用户名: 密码: 验证码:
超声实现离体肿瘤细胞磁性标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞的磁性标记是磁共振监测细胞迁移、进行细胞治疗的第一步。超顺磁性纳米氧化铁微粒不能有效跨越层层生物屏障进入胞质内,利用转染剂介导氧化铁标记细胞的方法需要转染剂和相当长的孵育时间,且期间氧化铁降解可能会破坏细胞膜结构、蛋白质和DNA。高频聚焦超声长期在疾病诊断和治疗中因其无创性和操作简单得到关注,而且,超声介导的基因传递使细胞转染率提高几十倍到几百倍,并且无明显毒性。本研究旨在开发安全方便的细胞磁性微粒快速装载的物理新方法-超声磁性微粒装载技术。通过自行设计搭建的超声装载装置,在无需转染剂辅助、细胞无需孵育的情况下,用实验室自制的超顺磁性纳米氧化铁微粒对肿瘤细胞进行了快速磁性标记,并对标记条件进行优化,当所用聚焦换能器共振频率为1.37MHz,当功率放大器输出为2W,所加SPIO浓度为410μg/mL,超声作用120s时,在保证细胞92.8%存活率的基础上,取得最高69.6%的标记率。同时基于微流理论对所用超声条件下微流产生的声辐射力和剪应力进行了估算,并结合细胞力学实验结果,对声孔效应机理进行了分析。具体工作和结论主要包括4个方面:
     (1)制备了可用于细胞磁性标记的超顺磁纳米氧化铁微粒肢体。在探寻制备特定尺寸磁性微粒的反应条件和制备工艺的基础上,采用超声辅助的化学共沉淀法,分别合成制备了裸磁性纳米微粒和葡聚糖T-40包覆的超顺磁性纳米粒子。利用X-射线粉末衍射仪(XRD),透射电镜(TEM),原子力显微镜(AFM),样品磁性用振动样品磁强计(VSM)等对其主要物理性质和磁学性质进行了研究,证明制备出的磁性微粒为面心结构的反尖晶石相晶体,裸磁粒平均粒径22nm,磁饱和强度64.396emu/g:葡聚糖包覆的纳米磁微粒核心粒径约为12nm,复合磁性微粒磁饱和强度46.41emu/g。且均具有软磁性特性,具备作为磁共振对比剂的物理性能。
     (2)设计搭建适于细胞磁性标记的超声装置。在对超声基因输送技术分析、综合的基础上,通过整合、改进,建立一套由稳压电源、功率放大器、单晶片聚焦探头、除汽水槽等组成的高频聚焦超声-磁性纳米微粒细胞装载实验系统。声场参数经水听器、阻抗分析仪和超声C扫描成像系统标定的。聚焦换能器为实验室自制,共振频率1.37MHz,当放大器输出电功率分别为1W、2W、3W时,超声波压强峰值经针式水听器检测为7.54×10~4,9.34×10~4,1.27×10~5Pa。
     (3)首次利用自行设计的超声系统实现了小鼠离体H-22肝癌细胞和S180细胞的磁性标记。在加入不同浓度的SPIO情况下,用不同的剂量对H-22、S180肿瘤细胞悬液进行暴露,提取最佳标记参数:2W输出,持续作用120S,所加铁氧体浓度410μg/mL。用普鲁士蓝染色证实细胞内铁的存在:用台盼蓝拒染法确定标记后细胞的活性原子谱吸收分光光度等方法评估标记细胞内的铁含量。证明最佳传递参数下高频低强度超声有效地将SPIO微粒载入了S180和H-22细胞,且未见明显的细胞损伤与细胞毒性,转染率为69.6%。
     (4)基于超声空化的微流理论,从理论上分析估算了稳态空化时微泡附近产生的作用于细胞膜上的剪应力,发现1W、2W、3W的电功率输出时,微泡附近剪应力值分别为568Pa,697Pa,783Pa。估算结果与单细胞微管吸吮技术测试结果量级相近。证实当功率放大器输出为1.37MHz,1-3W时,振荡微泡附近产生的剪应力可以使细胞发生弹性形变,细胞膜上产生可逆性穿孔,进而增大了膜的渗透性,促进细胞对磁性微粒的摄取。
     本论文的主要创新点:
     (1)在保持细胞活性的前提下,利用超声成功地提高了细胞膜的通透性,首次成功将纳米磁性微粒载入离体肿瘤细胞质内,并使细胞产生了足以满足磁共振成像所需的铁含量。预示一种新的细胞磁性标记技术的诞生。
     (2)建立了实现离体肿瘤细胞磁性标记的超声基本参量,且发现利用超声进行细胞标记时,所需纳米磁微粒的最佳浓度为转染剂标记方法的8-16倍,为以后更广泛的研究奠定了基础。
     (3)指出高频低强超声稳态空化时微泡附近的剪应力时细胞膜上产生微孔的主要原因。
One of the most critical steps for cellular MR imaging clinical applications of cell therapy is the method of intracellular magnetic labeling cell labeling.Traditionally,researchers use transfection agents or antibody/receptor as a vector and prolonged incubation to transfer magnetic nanoparticles into cells.Sonoporation is a technique that permits the transfer of drugs,including genes,into cells. This technique is designed to enhance cell permeability through the use of ultrasound.Its use became common because of its perceived safety,noninvasiveness,and low cost.Further, ultrasound-mediated gene delivery has been enhanced by severafold or hundredfold,with no significant toxicity.Development of nonviral magnetic particles transfer methods would be a valuable addition to the celltherapy armamentarinm,particularly for localized targeting of specific tumor or transplant stem cells.In this study,sonoporation was investigated as an alternative method to achieve instant endosomal labeling with the magnetic particles,which prepared by means of classical coprecipitation in dextran T40 solution in our laboratory,without the need for adjunct agents or initiating cell cultures.H-22 cell labeling efficiency close to 69.6%when ultrasound expose duration 120s at 2W electric power output and the final concentration of added SPIO is 410μg/mL.While the steady shear stress in the vicinity of gaseous microbubble in cells suspension irradiated by continuous ultrasonic field typical of those used in diagnostic practice have been calculated.The main works conducted in my thesis are outlined below.
     (1) To improve a method of synthesizing dextran-coated superparamagnetic iron oxide nanoparticles and can be used as magnetic markers for Sarcoma 180 and H-22 tumor cells. Magnetite particles were prepared by chemical precipitation method.The dextran coated supermagnetic iron oxide nanoparticles were synthesised by the co-precipitation method.The characters of the particles were investigated by atomic force microscope,transmission electron microscopy,x-ray diffraction analysis,magnetic hysteresis loops and fourier transform infrared spectrometer.The synthesized black power show firrraction pattern typical of single phase spinel oxides.The core size and saturation magnetization Ms of the dextran-coated samples is about 12nm and 46.41emu/g respectively.The mean diameter and Ms of naked particle is 45nm and 64.396emu/g,respectively.The shape of the particle is cubic and the dimension size is (200-300nm)×(400-600nm)×(50-70 nm),no magnetic hysteresis loop was observed.
