用户名: 密码: 验证码:
主客观一致的图像感知质量评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面向图像失真的感知质量评价是图像处理领域中一项基础而富有挑战性的工作。可靠的图像质量评价标准可用于监控网络视频的服务状况、分配压缩算法中的比特率参数、校准图像采集和处理系统等。图像质量评价最准确的方式是通过人眼判读。然而主观评价的方法由于预算昂贵操作复杂,无法在实际中广泛开展;同时,传统的信号误差统计方法如PSNR和MSE等的评价结果并不能很好的符合人眼的主观感受。因此为了进一步推动图像处理技术的发展,需要研究基于人眼视觉感知的图像感知质量评价方法。
     本文针对图像质量评价领域中近年来兴起的工程学客观评价框架,结合传统仿生学评价模型中使用的HVS感知特性,探讨研究了工程学框架中的局部失真度量和失真特征汇集的方法设计,并提出了一种基于内容信息提取的新的工程学评价算法;同时本文还探究了主客观一致的SAR图像压缩视觉质量的评价问题,主要工作包括:
     (1)概括了生理学和心理物理学领域关于HVS的研究成果,总结了与生物视觉相对应的信号与信息处理技术,为设计高效的图像感知质量评价算法提供了依据。
     (2)基于HVS空间-频率的交互敏感性,设计了依照局部图像复杂度选择不同多通道评价模型的局部失真度量方法。首先,采用图像区域划分算法将图像划分为复杂区域和简单区域;然后对不同区域,分别使用空域和小波域SSIM算法度量局部失真;最后综合得到全图的质量评价结果。实验结果表明,综合使用HVS空域和频域感知特性的局部失真度量算法在评价准确性方面优于只单纯使用空间域或频率域HVS特性的改进SSIM算法。
     (3)针对工程学评价框架中的失真信息汇集问题,分别研究了局部质量特征在空域和频域的汇集模型。空域方面,首先提出一种考虑视觉侧抑制现象的结构熵权值算法;然后以结构熵为基础设计了模拟视觉信息非均匀采样特性的变尺度空间汇集模型。频域方面,本文通过引入机器学习思想,实现了基于人工神经网络的频谱多通道失真汇集模型。实验结果表明,在相同局部失真评价算法下,本文提出的汇集方法性能优于传统基于视觉注意机制和CSF加权的汇集方法。
     (4)根据图像的失真会造成图像内容的改变和丢失,提出了基于内容信息提取的普通图像质量评价方法。首先使用SIFT算子提取局部图像内容关键点,然后通过比较关键点的匹配与相似性评估图像整体和细节的内容失真,最后自适应加权图像内容失真度量和结构失真度量得到最终的评价结果。实验结果显示,提出的基于图像内容信息提取的评价方法在多个数据库上的评价准确性优于当前的最优工程学方法VIF。
     (5)针对将含噪图像有损压缩思想应用于SAR图像压缩的合理性问题,开展了主客观一致的SAR图像压缩视觉质量评价研究。首先通过设计组织主观评价实验获取了经4种压缩算法压缩后的300幅测试图像的主观质量;然后综合考虑SAR图像目视特性和HVS敏感性,提出了一种基于图像内容分解和支撑矢量回归的SAR图像压缩专用客观评价方法。实验结果表明,由于相干斑的存在,特定条件下有损压缩会导致SAR图像视觉质量出现一定的提高;同时提出的专用客观评价方法不仅在评价准确性上优于常见的保真度评价指标,而且能准确地预测压缩后SAR图像质量可能上升的特殊现象。
     综上所示,本文基于人眼视觉感知特性,结合图像信号表示、视觉注意机制、图像理解、机器学习理论和主观质量评价实验,提出了多种自然图像质量评价算法和专用的SAR图像压缩质量评价算法。实验结果表明。提出算法均具有较好的主观感受一致性,能够为图像处理算法的比较、改进和优化提供可靠的性能标准。
Perceptual image quality assessment (IQA), which aims at the evaluation of quality degration due to image distortions, has become a fundamental and challenging task in the field of image processing. A reliable IQA method can be used to dynamically monitor image/video quality, choose the parameters in a coding system, and benchmark image acquisition and processing systems. The most accurate IQA method is the subjective viewing test. However, subjective evaluation s is as cumbersome in practice as it is expensive, complex, and time-consuming. On the other hand, the traditional mathematical statistic-based error measurements, such as PSNR and MSE, do not match well with subjective perception. Therefore, in order to further promote the development of image processing technology, it is need to develop IQA metrics based on human vision and perception.
