate grain growth process under periodic boundary condition. A new improved measurement method of grain size named recursive statistics method is introduced according to the fact that grain growth induced by displacement of single lattice around the grain boundary, and then recursive statistics method is used to measure grain size. Compare it with intercept method, the results show that grain size measured by recursive statistics method is more accurate than the one measured by intercept method, and measuring speed of statistics method is faster than other statistics method's. Secondly, the calculate method which makes use of Radhakrishnan e.t. is used to simulate of normal grain growth, and then made use of this method to study grain growth with mobile particles first time. The research shows that the modify method is similar suitable for the simulation of grain growth with mobile particles, and imitate an efficiency more faster than the Srolovitz's method, results are a nice match for the theories. Then, the modify method is used to simulate abnormal grain growth, and still have a higher emulation efficiency and get to match with theories on the emulation of abnormal grain growth.
引文
[1]熊家炯.材料设计[M],天津:天津大学出版社,2002:11.
    [2]高英俊,刘慧,钟夏平.计算机模拟技术在材料科学中的应用[J].广西大学学报(自然科学版),2001,26(4):291。
    [3]D.罗伯[德].项金钟,吴兴惠译.计算材料学[M],北京:化学工业出版社,2002.3.
    [4]M.P.Anderson,D.J.Srolovitz,G.S.Grest and P.S.Sahni.Computer simulation of grain growth—Ⅰ.Kinetics[J].Acta matall.1984,(32):783-791.
    [5]D.J.Srolovitz,M.P.Anderson,P.S.Sahni and G.S.Grest.Computer simulation of grain growth—Ⅱ.Grain size distribution,topology,and local dynamics[J].Acta matall.1984,(32):793-802.
    [6]D.J.Srolovitz a,M.P.Andersona,G.S.Gresta and P.S.Sahnib.Computer simulation of grain growth-Ⅲ.Influence of a particle dispersion[J].Acta matall.1984,(32):1429-1438.
    [7]G.S.Grest,D.J.Srolovitz and M.P.Anderson.Computer simulation of grain growth—Ⅳ.Anisotropic grain boundary energies[J].Acta matall.1985,(33):509-520.
    [8]Song.X.Y,Liu.G.Q.J Mater Sci Technol.1998,(14):506.
    [9]Liu.G.Q,Song.X.Y,Yu.H.B,Gu.N.J.Acta Metall Sin.1999,(35):245.
    [10]Radhakrishnan.B,Zacharia.T.Simulation ofcuration-driven grain growth by using a modified Monte Carlo algorithem[J].Metall Mater Trans.1995,(26A):167.
    [11]Qiang.Yu,Sven.K.Esche.A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency[J].Computational Material Science.2003,(27):259-270.
    [12]Y Satio.The Monte Carlo simulation ofmicrostructural evolution in metals[J].Materials Science and Engineering.1997,(A223):115-124.
    [13]C.Moron,M.Mora,A.Garcia.Computers imulation of grain growth kinetics[J].Journal of Magnetism and Magnetic Materials.2000,(215-216):153-155:
    [14]H.Afer,N.Rouag,R.Penelle.Onset of abnormal growth related to the crystallographic neighborhood from the texture function.Application to Goss grain growth in magnetic sheets of Fe-3%Si[J].Journal of Crystal Growth.2004,(268):320-327.
    [15]E.A.Holm,M.A.Miodownik,A.D.Rollet.On abnormal subgrain growth and the origin of recrystallization nuclei[J].Acta Material.2003,(51):2701-2716.
    [16]钟晓征,陈伟元,王豪才,郑军.多晶材料晶粒生长的Monte Carlo计算机模拟方法模拟异常晶粒生长[J].功能材料.1999,30(3):236-238.
    [17]D.J.Srolovitz,G.S.Grest and M.P.Anderson.Computer simulation of grain growth—Ⅴ.Abnormal grain growth[J].Acta matall.1985,(33):2233-2247.
    [18]D.J.Srolovitz,G.S.Grest and M.P.Anderson.Computer simulation of recrystallization—Ⅰ.Homogeneous nucleation and growth[J].Acta matall.1986,(34):1833-1845..
    [19]D.J.Srolovitz,G.S.Grest,M.P.Anderson and A.D.Rollett.Computer simulation of recrystallization—Ⅱ.Heterogeneous nucleation and growth[J].Acta matall.1988,(36):2115-2128.
    [20]A.D.Rollett,D.J.Srolovitz,M.P.Anderson and R.D.Doherty.Computer Simulation of recrystallization—Ⅲ.Influence of a dispersion of fine particles[J].Acta mater.1992,(40):3475-3495.
    [21]Y.Saito.Monte Carlo simulation of grain boundary precipitation[J].Materials Science and Engineering.1997,(A223):125-133.
    [22]E.A.Holm,G.N.Hassold and M.A.Miodownik.On misorientation distribution evolution during anisotropic grain growth[J].Acta material.2001,(49):2981-2991.