     (2) Design a rotating tube sonoporation system to load magnetic particles into cells.Current sonoporation instruments are far from perfect,more needs to been done in improving their performance.We have made improvements and developed a new type of sonoporation system-high frequency at a low intensity levels.The experimental acoustic setup consisted of a 1.37MHz focused single-element transducer(made in our labory) mounded in a water tank(4℃).The system has been tested with respect to its admittance,electroacoustic efficiency and distribution of sound pressure. The frequency used is similar to that used in diagnostic ultrasound,so cell damage is not expected to occur.
     (3) It has been shown experimentally in cell suspensions that sonporation could be used to deliver the supermagnetic nanoparticles into S180 and H-22 cells in vitro.The superparamagnetic iron oxide(SPIO) particles that prepared in our labory have been used to label these cells.In this study,we investigate the cell labeling efficiencies of two different SPIO nanoparticles.To observe the effects of various physical parameters such as ultrasound exposure duration,acoustic density and the ferum oxide concentration,on both labeling efficiency and cell viability.The sonoporation were performed in 1-3.0W electrical power output from the amplifier and the transducer(diameter is 25 mm) with a resonant frequency of 1.37 MHz in a continuous wave mode.Cellular labeling efficiency is evaluated by Prussian blue staining for iron assessment.the iron content of the labeled cells was assessed by atomic emission spectrometer.The viability of labeled cells is evaluated by trypan blue exclusion test.The results showed that when SPIO was added at 410μg/ml,focused ultrasound sonication at a frequency of 1.37MHz and power from amplifer of 2W,H-22 cells were efficiently labeled at 120s exposure time the labeling efficiency was about 69.6%.Prussian blue staining confirmed iron uptake and showed numerous blue-stained iron particles in the cytoplasm, while more than 92%labeled cells remained viable.The result show ultrasound might be a promising technique for in vitro labeling of the tumor cells.
     (4) Rapidly oscillating microbubbles genertates a fluid flow over the cell surface.This microstreaming is probably responsible for the disruption of cell membrane by tearing the lipid bilayer.The steady shear stress in the vicinity of gaseous microbubble in cells suspension irradiated by continuous ultrasonic field typical of those used in diagnostic practice have been calculated from a solution of the equation of motion bubble.The values of the shear stresses caused by continuous exposure to ultrasound were found to lie with the range in which biological effects have been reported,it also consistent with the measurement by micropipet technique of HCC tumor cells.
     The main contributions of this thesis are as follows:
     (1) This paper developed an experimental technique that enabled us to uptake superparammagnetic particles into tumor cells in vitro during exposure to ultrasound.We report for the first time that a focused sonicator,designed to disrupt cells and homogenize solutions,can be applied to effectively transfer superparamagnetic iron oxide particles into tumor cells in absence of microbubble.
     (2) The iron oxide concentration used for ultrasound labeling is about 8-to 16-fold higher compared to transfection agents based labeling methods.This fingding should prove useful in further studies to improve the efficiency of magnetic labeling.
     (3) Numerical calculations have shown that shear stress associated with microstreaming surrounding encapsulated bubbles may be large enough to generate sonoporation at 1-3W of 1.37MHz ultrasound.
引文
[1]A.Heymer,D.Haddad,M.Weber,U.Gbureck,et al.Iron oxide labeling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair[J].Biomaterials,2008,29(10):1473-1483.
    [2]C.Riviere,S.Marion,N.Guillen,J.C.Bacri,F Gazeau,C.Wilhelm.Signaling through the phosphatidylinositol 3-kinase regulates mechanotaxis induced by local low magnetic forces in Entamoeba histolytica[J].J Biomech.2007,40(1):64-77.
    [3]C.Wilhelm,C.Riviere,N.Biais.Magnetic control of Dictyostelium aggregation[J].Phys.Rev.E.Stat.Nonlin.Soft Matter Phys.,2007,75(4 Pt 1):041906-041913.
    [4]A.Ito,E.Hibino,C.Kobayashi,H.Terasaki,H.Kagami,M.Ueda,et al.Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets,using magnetite nanoparticles and magnetic force[J].Tissue Eng.,2005,11(3-4):489-496.
    [5]A.Ito,Y.Takizawa,H.Honda,K.Hata,H.Kagami,M.Ueda,et al.Tissue engineering using magnetite nanoparticles and magnetic force:heterotypic layers of cocultured hepatocytes and endothelial cells[J].Tissue Eng.,2004,10(5-6):833-840.
    [6]S.V.Pislaru,A.Harbuzariu,R.Gulati,T.Witt,N.P.Sandhu,R.D.Simari,et al.Magnetically targeted endothelial cell localization in stented vessels[J].J.Am.Coll.Cardiol.,2006,48(9):1839-1845.