     Based on the engineering assessment framework that received widespread attention for lower complexity and better performance in recent years and human visual system (HVS) peculiarities that used in the conventional vision bionics methods, this thesis investigates the design of efficient IQA algorithms by employing the two stages of the engineering framework:local distortion measure and distortion feature pooling, and proposed a new engineering algorithm by using the idea of content information extraction. In addition, this thesis also studies the perceptual quality assessment of synthetic aperture radar (SAR) image compression. The main work is detailed as follows:
     (1) The HVS peculiarities from the physiology and psychophysics researches have been summarized as well as the corresponding signal and information processing technologies. It provides the theoretical basis for designing effective perceptual IQA algorithms.
     (2) A local distortion measure algorithm has been designed by incorporating the interaction of spatial and spectral sensitivities of HVS. The general idea of the proposal is using different local quality measurements according to specific image region. First, a region partition algorithm is utilized to segment the image into complex and smooth areas. Then, a simple SSIM or a wavelet-based SSIM is chosen for each local region according to the result of region partition, to obtain local image qualities. Finally, the local image qualities are merged into a single quality score. Experiment results show that the proposal outperforms the improved SSIM algorithms only considering the spatial or spectral sensitivities of HVS.
     (3) The distortion pooling model has been studied for spatial and spectral domain, respectively. For spatial domain, first, a structural entropy weighting algorithm is developed by considering the visual phenomenon of lateral inhibition. Secondly, a structural entropy-based variable-scale spatial pooling model is proposed by mimicking the space-variant sampling nature of HVS. For spectral domain, an artificial neural network-based multi-channel evaluation pooling strategy is realized by introducing the machine learning techniques. Experiment results show that, in the case of the same local distortion assessment scheme, the proposed pooling models outperforms traditional models based on visual attention and CSF weighting.
     (4) A general IQA algorithm based on image content information extraction is proposed inspired by the justification that image distortions will lead to the change and loss of image content. First, the scale invariant feature transform (SIFT) is employed to extract the local content keypoints. Secondly, by comparing the feature matching results and feature similarity between the reference and the test images, the global and detailed content distortions are evaluated. Then, the content distortion measures and the conventional structual distortion measure are integrated into the final IQA result though adaptive weighting. Experiment results show that the proposal outperforms the top engineering method, VIF, on multiple publicly available databases.
     (5) The study of visual quality assessment of synthetic aperture radar (SAR) image compression in accord with subjective perception has been carried out. First, a psychometric study that contained four SAR image compression techniques and a total of300test images was carried out to obtain subjective evaluation results. Then, for SAR image compression, a special IQA algorithm based on image content classification and support vector regression is proposed by taking into account the characteristics of the SAR image and HVS. Experiment results show that the visual quality of the compressed images may be slightly better than the original images due to the presence of speckle. And the proposed objective method has a perfect and robust performance for predicting the perceptual quality of SAR image compression.
     To sum up, according to the perceptual properties of human vision, this thesis has presented several IQA algorithms for natural image and SAR image compression based on multi-channel decomposition, visual attention, image understanding, machine learning, and subjective assessment experiment, and the provided experiments have demonstrated their reliability and effectiveness.
引文
[1]Ponomarenko N, Lukin V, Zelensky A, et al. TID2008-A database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics, 2009,10(4):30-45.
    [2]Ponomarenko N, Lukin V, Egiazarian K, et al. Color image database for evaluation of image quality metrics[C]//Multimedia Signal Processing,2008 IEEE 10th Workshop on. IEEE, 2008:403-408.
    [3]Ponomarenko N, Egiazarian K. Tampere image database 2008 [DB/OL]. Tampere:Tampere International Center for Signal Processing, [2008]. http://www.ponomarenko.info/tid2008.htm.
    [4]Eskicioglu A M. Quality measurement for monochrome compressed images in the past 25 years[C]//Acoustics, Speech, and Signal Processing,2000. ICASSP'00. Proceedings.2000 IEEE International Conference on. IEEE,2000,6:1907-1910.
    [5]Wang Z, Bovik A C. Modern image quality assessment[J]. Synthesis Lectures on Image, Video, and Multimedia Processing,2006,2(1):1-156.
    [6]Wang Z, Bovik A C. Mean squared error:love it or leave it? A new look at signal fidelity measures[J]. Signal Processing Magazine, IEEE,2009,26(1):98-117.
    [7]Wang Z, Bovik A C, Lu L. Why is image quality assessment so difficult?[C]//Acoustics, Speech, and Signal Processing (ICASSP),2002 IEEE International Conference on. IEEE, 2002,4:IV-3313-IV-3316.
    [8]Cumming I G, Wong F H,洪文.合成孔径雷达成像一算法与实现[M].北京:电子工业出版社,2007.
    [9]Lillesand T M, Kiefer R W,彭望碌,等.遥感与图像解译[M].北京:电子工业出版社,2003.