    [23]K.Mehnert,P.Klimanerk.Monte Carlo simulation of grain growth in textured metals using anisotropic grain boundary[J].Computational Materials Science.1996,(7):103-108.
    [24]T.A.Abinandanna,F.Haider and G.Martin.Computer Simulations of Difusional Phase Transformations:Monter Carlo Algorithm and Application to Precipitation of Ordered Phase[J].Acta mater.1998,46(12):4243-4355.
    [25]M.I.MENDELEV and D.J.SROLOVITZ.A regular solution model for impurity drag on a migrating grain boundary[J].Acta mater,2001,49:589-597.
    [26] H. Zhang, M.I. Mendelev, D.J. Srolovitz. Computer simulation of the elastically driven migration of a flat grain boundary[J]. Acta Materialia, 2004,52:2569-2576.
    [27] K. Barmak, J. Kim, C.-S. Kim et al. Grain boundary energy and grain growth in Al films: Comparison of experiments and simulations [J]. Scripta Materialia, 2006,54:1059-1063.
    [28] G. Gottstein, D.A. Molodov, L.S. Shvindlerman, D.J. Srolovitz, M. Winning. Grain boundary migration: misorientation dependence [J]. Current Opinion in Solid State and Materials Science, 2001,5:9-14.
    [29] A.E. Lobkovsky, A. Karma, M.I. Mendelev, M. Haataja, D.J. Srolovitz. Grain shape, grain boundary mobility and the Herring relation[J]. Acta Materialia. 2004,52:285-292.
    [30] M. UPMANYU, D. J. SROLOVITZ, L. S. SHVINDLERMAN4 and G. GOTTSTEIN. Misorientation dependence of intrinsic grain boundary mobility: Simulation and experiment[J]. Acta mater. 1999,47(14):3901-3914.
    [31] Hao Zhang, David J. Srolovitz. Simulation and analysis of the migration mechanism of ∑ 5 tilt grain boundaries in an fcc metal[J]. Acta Materialia. 2006,54:623-633.
    [32] M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky et al. Simultaneous grain boundary migration and grain rotation[J]. Acta Materialia. 2006,54:1707-1719.
    [33] N. SRIDHAR, J. M. RICKMAN and D. J. SROLOVITZ. Thermoelastic analysis of matrix crack growth in particulate composites [J]. Acta metall, mater. 1995, 43(4): 1669-1681.
    [34] D. Crespo, T. Pradell, N. Clavaguera. Kinetic theory of microstructural evolution in nucleation and growth processes[J]. Materials Science and Engineering. 1997, (A238): 160-165.
    [1]徐钟济.蒙特卡罗方法[M],上海:上海科技出版社,1985:6.
    [2]马文淦.计算物理学[M],北京:科学出版社,2005:4.
    [3]Louat N P.On the theory of normal grain growth[J].Acta Metall.1974,22(6):721-724.
    [4]Safran.S A,Sahni.P S,Grest.G S.Kinetics of ordering in two dimensions[J].Physical Rev.B.1983,28(5):2693-2716.
    [5]Radhakrishnan.B,Zacharia T.Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm[J].Metal.Mater.Trans.1995,26A(1):167-180.
    [6]Song Xiaoyan,Liu Guoquan.Computers imulation of normal grain growth in polycrystalline thin films[J].Journal of material science.1999,(34):2433-2436.
    [1]GB/T 6394-2002.金属平均晶粒度测定方法[S].
    [2]张继祥,关小军,孙胜.一种改进的晶粒长大Monte Carlo模拟方法[J].金属学报,2003,40(5):457-461.
    [3]陈健美,周卓夫,唐建国,张新明.一种考虑晶界能各向异性模拟晶粒长大的Monte Carlo方法[J].材料导报,2003,17(8):77-79.
    [4]刘祖耀,郑子樵,陈大钦,李世晨.正常晶粒长大的计算机模拟机模拟(Ⅰ)——晶粒长大动力学跃迁概率的改进[J].中国有色金属学报,2003,13(6):1357-1360.
    [5]Mao W M,Zhao X B.Metal recrystallization and Grain Growth[M].Beijing:Metallurgical Industry Press,1994.226-321.
    [6]Song X Y,Liu G Q.Modified Monte Carlo method for grain growth simulation[J].Natural Science,1998,8(1):92-97.
    [7]Anderson M P,Srolovitz D J,Grest G S and P.S.Sahni.Computer Simulation of Grain Growth—Ⅰ Kinetics[J].Acta Metal,1984,32(5):783-791.
    [8]Cahn J W,Vleck E V.Quadri junctions do not stop two-dimensional grain growth[J].Scrip Mater,1996,34(6):909-912.
    [1]钟晓征,陈伟元,王豪才,郑军.多晶材料晶粒生长的Monte Ca rlo计算机模拟方法.模拟正常晶粒生长[J].功能材料.1999,30(3),232-235.