    [7]A.S.Arbab,E.K.Jordan,L.B.Wilson,G.T.Yocum,B.K.Lewis,J.A.Frank.In vivo trafficking and targeted delivery of magnetically labeled stem cells[J].Hum.Gene Ther.,2004,15(4):351-360.
    [8]S.J.Dodd,M.Williams,J.P.Suhan,et al.Detection of single mammalin cells by high resolution magnetic resonance imaging[J].Biophys J.,1999,76(1):103-109.
    [9]J.A.Frank,H.Zywicke,E.K.Jordan,et al.Magnetic intracellular labeling of mammalian cells by combining(FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents[J].Acad.Radio 1,2002,Suppl 2:S484-S487.
    [10]T.C.Yeh,W.Zhang,S.T.Ildstad,C.Ho.Intracellular labeling of T-cells with superparamagnetic contrast agents[J].Magn.Reson.Med.,1993,30(5):617-625.
    [11]R.Weissleder,H.C.Cheng,A.Bogdanova,Jr.A.Bogdanov.Magnetically labeled cells can be detected by MR imaging[J]. J. Magn. Reson Imaging, 1997,7(1):258- 263.
    [12] J. W. Bulte, S. Zhang, P. Van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination[C]. Proc. Natl. Acad. Sci., USA ,1999, 96(26): 15256-15261.
    [13] H. E. Daldrup-Link, M. Rudelius, R. A. Oostendorp, M. Settles, G. Piontek, S. Metz,et al. Targeting of hematopoietic progenitor cells with MR contrast agents[J]. Radiology 2003, 228(3):760-767.
    [14] E. T. Ahrens, M. Feili-Hariri, H. Xu, G. Genove, P. A. Morel. Receptor-mediated endocytosis of iron oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging[J]. Magn. Reson. Med., 2003,49(6): 1006-1013.
    [15] W. Claire, G. Florence. Universal cell labelling with anionic magnetic nanoparticl- es[J]. Biomaterials, 2008, 29(22): 3161-3174.
    [16] L. Josephson, C.H. Tung, A. Moore, R. Weissleder. High-efficiency intracellular magnetic labeling with novel superparamagnetic tat peptide conjugates[J]. Bioconjug Chem., 1999, 10(2): 186-191.
    [17] M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nat. Biotechnol., 2000,18(4):410-414.
    [18] M. Zhao, M. F. Kircher, L. Josephson, R. Weissleder. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake[J]. Bioconjug. Chem., 2002,13(4):840-844.
    [19] R. Weissleder, D. D. Stark, B. L. Engelstad,et al. Superparamagetic iron oxide: pharmaco kinetics and toxicity[J]. AJR, 1989,152:167-173.
    [20] J. W. Bulte, S. Zhang, G. P. Van, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors:magnetic resonance tracking of cell migration and myelination[C]. Proc. Natl. Acad. Sci. USA, 1999, 96(26): 15256-15261.
    [21] Bulte J.W, Douglas T, Witwer B, Zhang S, Strable E, Lewis B.K, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J]. Nat Biotechnol. ,2001,19(12): 1141-1147.
    [22] J. W. Bulte, I. D. Duncan, J. A. Frank. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation [J]. J. Cereb. Blood Flow Metab, 2002,22(8):899-906.
    [23]Z.Y.Zhang,B.D.Smith.High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles:membrane bending model[J].Bioconjug Chem.,2000,11(6):805-814.
    [24]J.A.Frank,B.R.Miller,A.S.Arbab,et al.Clinitally applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J].Radiology,2003,228(4):480-487
    [25]C.Wilhelm,C.Billotey,J.Roger,et al.Intracellular uptake of anionic superpara-magnetic nanoparticles as a function of their surface coating[J].Biomaterials,2003,24(6):1001-1011.
    [26]G.Fleige,F.Seeberger,D.Laux,M.Kresse,M.Taupitz,H.Pilgrimm,et al.In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking[J].Invest Radiol.,2002,37(9):482-488.
    [27]C.Wilhelm,F.Gazeau,J.Roger,J.N.Pons,J.C.Bacri.Interaction of anionic superparamagnetic nanoparticles with cells:kinetic analyses of membrane adsorption and subsequent internalization[J].Langmuir,2002,18:8148-8155.
    [28]H.Kalish,A.S.Arbab,B.R.Miller,B.K.Lewis,H.A.Zywicke,J.W.Bulte,et al.Combination of transfection agents and magnetic resonance contrast agents for cellular imaging:relationship between relaxivities,electrostatic forces,and chemical composition[J].Magn.Reson.Med.,2003,50(2):275-282.
    [29]A.S.Arbab,G.T.Yocum,H.Kalish,E.K.Jordan,S.A.Anderson,A.Y.Khakoo,et al.Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI[J].Blood,2004,104(4):1217-1223.
    [30]A.K.Montet,X.Montet,R.Weissleder,L.Josephson.Cell internalization of magnetic nanoparticles using transfection agents[J].Mol.Imag.,2007,6(1):1-9.
    [31]M.Hoehn,E.Kustermann,J.Blunk,D.Wiedermann,T.Trapp,S.Wecker,et al.Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[C].Proc.Natl.Acad.Sci.USA,2002,99(25):16267-16272.
    [32]J.W.Bulte.Magnetic nanoparticles as markers for cellular MR imaging[J].Journal of Magnetism and Magnetic Materials,2005,289:423-427
    [33]徐健,郑敏文,宦怡等.干细胞的磁性标记及肝内活体磁共振示踪[J].第四军医大学学报,2007,28(6):484-488.