    [10]陈原.基于变换编码的SAR图像压缩技术研究[D]:[博士].合肥:中国科学技术大学,2013.
    [11]胡安洲.SAR图像主观质量评价培训手册[Z/OL].合肥:中国科学技术大学,[2011-06-08].http://image.ustc.edu.cn/doc/sar book.pdf.
    [12]Thung K H, Raveendran P. A survey of image quality measures[C]//Technical Postgraduates (TECHPOS),2009 International Conference for. IEEE,2009:1-4.
    [13]ITU. Methodology for the subjective assessment of the quality of television pictures, ITU-R REC. BT.500-12[S]. International Telecommunication Union, Geneva, Switzerland,2009.
    [14]ITU. Subjective assessment of conventional television systems, ITU R-REC-BT.1128[S]. International Telecommunication Union, Geneva, Switzerland,1997.
    [15]ITU. Subjective assessment of standard definition digital television (sdtv) systems, ITU R-REC-BT.1129[S]. International Telecommunication Union, Geneva, Switzerland,1998.
    [16]ITU. Subjective assessment methods for image quality in high-definition television, ITU R-REC-BT.710[S]. International Telecommunication Union, Geneva, Switzerland,1998.
    [17]ITU. Subjective video quality assessment methods for multimedia applications, ITU T-REC-P.910[S]. International Telecommunication Union, Geneva, Switzerland,2008.
    [18]ITU. Subjective video quality assessment methods for recognition tasks, ITU T-REC-P.912 [S]. International Telecommunication Union, Geneva, Switzerland,2008.
    [19]Brunnstrom K, Hands D, Speranza F, et al. VQEG validation and ITU standardization of objective perceptual video quality metrics [Standards in a Nutshell] [J]. Signal Processing Magazine, IEEE,2009,26(3):96-101.
    [20]Video Quality Experts Group (VQEG). Final report from the video quality experts group on the validation of objective models of video quality assessment[R]. VQEG,2000.
    [21]VQEG. Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment, Phase II (FR_TV2)[R]. VQEG,2003.
    [22]VQEG. Validation of reduced-reference and non-reference objective models for standard definition television[R]. VQEG,2009.
    [23]VQEG. Final report from the video quality experts group on the validation of objective models of multimedia quality assessment[R]. VQEG,2008.
    [24]VQEG. Report on the Validation of Video Quality Models for High Definition Video Content [R]. VQEG,2010.
    [25]VQEG. VQEG Projects[Z/OL]. http://www.its.bldrdoc.gov/vqeg/proiects.aspx.
    [26]Sheikh H R, Wang Z, Cormack L, et al. LIVE Image Quality Assessment Database Release 2[DB/OL]. [2005]. http://live.ece.utexas.edu/research/quality
    [27]Larson E C, Chandler D M. Most apparent distortion:full-reference image quality assessment and the role of strategy [J]. Journal of Electronic Imaging,2010,19(1):011006-011006-21.
    [28]Ninassi A, Le Callet P, Autrusseau F. Subjective Quality Assessment-IVC Database[DB/OL]. http://www2.irccyn.ecnantes.fr/ivcdb.
    [29]Horita Y, Shibata K, Kawayoke Y, et al. Mict image quality evaluation database[DB/OL]. http://mict.eng.u-toyama.ac.jp/mict/index2.html.
    [30]Chandler D M, Hemami S S. Online Supplement to" VSNR:A Visual Signal-to-Noise Ratio for Natural Images Based on Near-Threshold and Suprathreshold Vision[J].2007.
    [31]Ponomarenko N, Egiazarian K. Tampere image database 2013 [DB/OL]. Tampere:Tampere International Center for Signal Processing, [2013]. http://www.ponomarenko.info/tid2013.htm.
    [32]Pappas T N, Safranek R J, Chen J. Perceptual criteria for image quality evaluation[J]. Handbook of image and video processing,2000:669-684.
    [33]Mannos J, Sakrison D J. The effects of a visual fidelity criterion of the encoding of images[J]. Information Theory, IEEE Transactions on,1974,20(4):525-536.
    [34]Daly S J. Visible differences predictor:an algorithm for the assessment of image fidelity[C]//SPIE/IS&T 1992 Symposium on Electronic Imaging:Science and Technology. International Society for Optics and Photonics,1992:2-15.
    [35]Lubin J, Fibush D. Sarnoff JND vision model[R]. G-2.1.6 Compression and Processing Subcommittee,1997.
    [36]Teo P C, Heeger D J. Perceptual image distortion[C]//IS&T/SPIE 1994 International Symposium on Electronic Imaging:Science and Technology. International Society for Optics and Photonics,1994:127-141.
    [37]Watson A B. DCT quantization matrices visually optimized for individual images[C]//IS&T/SPIE's Symposium on Electronic Imaging:Science and Technology. International Society for Optics and Photonics,1993:202-216.