    [2]傅廷亮,秦俊,姚学霞.微电子学与计算机[M],1991,9:5-9.
    [3]傅廷亮.计算机仿真[M],1998,15(1):42-44.
    [4]肖贡强,王丽娟,周天瑞,阎洪,王高潮,熊洪淼.基于VB的晶粒长大的蒙特卡罗模拟[J].南方金属.2004,136(1),24-27.
    [5]宋晓艳,刘国权,何宜柱.一种改进的晶粒长大Monte Carlo模拟方法[J].自然科学进展.1998,8(3):337-341.
    [6]王羽中,傅廷亮.基于C语言的二维细胞结构蒙特卡罗法仿真[J].微电子学与计算机,1998,3:53-55.
    [7]莫春立,丁春辉,何若宏.用Monte Carlo方法模拟晶粒长大[J].沈阳工业学院学报.2001,20(1):61-66.
    [8]张继祥,关小军,孙胜,申孝民,董安平,刘运腾.晶粒长大过程微观组织演变Monte Carlo方法模拟[J].山东大学学报(工学版).2005,35(4):1-5.
    [9]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,57.58,221-222.
    [10]宋晓艳,刘国权,何宜柱.一种改进的晶粒长大Monte Carlo模拟方法[J].自然科学进展,1998,8(3):83-87.
    [11]张继祥,关小军,孙胜.一种改进的晶粒长大Monte Carlo模拟方法[J].金属学报,2004,40(5):457-451.
    [12]RADHAKRISHNAN.B,SARMA.G.B,ZACHARIA.T.Modeling the kinetics and microstructural enolution during static recrystallization monte carlo simulation of recrystallization[J].Acta Materialia,1998,46:4415-4433.
    [13]陈健美,周卓夫,唐建国,张新明.一种考虑晶界能各向异性模拟晶粒长大的Monte Carlo方法[J].材料导报.2003,17(8),77-79,60.
    [14]刘祖耀,李世畏,郑子樵.正常晶粒长大的计算机模拟(Ⅰ)——晶粒长大动力学跃迁概率的改进[J].中国有色金属学报.2003,13(6):1357-1360.
    [15]刘祖耀,郑子樵,陈大钦,李世晨.正常晶粒长大的计算机模拟(Ⅱ)——第二相粒子形状及取向的影响[J].中国有色金属学报.2004,14(1),122-126.
    [16]Frost.H.J,Thompson.C.V,Walton.D.T.Simulation of thin film grain structures—Ⅰgrain growth stagnation[J].Acta Metall Mater,1990,38(8):1455-1462.
    [17]Bimal.K.K,Peter.M.H.Monte Carlo simulation of grain growth and zener pinning[J].Materials Science and Engineering A.1997,238A:70-77.
    [18]Gao Jin-hua,Raymond G,Thompson Burton.R.P.Computer simulation of grain growth with second phase particle pinning[J].Acta Metall.1997,45(9):3653-3658.
    [19]Hazzledine.P.M,Oldershaw R D J.Computer simulation of zener pinning[J].Philo.Mag.A.1990,61A(4):579-589.
    [20]Brechet.Y,Weygand.D,Lepinoux.J.Zener pinning and grain growth:a two-dimensional vertex computer simulation[J].Acta Mater,1999,47(3):961-970.
    [21]Tweed.C.J,Ralph.B,Hansen.N.The pinning by particles of low-and high angle grain boundaries during grain growth[J].Acta Metall,1984,32(9):1407-1414.
    [22]Kim.B.N.Modeling grain growth behavior inhibited by dispersed particles[J].Acta Mater.2001,49(3):543-552.
    [1]钟晓征,陈伟元,王豪才,郑军.多晶材料晶粒生长的Monte Carlo计算机模拟方法—Ⅱ.模拟异常晶粒生长[J].功能材料.1999,30(3):236-238.
    [2]A.D.ROLLETT,D.J.SROLOVITZZ and M.P.ANDERSON.Simulation and theory of abnormal grain growth—Anisotropic grain boundary energies and mobilites[J].Acta Metall.1989,37(4):1227-1240.
    [3]G.S.Grest,M.P.Anderson,D.J.Srolovitz and A.D.Rollett.Abnormal grain growth in three dimensions[J].Scripta Metallurgica.1990,24:661-665.
    [4]A.D.ROLLETT,D.J.SROLOVITZ,R.D.DOHERTY and M.P.ANDERSON.Computer simulation of recrystallization in non-uniformly deformed metals[J].Acta Metall.1989,37(2):627-639.
    [5]A.D.ROLLETT,D.J.SROLOVITZ,M.P.ANDERSON and R.D.DOHERTY.Computer simulation of recrystallization—Ⅲ.Influence of a dispersion of fine particles[J].Acta metall.mater.1992,40(12):3475-3495.
    [6]A.D.ROLLETT,M.J.LUTON and D.J.SROLOVITZ.Microstructural simulation of dynamic recrystallization[J].Acta metall.Mater.1992,40(1):43-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700