    [34]L.Josephson,C.H.Tung,A.Moore,et al.High efficiency intracellular magnetic label- ing with novel superparamagnetic-tat peptide conjugateds[J].Bioconjug Chem.,1999,10:186-192.
    [35]A.Weber,I.Pedrosa,A.Kawamoto,et al.Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease[J].Eur.J.Cardiothorac Surg.,2004.26:137-143
    [36]E.Neumann,M.Schaefer-Ridder,Y.Wang,P.H.Hofschneider.Gene transfer into mouse lyoma cells by electroporation in high electric fields[J].EMBO J.,1982,1:841-845.
    [37]M.Stacey,J.Stickley,P.Foxa.Differential effect s in cells exposed to ultrashort,high intensity electric fields:cell survival DNA damage,and cell cycle analysis[J].Mutation Research,2003,8:65-75.
    [38]J.C.Weaver.Electroporation:Adramatic,nonthermal electric field phenomenon.In proceeding of the first world congress for electricity and magnetism in Biology and Medicine[C].Florida,USA:Academic Press.,1992:14-18.
    [39]J.C.Weaver.Electroporation of cells and tissues[J].IEEE Transaction on Plasma Science,2000,28(1):24-33.
    [40]B.D.Sukhendu,P.R.Dietmar,Georg Widera,et al.Medical applications of electroporation[J].IEEE Transactions on Plasma Science.2000,28(1):206-223.
    [41]Karl H Schoenbach,Stephen J Beebe,E Stephen Buescher,et al.Intracellular effect of ultrashort electrical pulses[J].Bioelectromagnetics.,2001(22):440-448.
    [42]Karl H Schoenbach,Ravindra P Joshi.Ultrashort electrical pulses open a new gateway into biological cells[C].Proceedings of the IEEE.[S.l.],2004:1122-1137.
    [43]莫登斌,米彦,姚陈果,李成祥,孙才新.ns脉冲诱导细胞内电处理机理的研究进展[J].高电压技术,2007,33(2):101-105.
    [44]N.Y.Chen,H.S.Karl,F.K.Juergen,et al.Leukemic cell int racellular responses to nanosecond electric fields[J].Biochemical and Biophysical Research Communications,2004,317:421-427.
    [45]J.Beebe Stephen,P.M.Fox,L.J.Rec.Nanosecond pulsed electric field(ns PEF)effects on cells and tissues:apoptosis induction and tumor growt h inhibition[J].IEEE Transactions on plasma science,2002,30(1):286-292.
    [46]M.Gundersen,P.T.Vernier,L.Marcu,et al.Ultrashort pulse electroporation:applications of high pulsed electric fields to induced caspase activation of human lymphocytes[C].In:Proceedings of 25th International Power Modulator Symposium.California:Institute of Electrical and Electronics Engineers Inc.,2002,667-670.
    [47]E.Neumann,K.Rosenheck.Permeability changes included by electrical pulse in electrical pulse in vesicular membranes[J].J.Member Biol.,1972,10:279-285.
    [48]S.Kanazawa,M.Kogoma,T.Moriwaki,S.Okazaki.Stable glow plasma at atmospheric pressure[J].Phys.D:Appl.Phys.,1988,21:838-847
    [49]P.Walezak,D.A.Kedziorek,A.A.Gilad,S.Lin,and J.W.M.Bulte.Instant MR labeling of stem cells using magnetoeleetroporation[J].Magnetic Resonance in Medicine,2005,54(6):769-774.
    [50]D.L.Miller,S.Bao,J.E.Morris.Sonoporation of cultured cells in the rotating tube exposure system.Ultrasound Med.[J].Biol.1999,25(1):143-149.
    [51]M.Fechheimer,J.Boylan,S.Parker,et al.Transfection of mammalian cells with plasmid DNA by serape loading and sonication loading[C].Proc.Natl.Acad.Sci.,1987,84(21):8463-8467.
    [52]S.Bao,B.D.Thrall,D.L.Miller.Transfection of a reporter plasmid into cultured cells by sonoporation in vitro[J].Ultrasound Med Biol,1997,23(6):953-959.
    [53]A.A.Brayman,M.L.Coppage,S.Vaidya,et al.Transient poration and cell surface receptor removal fromhuman lymphoeytes in vitro by 1MHz ultrasound[J].Ultrasound Med.Biol.,1999,25(6):999-1008.
    [54]D.L.Miller,S.Bao,R.A.Gies,et al.Ultrasonic enhancement of gene transfection in murine melanoma tumors[J].Ultrasound Med.Biol.,1999,25(9):1425-1430.
    [55]K.Anwer,G.Kao,B.Proctor,et al.Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration[J].GeneTher.,2000,7(21):1833-1839.
    [56]程文.超声在基因治疗方面的研究进展.中国医学影像技术,2004,20(1):150-152.
    [57]A.van Wamel,K.Kooiman,M.Harteveld,M.Emmer,Follkert J.ten Cate,Michel Versluis,Nico de Jong.Vibrating microbubbles poking individual cells:drug transfer into cells via sonoporation[J].Journal of controlled release,2006.112(1):149-155.
    [58]J.Wu,J.Pepe.M.Rincon M.Sonoporation,anti-cancer drug and antibody delivery using ultrasound[J].Ultrasonic.2006,44:e21-e25.
    [59]M.H.Sophie,B.Thierry,Y.Feng,Richard H.Guy.Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery[J]. Journal of Controlled Release .2005,104 : 213-222.
    [60] S. Conroy, S.H. Lee Jerry, M. Zhang. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews[J]. 2008,60 (11): 1252-1265.
    [61] C. Corot, P. Robert, J. M. Idee, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging[J]. Advanced Drug Delivery Reviews, 2006,58 (14):1471-1504.
    