    [38]高新波,路文.视觉信息质量评价方法[M].西安:西安电子科技大学出版社,2011.
    [39]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity [J]. Image Processing, IEEE Transactions on,2004,13(4):600-612.
    [40]Lin W, Narwaria M. Perceptual image quality assessment:recent progress and trends[C]//Visual Communications and Image Processing 2010. International Society for Optics and Photonics,2010:774403-774403-9.
    [41]Lin W, Jay Kuo C C. Perceptual visual quality metrics:A survey[J]. Journal of Visual Communication and Image Representation,2011,22(4):297-312.
    [42]Wang Z, Bovik A C. A universal image quality index[J]. Signal Processing Letters, IEEE, 2002,9(3):81-84.
    [43]Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//Signals, Systems and Computers,2004. Conference Record of the Thirty-Seventh Asilomar Conference on. IEEE,2003,2:1398-1402.
    [44]Wang Z, Li Q. Information content weighting for perceptual image quality assessment [J]. Image Processing, IEEE Transactions on,2011,20(5):1185-1198.
    [45]Lv D, Bi D Y, Wang Y. Image quality assessment based on DCT and structural similarity[C]//Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on. IEEE,2010:1-4.
    [46]Yang C L, Gao W R, Po L M. Discrete wavelet transform-based structural similarity for image quality assessment[C]//Image Processing,2008. ICIP 2008.15th IEEE International Conference on. IEEE,2008:377-380.
    [47]Sampat M P, Wang Z, Gupta S, et al. Complex wavelet structural similarity:A new image similarity index[J]. Image Processing, IEEE Transactions on,2009,18(11):2385-2401.
    [48]Sheikh H R, Bovik A C, De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. Image Processing, IEEE Transactions on,2005, 14(12):2117-2128.
    [49]Sheikh H R, Bovik A C. Image information and visual quality[J]. Image Processing, IEEE Transactions on,2006,15(2):430-444.
    [50]Shnayderman A, Gusev A, Eskicioglu A M. An SVD-based grayscale image quality measure for local and global assessment[J]. Image Processing, IEEE Transactions on,2006,15(2): 422-429.
    [51]Wang R, Cui Y, Yuan Y. Image quality assessment using full-parameter singular value decomposition[J]. Optical Engineering,2011,50(5):057005-057005-9.
    [52]Han H S, Kim D O, Park R H. Structural information-based image quality assessment using LU factorization[J]. Consumer Electronics, IEEE Transactions on,2009,55(1):165-171.
    [53]Chandler D M, Hemami S S. VSNR:A wavelet-based visual signal-to-noise ratio for natural images[J]. Image Processing, IEEE Transactions on,2007,16(9):2284-2298.
    [54]Liu A, Lin W, Narwaria M. Image quality assessment based on gradient similarity [J]. Image Processing, IEEE Transactions on,2012,21(4):1500-1512.
    [55]Li S, Zhang F, Ma L, et al. Image quality assessment by separately evaluating detail losses and additive impairments[J]. Multimedia, IEEE Transactions on,2011,13(5):935-949.
    [56]Zhang L, Zhang D, Mou X. FSIM:a feature similarity index for image quality assessment [J]. Image Processing, IEEE Transactions on,2011,20(8):2378-2386.
    [57]Capodiferro L, Jacovitti G, Di Claudio E D. Two-Dimensional Approach to Full-Reference Image Quality Assessment Based on Positional Structural Information[J]. Image Processing, IEEE Transactions on,2012,21(2):505-516.
    [58]Gao X, Lu W, Tao D, et al. Image quality assessment and human visual system[C]//Visual Communications and Image Processing 2010. International Society for Optics and Photonics, 2010:77440Z-77440Z-10.
    [59]Harris J E, Ostler R S, Chabries D M, et al. Quality measures for SAR images[C]//Acoustics, Speech, and Signal Processing,1988. ICASSP-88.,1988 International Conference on. IEEE, 1988:1064-1067.
    [60]Martinezl A, Marchand J. sAR image quality assessment J]. Revista de Teledeteccion,1993, 2:12-18.
    [61]Meadows P. The Use of Ground Receiving Stations for ERS SAR Quality Assessment[C]//SAR workshop:CEOS Committee on Earth Observation Satellites.2000, 450:525.
    [62]Jung C H, Choi M S, Kwag Y K. Parameter based SAR simulator for image quality evaluation[C]//Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International. IEEE,2007:1599-1602.
    [63]Lu X, Sun H. Parameter assessment for SAR image quality evaluation system[C]//2007 1st Asian and Pacific Conference on Synthetic Aperture Radar.2007:58-60.
    [64]Oliver C, Quegan S, Ward IA等.合成孔径雷达图像理解[M].北京:电子工业出版社,2009.
    [65]Kuperman G G, Penrod T D. Image Quality Analysis of Compressed Synthetic Aperture Radar Imagery[R]. ADROIT SYSTEMS INC DAYTON OH,1993.
    [66]Ives R W, Eichel P, Magotra N. A new SAR image compression quality metric[C]//Circuits and Systems,1999.42nd Midwest Symposium on. IEEE,1999,2:1143-1146.
    [67]Sakarya F A, Wei D, Emek S. An evaluation of SAR image compression techniques[C]//Acoustics, Speech, and Signal Processing,1997. ICASSP-97.,1997 IEEE International Conference on. IEEE,1997,4:2833-2836.
    [68]Alessandro G. Performance evaluation of SAR Image Compression Techniques:Application to COSMO-SkyMed Data[D]. Master thesis, Centro Alti Studi per la Difesa (CASD), Rome, Italy,2008.
    [69]Quincy E A, Stafford R B, Holloway C L, et al. Distortion measures for wavelet compression of SAR images in ATR[C]//Communications, Computers and Signal Processing,1997.10 Years PACRIM 1987-1997-Networking the Pacific Rim.1997 IEEE Pacific Rim Conference on. IEEE,1997,1:310-317.
    [70]Chambenoit Y, Classeau N, Trouve E, et al. Performance assessment of multitemporal SAR images' visual interpretation[C]//Geoscience and Remote Sensing Symposium,2003. IGARSS'03. Proceedings.2003 IEEE International. IEEE,2003,6:3911-3913.
    [71]Chen Y, Chen G, Blum R S, et al. Image quality measures for predicting automatic target recognition performance[C]//Aerospace Conference,2008 IEEE. IEEE,2008:1-9.
    [72]Kuperman G G, Penrod T D. Evaluation of compressed synthetic aperture radar imagery[C]//Aerospace and Electronics Conference,1994. NAECON 1994., Proceedings of the IEEE 1994 National. IEEE,1994:319-326.
    [73]Eckstein B A, Peters R, Irvine J M, et al. Assessing the performance effects of data compression for SAR imagery[C]//Applied Imagery Pattern Recognition Workshop,2000. Proceedings.29th. IEEE,2000:102-108.
    [74]Driggers R G, Ratches J A, Leachtenauer J C, et al. Synthetic aperture radar target acquisition model based on a National Imagery Interpretability Rating Scale to probability of discrimination conversion[J]. Optical Engineering,2003,42(7):2104-2112.
    [75]Schulz K, Thiele A, Thoennessen U, et al. A New Concept for SAR Image Quality Assessment Realizing Bar Patterns in SAR Images[C]//Synthetic Aperture Radar (EUSAR), 2008 7th European Conference on. VDE,2008:1-4. Radar
    [76]Leachtenauer J C, Driggers R G,陈世平,et a1.监视与侦察成像系统:模型与性能预测[M].中国科学技术出版社,2007.
    [77]Richard P. Feynman,物理之美[M].台北:天下文化出版社,2005.
    [78]Winkler S. Digital video quality:vision models and metrics[M]. John Wiley & Sons,2005.
    [79]Koch C. The quest for consciousness[M]. New York,2004.
    [80]Filipe S, Alexandre L A. From the human visual system to the computational models of visual attention:a survey[J]. Artificial Intelligence Review,2013:1-47.
    [81]Itti L, Koch C. Computational modelling of visual attention[J]. Nature reviews neuroscience, 2001,2(3):194-203.
    [82]王岩.视觉注意模型的研究与应用[D]:[硕士].上海:上海交通大学,2012.
    [83]人类视觉系统[Z/OL].中国电影科技网,[2011-09-30].http://www.crifst.ac.cn/c/cn/news/2011-09/30/news 290.html.
    [84]韩超.奇妙的视觉感知[Z/OL].中国科学院上海生命科学研究院,[2011-11-02].http://www.sibs.ac.cn/kepu/news.asp?id=335.
    [85]王世一.数字信号处理[M].北京:北京理工大学出版社,2006.
    [86]Tsotsos J K. A computational perspective on visual attention[M]. MIT Press,2011.
    [87]Gonzalez R C, Woods R E. Digital image processing[M]. Prentice Hall,2002.
    [88]Frintrop S, Rome E, Christensen H I. Computational visual attention systems and their cognitive foundations:A survey[J]. ACM Transactions on Applied Perception (TAP),2010, 7(1):6-45.
    [89]Visual Pathways Figures[Z/OL]. Department of Psychology, Stanford University. http://www-psych.stanford.edu/~lera/psych115s/notes/lecture3/figures.html.
    [90]Hubel D H. Wiese T N. Receptive fields of single neurons in the cat's striate cortex[J]. Journal of Physiology (London),2009:148574-591.