    [62] Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine[J]. Journal of Physics D, Applied Physics 2003,36 (2):R167-R181.
    [63] J. Dobson. Magnetic nanoparticles for drug delivery[J]. Drug Development Research, 2006,67(1):55-60.
    
    [64] M. G. Harisinghani, K. S. Jhaveri, R Weissleder, W Schima, Saini S, P. F. Hahn, et al. MRI contrast agents for evaluating focal hepatic lesions[J]. Clin. Radiol.,2001, 56:714-725.
    
    [65] Y. Anzai, C. W. Piccoli, E. K. Outwater, W. Stanford, D. A. Bluemke, P. Nurenberg, et al. Evaluation of neck and body metastases to nodes with ferumox- tran10-enhanced MR imaging: phase III safety and efficacy study[J]. Radiology , 2003,228:777-788.
    
    [66] M. Matsumura, M. Yamada Fujimaki, et al. Proton relaxation caused by Magnetic resonance imaging contrast agent-Oral Magnetic particles[J]. Chem. Pharm. Bu11, 1999,47(6):727-731.
    
    [67] W. Chu, J. Paula. Physical and chemical properties of suerparamagnetic iron oxide MR contrast agents: Ferumoxides, Ferumoxtran, Ferumoxsil[J]. Mag. Res. Imaging, 1995,13(5): 661-674.
    [68] P. Reimer, R. Weissleder, A. S Lee, et al. Receptor imaging: application to MR imaging of liver cancer[J]. Radiology, 1990,177(3): 729-734.
    
    [69] B. Hamm, T. Staks, M. Taupitz. Contrast-enhanced MR imaging of liver and spleen-first experience in mans with new superparamagnetic iron oxide[J]. J. Magn. Reson. Imaging, 1994,4(5): 659-668.
    
    [70] K. Takahama, Y. Amano, H. Hayashi, et al. T_1-weighted magnetic resonance imaging sequence appropriate for the evaluation of the longitudinal relaxation effect of superparamagnetic iron oxide: a phantom study[J]. J. Nippon Med. Sci.. 2002,69(6):571-576.
    [71]L.J.Daniel Thorek,Andrew Tsourkas.Size,charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells[J].Biomaterials,2008,29:3583-3590.
    [72]G.P.Yan,L.Robinson,P.Hogg.Magnetic resonance imaging contrast agents:Overview and perspectives[J].Radiography,2007,13:e5-e19.
    [73]E.M.Shapiro,S.Skrfie,K.Sharer,J.M.Hill,C.E Dunbar,A.P.Koretsky.MRI detection of single particles for cellular imaging[C].Proc.Natl.Acad.Sci.USA,2004,101(30):10901-10906.
    [74]J.A.Frank,B.R Miller,A.S.Arbab,et al.Clinically applicable labeling of mammalian and stem cells by combining superparamagnetie iron oxides and transfection agents[J].Radiology,2003,228:480-487.
    [75]刘新权,景猛,李长宇等.磁性纳米材料的研究现状及其在圣经干细胞移植中的应用[J].实用临床医学杂志,2003,7(3):232-235.
    [76]L.Matuszewski,T.Persigehl,A.Wall,W.Schwindt,B.Tombach,M.Fobker,et al.Cell tagging with clinically approved iron oxides:feasibility and effect of lipofection,particle size,and surface coating on labeling effficiency[J].Radiology,2005,235(1):155-161.
    [77]R.Sun,J.Dittrich,M.Le-Huu,M.M.Mueller,J.Bedke,J.Kartenbeck,et al.Physical and biological characterization of superparamagnetic iron oxide and ultra-small superparamagnetie iron oxide-labeled cells[J].Invest Radiol.,2005,40:504-513.
    [78]M.Song,W.K.Moon,Y.Kim,D.Lim,I.C.Song,B.W.Yoon.Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells:comparison of ferumoxides,monocrystalline iron oxide,cross-linked iron oxide (CLIO)-NH2 and tat-CLIO[J].Korean J.Radiol,2007,8(5):365-371.
    [79]T.Shen,R.Weissleder,M.Papisov,Jr.A.Bogdanov,T.J.Brady.Monocrystalline iron oxide nanocompounds(MION):physicochemical properties[J].Magnetic Resonance in Medicine,1993,29(5):599-604.
    [80]L.Josephson,C.H.Tung,A.Moore,R.Weissleder.High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates[J].Bioconjugate Chemistry,1999,10(1):186-191.
    [81]V.P.Torchilin.Recent advances with liposomes as pharmaceutical carriers[J]. Nature Reviews,Drag Discovery,2005,4(1):145-160.
    [82]N.Nasongkla,E.Bey,J.M.Ren,H.Ai,C.Khemtong,J.S.Guthi,S.F.Chin,et al.Multifunctional polymeric micelles as cancer- targeted,MRI-ultrasensitive drug delivery systems[J].Nano Letters,2006,6:2427-2430.
    [83]冯端,葛庭燧,翟宏如.金属物理学(第4卷)[M].科学出版社,2000:537-538.
    [84]许乙凯.磁共振造影剂及临床应用[M].人民卫生出版社,2003:16-56.
    [85]A.K.Fahlvik,J.Klaveness,D.D.Stark.Iron oxide as MR imaging contrast agents [J].J.Magn.Reson.Imaging,1993,3(2):187-193.
    [86]刘世霆,晏媛,陈志良,张玉忠,金星.超顺磁性葡聚糖氧化铁纳米颗粒的研制及表征[J].南方医科大学学报,2006,26(3):331-335.
    [87]B.H.Park,J.C.Jung,G.H.Lee,et al.Comparison of labeling efficiency of different magnetic nanoparticles into stem cell[J].Colloids and Surfaces A:Physicochem.Eng.Aspects,2008,(313-314):145-149.
    [88]刘世霆.超顺磁性氧化铁磁共振造影剂的制备工艺研究及药效学探讨[D].广州:第一军医大学,2006.
    [89]A.K.Gupta,M.Gupta.Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J].Biomaterials,2005,26:3995-4021.
    [90]熊平,傅伟,彭飞武,刘建庭.磁性纳米铁微粒的制备方法研究[J].金属功能材料,2007,14(1):33-36.
    [91]S.H.Sun,H.Zeng,D.B.Robinson,S.Raoux,et al.Monodisperse MFe_2O_4(M=Fe,Co,Mn) nanopartieles[J].Journal of the American Chemical Society,2004,126:273-279.
    [92]J.H.Lee,Y.M.Huh,Y.W.Jun,et al.Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging,Natural Medicines[J].2007,13:95-99.
    [93]U.O.Hafeli,J.P.Gayle.In vitro and in vivo toxicity of magnetic microspheres[J].J.Magn.Magn.Mater.,1999,194(1):76-82.
    [94]王国斌,夏泽锋,陶凯雄等.医用纳米级Fe_3O_4磁流体的急性毒理学实验研究[J].华中科技大学学报(医学版),2004,33(4):452-454.
    [95]S.Wagner,J.Schnorr,H.Pilgrimm,et al.Monomer coated very small superpara-magnetic iron oxide particles as contrast medium for magnetic resonance imaging:preclinical in vivo characterization[J].Invest Radiol.,2002,37(4):167-177.
    [96]R.Lawaczeck,H.Bauer,T.Frenzel,et al.Magnetic iron oxide particles coated with carboxy dextran for parenteral administration and liver contrasting[J].Acta Radiol.,1997,38(4 Pt 1):584-597.
    [97]王毛兰,胡春华,罗新.磁流体的制备、性质及其应用川[J].化学通报,2004,67(5):31-37.
    [98]L.Thoren.The dextrans-clinical data[J].Devel.Biol.Stand,1981,48:157-167.
    [99]K.A.Janes,P.Calvo,M.J.Alonso.Polysaccharide colloidal particles as delivery systems for macromolecules[J].Adv.Drug Deliv.Rev.,2001,47(1):83-97.
    [100]滕皋军,居胜红.开展干细胞标记和MR活体示踪研究推进分子影响学发展[J].中华放射学杂志,2006,40(2):117-118.
    [101]文明,宋琳,柏玮,李少林,李必波.纳米级超顺磁性氧化铁的制备及其对小鼠急性毒性作用的观察[J].第二军医大学学报,2007,28(10):1104-1108.
    [102]汤庆国,沈上越,冉松林,李养贤.纳米磁性微粒(胶体)的制备及性能[J].硅酸盐学报,2005,33(11):1352-1356.
    [103]Julia M(u|¨)rbe,Annett Rechtenbach,J(o|¨)rg T(o|¨)pfer.Synthesis and physical characterizeation of magnetite nanopartieles for biomedical applications[J].Materials Chemistry and Physics,2008,110(2):426-433.
    [104]金星,陈志良,刘世霆,晏媛,张玉忠.超顺磁性氧化铁胶体溶液的质量研究[J].中国医院药学杂志,2008,28(10):787-790.
    [105]安丽娟,李兆强,徐娓,陈欣芳,杨柏.超顺磁性高分子微球的制备与表征[J].高等学校化学学报,2005,26(2):366-369.
    [106]吴伟,贺全国,陈洪等.Fe_3O_4磁性纳米粒子的超声包金及其表征[J].化学学报,2007,65(13):1273-1279.
    [107]黄菁菁,徐祖顺,易昌凤.化学共沉淀法制备纳米四氧化三铁粒子[J].湖北大学学报:自然科学版.2007,29(1):50-52.
    [108]Y.W.Jun,Y.M.Huh,J.S.Choi,et al.Nanoscale size effect of magnetic nanoerystals and their utilization for cancer diagnosis via magnetic resonance Imaging[J].Am.Chem.Soc.,2005,127(16):5732-5740.
    [109]李民勤,徐慧显,何炳林.葡聚糖磁性毫微粒的制备[J].高等学校化学学报,1996,17(1):147-150.
    [110]丁军,赵继红,杨海山.中等粒径葡聚糖超顺磁性氧化铁纳米颗粒的制备[J].中国实验诊断学,2007,11(1):102-104.
    [111]魏衍超,杨连生.生物高分子磁性微球的制备、结构、性质和应用[J].磁性材料及器件,1999,30(6):18-21.
    [112]周洁,马明,张宇,顾宁.不同尺寸Fe_3O_4磁性颗粒的制备和表征[J].东南大
    [113] D. J. Dunlop, K. S. Argyle. Thermoremanence anhysteretic remanence and susceptibility of submicron magnetites: nonlinear field dependence and variation with grain size [J]. Journal of Geophysical Research, 1997,102 (9): 199-210.
    [114] M. Fechheimer, J. F. Boylan, S. Parker, J. E. Sisken, G. L. Patel, S. G. Zimmer. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading[C]. Proc. Natl. Acad. Sci. USA, 1987,84:8463-8467.
    [115] M. Fechheimer, D.L. Taylor. Introduction of exogenous molecules into the cytoplasm of Dictyostelium discoideum amoebae by controlled sonication[J]. Methods Cell Biol., 1987,28:179-190.
    [116] J. A. Wyber, J. Andrews, A. Demanuele. The use of sonication for the efficient delivery of plasmid DNA into cells[J]. Pharm. Res.,1997,14:750-756.
    [117] A. Lawrie, A. Brisken, S. Francis, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro[J]. Circulation, 1999, 99: 2617-2620.
    [118] M. W. Miller. Gene transfection and drug delivery[J]. Ultrsound in Med. &Biol., 2000,26(5):559-562.
    