    [91]Elad M. Sparse and redundant representations:from theory to applications in signal and image processing[M]. Springer,2010.
    [92]王保云.图像质量客观评价技术研究[D]:[博士].合肥:中国科学技术大学,2010.
    [93]Nadenau M J, Winkler S, Alleysson D, et al. Human vision models for perceptually optimized image processing-a review[J]. Proceedings of the IEEE,2000:32.
    [94]Hecht S. The visual discrimination of intensity and the Weber-Fechner law[J]. The Journal of general physiology,1924,7(2):235-267.
    [95]Campbell F W, Robson J G. Application of Fourier analysis to the visibility of gratings[J]. The Journal of Physiology,1968,197(3):551.
    [96]Legge G E, Foley J M. Contrast masking in human vision[J]. JOSA,1980,70(12): 1458-1471.
    [97]Braddick O, Campbell F W, Atkinson J. Channels in vision:Basic aspects[M]//Perception. Springer Berlin Heidelberg,1978:3-38.
    [98]杨力华,戴道清,黄文良,等.信号处理的小波导引[M].北京:机械工业出版社,2002.
    [99]闫敬文,屈小波.超小波分析及应用[M].国防工业出版社,2008.
    [100]Wolfe J M. Visual attention[M]. Seeing,2000,2:335-386.
    [101]Farias M C Q, Akamine W Y L. On performance of image quality metrics enhanced with visual attention computational models[J]. Electronics letters,2012,48(11):631-633.
    [102]Li C, Bovik A C. Content-partitioned structural similarity index for image quality assessment[J]. Signal Processing:Image Communication,2010,25(7):517-526.
    [103]Gaubatz M, Hemami S S. MeTriX MuX visual quality assessment package[Z/OL]. [2011]. http://foulard.ece.comell.edu/gaubatz/metrix mux/.
    [104]Wang R, Cui Y, Yuan Y. Image quality assessment using full-parameter singular value decomposition[J]. Optical Engineering,2011,50(5):057005-057005-9.
    [105]Pang J, Zhang R, Zhang H, et al. Image quality assessment metrics with radon transform[C]//Systems, Man and Cybernetics,2008. SMC 2008. IEEE International Conference on. IEEE,2008:2241-2245.
    [106]李航,路羊,崔慧娟,等.基于频域的结构相似度的图像质量评价方法[J].清华大学学报:自然科学版,2009(4):559-562.
    [107]Ma L, Li S, Ngan K N. Visual horizontal effect for image quality assessment[J]. Signal Processing Letters, IEEE,2010,17(7):627-630.
    [108]Wang Z, Simoncelli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model [C]//Electronic Imaging 2005. International Society for Optics and Photonics,2005:149-159.
    [109]Zhao B, Deng C. Image quality evaluation method based on human visual system[J]. Chinese Journal of Electronics,2010,19(1):129-132.
    [110]Haddad Z, Beghdadi A, Serir A, et al. Image quality assessment based on wave atoms transform[C]//Image Processing (ICIP),2010 17th IEEE International Conference on. IEEE, 2010:305-308.
    [111]Liu M, Yang X. Image quality assessment using contourlet transform[J]. optical engineering, 2009,48(10):107201-107201-10.
    [112]Chang H, Wang M. Sparse correlation coefficient for objective image quality assessment[J]. Signal Processing:Image Communication,2011,26(10):577-588.
    [113]Laparra V, Mufloz-Marf J, Malo J. Divisive normalization image quality metric revisited[J], JOSAA,2010,27(4):852-864.
    [114]Beghdadi A, Pesquet-Popescu B. A new image distortion measure based on wavelet decomposition[C]//Signal Processing and Its Applications,2003. Proceedings. Seventh International Symposium on. IEEE,2003,1:485-488.
    [115]McAdams C J, Maunsell J H R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4[J]. The Journal of Neuroscience,1999,19(1):431-441.
    [116]Wang Z, Shang X. Spatial pooling strategies for perceptual image quality assessment[C]//Image Processing,2006 IEEE International Conference on. IEEE,2006: 2945-2948.
    [117]王保云,张荣,尹东.基于局部结构信息的图像质量评价空间汇集策略[J].应用科学学报,2011,29(5):473-482.
    [118]Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms [J]. Image Processing, IEEE Transactions on,2006,15(11): 3440-3451.
    [119]倪林.小波变换与图像处理[M].合肥:中国科学技术大学出版社,2010.
    [120]维基百科YCbCr[Z/OL]. [2O13-11-23]. http://zh.wikipedia.org/wiki/YCbCr.
    [121]陈希孺.概率论与数理统计[M].合肥:中国科学技术大学出版社,2002.
    [122]Narwaria M, Lin W. SVD-based quality metric for image and video using machine learning[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2012, 42(2):347-364.
    [123]Bruce N, Tsotsos J. Saliency based on information maximization[J]. Advances in neural information processing systems,2006,18:155.
    [124]Liu H, Heynderickx I. Studying the added value of visual attention in objective image quality metrics based on eye movement data[C]//Image Processing (ICIP),2009 16th IEEE International Conference on. IEEE,2009:3097-3100.
    [125]Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on pattern analysis and machine intelligence,1998,20(11): 1254-1259.
    [126]Rajashekar U, van der Linde I, Bovik A C, et al. GAFFE:A gaze-attentive fixation finding engine[J]. Image Processing, IEEE Transactions on,2008,17(4):564-573.
    [127]Hou X, Zhang L. Saliency detection:A spectral residual approach[C]//Computer Vision and Pattern Recognition,2007. CVPR'07. IEEE Conference on. IEEE,2007:1-8.
    [128]Frintrop S. VOCUS:A visual attention system for object detection and goal-directed search[M]. Heidelberg:Springer,2006.
    [129]Rao D V, Sudhakar N, Babu I R, et al. Image quality assessment complemented with visual regions of interest[C]//Proceedings of the International Conference on Computing:Theory and Applications. IEEE Computer Society,2007:681-687.
    [130]Rezazadeh S, Coulombe S. A novel approach for computing and pooling structural similarity index in the discrete wavelet domain[C]//Image Processing (ICIP),2009 16th IEEE International Conference on. IEEE,2009:2209-2212.
    [131]王家文Matlab7.6图形图像处理[M].北京:国防工业出版社,2009.
    [132]Liu L, Wang Y, Wu Y. A wavelet-domain structure similarity for image quality assessment[C]//Image and Signal Processing,2009. CISP'09.2nd International Congress on. IEEE,2009:1-5.
    [133]Hagan M T, Demuth H B, Beale M H. Neural network design[M]. Boston:Pws Pub.,1996.
    [134]Egmont-Petersen M, de Ridder D, Handels H. Image processing with neural networks—a review[J]. Pattern recognition,2002,35(10):2279-2301.
    [135]Bouzerdoum A, Havstad A, Beghdadi A. Image quality assessment using a neural network approach[C]//Signal Processing and Information Technology,2004. Proceedings of the Fourth IEEE International Symposium on. IEEE,2004:330-333.
    [136]Carrai P, Heynderickz I, Gastaldo P, et al. Image quality assessment by using neural networks[C]//Circuits and Systems,2002. ISCAS 2002. IEEE International Symposium on. IEEE,2002,5:V-253-V-256 vol.5.
    [137]Le Callet P, Viard-Gaudin C, Barba D. A convolutional neural network approach for objective video quality assessmen[J]. Neural Networks, IEEE Transactions on,2006,17(5): 1316-1327.
    [138]Dan Foresee F, Hagan M T. Gauss-Newton approximation to Bayesian learning[C]//Neural Networks,1997., International Conference on. IEEE,1997,3:1930-1935.
    [139]胡洁.高维数据特征降维研究综述[J].计算机应用研究,2008,25(9):2601-2606.
    [140]章毓晋.数字图像处理和分析[M].北京:清华大学出版社,1999.
    [141]Candes E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Transactions on, 2006,52(2):489-509.
    [142]霍承富.超光谱遥感图像压缩技术研[D]:[博士].安徽:中国科技大学,2012.
    [143]Hu A, Zhang R, Zhan X, et al. Image quality assessment incorporating the interaction of spatial and spectral sensitivities of HVS[C]//13th IASTED International Conference on Signal and Image Processing.2011:1-7.
    [144]Bartlett P L, Boucheron S, Lugosi G. Model selection and error estimation[J]. Machine Learning,2002,48(1-3):85-113.
    [145]Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. Selected Topics in Signal Processing, IEEE Journal of,2007,1(4):586-597.
    [146]Tourancheau S, Autrusseau F, Sazzad Z M P, et al. Impact of subjective dataset on the performance of image quality metrics[C]//Image Processing,2008. ICIP 2008.15th IEEE International Conference on. IEEE,2008:365-368.
    [147]Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision,2004,60(2):91-110.
    [148]Szeliski R. Computer vision:algorithms and applications[M]. Springer,2010.
    [149]Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005,27(10):1615-1630.
    [150]Beis J S, Lowe D G. Indexing without invariants in 3d object recognition[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1999,21(10):1000-1015.
    [151]Wei D, Odegard J E, Guo H, et al. Simultaneous noise reduction and SAR image data compression using best wavelet packet basis[C]//Image Processing,1995. Proceedings., International Conference on. IEEE,1995,3:200-203.