    [119] H. R. Guzman, M. R. Prausnitz. Ultrasound-mediated drug delivery to prostate cancer and smooth muscle cells[C]. Proceedings of the first joint BMESPEMBS Conference Serving Humanity, Advancing technology,1999,13:16-19.
    [120] E. C. Unger, E. Hersh, M. Vannan, et al. Gene delivery using ultrasound contrast agents[J]. Echocardiography, 2001,18:355-361.
    [121] Y. Taniyama, K. Tachibana, K. Hiraoka, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound[J]. Circulation, 2002,105:1233-1239.
    [122] A. Lawrie, A. F. Brisken, S. E Francis, et al. Microbubble-enhanced ultrasound for vascular gene delivery[J]. Gene Ther., 2000,7:2023-2027.
    
    [123] D. L Miller, V. P. Sorin, F. G. James. Sonoporation: Mechanical DNA Delivery by Ultrasonic Cavitation[J]. Somatic Cell and Molecular Genetics, 2002,27(6): 115-134.
    [124] Y.Liu, H. Yang, A. Sakanishi. Ultrasound: Mechanical gene transfer inti plant cells by sonoporation[J]. Biotechnology Advances, 2006, 24:1-16.
    
    [125] H. J. Kim, J. F. Greenleaf, R. R. Kinnick, et al. Ultrasound-mediated transfection of mammalian cells[J]. Hum. Gene Ther., 1996, 7:1339-1346.
    [126]W.J.Greenleaf,M.E.Bolander,G.Sarkar,et al.Artificial cavitation nuclei significantly enhance acoustically induced cell transfection[J].Ultrasound Med.Biol.,1998,24:587-595.
    [127]Y.Manome,M.Nakamura,T.Ohno.Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo[J].Hum.Gene Ther.2000,11(11):1521-1528.
    [128]A.A.Brayman,M.L.Coppage,S.Vaidya,and M.W.Miller.Transient potation and call surface receptor removal from human lymphocytes in vitro by 1MHz ultrasound[J].Ultrasound Med.Biol.,1999,25(6):999-1008.
    [129]Sei Tsunoda,Osam Mazda,Yohei Oda,Yasunori Iida,Satoshi Akabame Tsunao Kishida,Masaharu Shin-Ya,Hidetsugu Asada,Satoshi Gojo,Jiro Imanishi,Hiroald Matsubara,Toshikazu Yoshikawa.Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart[J].Biochemical and Biophysical Research Communications,2005,336:118-127
    [130]M.H.Sophie,B.Thierry,Y.Feng,H.G.Richard.Ultrasound- mediated gene delivery:Kinetics of plasmid internalization and gene expression[J].Journal of Controlled Release,2005,104:203-211.
    [131]陈云超,张青萍,Liang Haidong等.超声和微泡造影剂介导细胞基因转染的试验研究[J].中华超声影像学杂志,2006,15(11):864-868.
    [132]张群霞,王志刚,冉海涛,李晓东,郑元义,景香香.不同超声强度及微泡对基因和组织作用的实验研究[J].中华超声影像学杂志,2005,14(4):304-306.
    [133]王炜,严兰凤,卞正中,缪亚林.超声基因药物传递新方法的研究与评估[J].中国生物医学工程学报,2006,25(2):186-191.
    [134]M.Hallow Daniel,D.Mahajan Anuj,R.Prausnitz Mark.Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries[J].Journal of Controlled Release,2007,118:285-293.
    [135]A.Lawrie,A.F.Brisken,S.E Francis,et al.Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro[J].Circulation,1999,99:2617-2620.
    [136]P.E.Huber,P.Pfisterer.In vitro and in vivo transfection ofplasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound[J].Gene Ther,2000,7:1516-1525.
    [137]P.G.Amabile,J.M.Waugh,T.N.Lewis,et al.High-efficiency endovascular gene delivery via therapeutic ultrasound[J]. J. Am. Coll. Cardiol., 2001,37:1975-1980.
    