    [152]Starck J L, Murtagh F, Louys M. High quality astronomical image compression[J]. Vistas in Astronomy,1997,41(3):439-445.
    [153]Choong M K, Logeswaran R, Bister M. Improving diagnostic quality of MR images through controlled lossy compression using SPIHT[J]. Journal of medical systems,2006,30(3): 139-143.
    [154]Ponomarenko N, Krivenko S, Lukin V, et al. Lossy compression of noisy images based on visual quality:a comprehensive study[J]. EURASIP Journal on Advances in Signal Processing,2010,2010:69.
    [155]Ponomarenko N, Lukin V, Egiazarian K, et al. DCT based high quality image compression[M]//Image Analysis. Springer Berlin Heidelberg,2005:1177-1185.
    [156]付毓生.极化雷达图像增强理论[M].北京:电子工业出版社,2008.
    [157]焦李成,张向荣,侯彪等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
    [158]Li F K, Croft C, Held D N. Comparison of several techniques to obtain multiple-look SAR imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on,1983 (3):370-375.
    [159]易子麟,尹东,胡安洲,等.基于非局部均值滤波的SAR图像去噪[J].电子与信息学报,2012,34(4):950-955.
    [160]Educational Resources for Radar Remote Sensing[Z/OL]. Canada Centre for Remote Sensing (CCRS), [2012-1-28]. http://ccrs.nrcan.gc.ca/resource/tutor/gsarcd/index_e.php
    [161]Li X, Yin D, Zhang R, et al. An evident sidelobe control method based on NSCT for ship target in SAR images[J]. Journal of Electronics (China),2011,28(4-6):419-426.
    [162]Pinson M H, Wolf S. Comparing subjective video quality testing methodologies[C]//Visual Communications and Image Processing 2003. International Society for Optics and Photonics, 2003:573-582.
    [163]Gim G Y, Kim H, Lee J A, et al. Subjective image-quality estimation based on psychophysical experimentation[M]//Advances in Image and Video Technology. Springer Berlin Heidelberg,2007:346-356.
    [164]De Simone F, Goldmann L, Baroncini V, et al. Subjective evaluation of JPEG XR image compression[C]//SPIE Optical Engineering+ Applications. International Society for Optics and Photonics,2009:74430L-74430L-12.
    [165]Hoffmann H, Itagaki T, Wood D, et al. A novel method for subjective picture quality assessment and further studies of HDTV formats [J]. Broadcasting, IEEE Transactions on, 2008,54(1):1-13.
    [166]Kozamernik F, Steinmann V, Sunna P, et al. SAMVIQ—a new EBU methodology for video quality evaluations in multimedia[J]. SMPTE Motion Imaging Journal,2005,114(4): 152-160.
    [167]RADARSAT-1[Z/OL]. Canadian Space Agency, [2014-03-21]. http://www.asc-csa.gc.ca/eng/satellites/radarsatl/.
    [168]Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard[J]. Signal Processing Magazine, IEEE,2001,18(5):36-58.
    [169]Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees [J]. Circuits and Systems for Video Technology, IEEE Transactions on, 1996,6(3):243-250.
    [170]Wallace G K. The JPEG still picture compression standard[J]. Communications of the ACM, 1991,34(4):30-44.
    [171]Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on,2006, 52(4):1289-1306.
    [172]Parvez Sazzad Z M, Kawayoke Y, Horita Y. No reference image quality assessment for JPEG2000 based on spatial features[J]. Signal Processing:Image Communication,2008, 23(4):257-268.
    [173]Santa-Cruz D, Grosbois R, Ebrahimi T. JPEG 2000 performance evaluation and assessment J]. Signal Processing:Image Communication,2002,17(1):113-130.
    [174]Mrak M, Grgic S, Grgic M. Picture quality measures in image compression systems[C]// EUROCON 2003. Computer as a Tool. The IEEE Region 8. IEEE,2003,1:233-236.
    [175]王晓军,孙洪,管鲍.SAR图像相干斑抑制滤波性能评价[J].系统工程与电子技术,2004,26(9):1165-1171.
    [176]Gagnon L, Jouan A. Speckle filtering of SAR images:a comparative study between complex-wavelet-based and standard filters[C]//Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics,1997:80-91.
    [177]Dabov K, Foi A, Katkovnik V, et al. BM3D image denoising with shape-adaptive principal component analysis[C]//SPARS'09-Signal Processing with Adaptive Sparse Structured Representations.2009.
    [178]汪增福.模式识别[M].中国科学技术大学出版社,2010.
    [179]Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and computing, 2004,14(3):199-222.
    [180]Chang C C, Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [181]Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery,1998,2(2):121-167.
    [182]Hayes W L. Statistics for psychologists[J]. New York:Holt, Rinehart and Winston,1963, 19:53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700