    [138] P. Chratzberger, J. G. Krainin, G. Schratzberger, et al. Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle[J]. Mol. Ther., 2002,6: 576-583.
    
    [139] G. Anialou, A. S. Comtois, R. W. Dudley, et al. Ultrasound increases plasmid-mediated gene transfer to dystrophy muscles without collateral damage[J]. Mol. Ther., 2002,6:687-693.
    
    [140] M. Nakashima, K. Tachibana, K. Iohara, et al. Induction of reparative dentin formation by ultrasound-mediated gene deliver of growth/differentiation factor[J]. Hum. Gene Ther., 2003,10:591-597.
    
    [141] G. Danialou, A. S. Comtois, R. W. Dudley, et al. Ultrasound increases plasmid-mediated gene transfer to dystrophy muscles without collateral damage[J]. Mol. Ther., 2002,6:687-693.
    [142] Y. Taniyama, K. Tachibana, K. Hiraoka, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound[J]. Circulation, 2002,105:1233-1239.
    [143] Y. Taniyama, K. Tachibana, K. Hiraoka, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound:enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle[J]. Gene Ther., 2002,9:372- 380.
    
    [144] P. A. Frenkel, S. Chen, T.T.R.V. Shohet, et al. DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro[J]. Ultrasound Med. Biol., 2002,28: 817-822.
    
    [145] T. Nozaki, R. Ogawa, A. Watanabe, R. Nishio, H. F. Kondo. Ultrasound-mediated gene transfection: problems to be solved and future possibilities[J]. J. Med. Ultrasonics, 2006,33:135-142.
    
    [146] D. L. Miller. J. Quddus. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies[J]. Ultrasound in Med. & Biol., 2000,26 : 661-667.
    
    [147] D. L. Miller. R. M. Thomas. Ultrasound contrast agents uncleate intertial cavitation in vitro[J]. Ultrasound Med.Biol.,1995, 21:1059-1065.
    
    [148] P. E. Huber, Juergen, Jenne, et al. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells[J]. Ultrasound in Med.& Biol.,1999,25(9):1451-1457.
    [149]A.Matin,M.D.Muniruzzaman,N.Rapoport.Acoustic activation of drug delivery from polymeric micelles:effect of pulsed ultrasound[J].Journal of Controlled Release,2001,71:239-249.
    [150]王保强,王敬东,尹蓉莉.超声生物处理与声学参数的调控[J].生物医学工程学杂志,2004,21(4):662-665.
    [151]K.Ng,Y.Liu.Therapeutic ultrasound:Its application in drug delivery[J].Medicine Research Reviews,2002,22(2):204-223.
    [152]K.R.Rohr,J.A.Rooney.Effect of ultrasound on a bilayer lipid membrane[J].Biophys.J,1978,23:33-39.
    [153]C.K.Holland.R.E.Apfel.Fundamentals of the Mechanical Index and caveats in its application[J].J.Acoust Soc.Am.,1999,105:1324-1329.
    [154]J.S.Allen,R.A.Roy.Dynamics of gas bubbles in viscoelastic fluids.I.Linear viscoelasticity.J.Acoust Soc.Am.,2000,107:3167-3178.
    [155]M.Ward,J.Wu.Experimental study of the effects of OPTISN concentration on sonoporation in vitro[J].Ultrasound in Med.& Biol.,2000,26(7):1169-1175.
    [156]沈阳,钱德初,寿文德.声致穿孔仪的研制[J].声学技术,2004,23(2):88-92
    [157]C.D.Ohl,B.Wolfrum.Detachment and sonoporation of adherent Hela cells by shock wave induced cavitation[J].Biochimica et Biophysica Acta,2003,1624:131-138.
    [158]Kengo Okada,Nobuki Kudo,Koichi Niwa,et al.A basic study on sonoporation with microbubbles exposed to pulsed ultrasound[J].The japan society of ultrasonics in medicine,2005,32:3-11.
    [159]吴二林,王攀,王筱冰等.三种肿瘤细胞对超声结合血卟啉的敏感性的试验研究[J].应用声学,2006,25(2):121-124.
    [160]H.Ittrich,C.Lange,H.Dahnke,et al.Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J].Rofo,2005,177(8):1151- 1163.
    [161]G.H.Dai,J.G.Xiu,Z.J.Zhou,et al.Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation[J].Nan Fang Yi Ke Da Xue Xue Bao,2007,27(1):49-55.
    [162]刘全宏,孙世惠,肖娅萍等.超声激活血卟啉对细胞杀伤作用及形态学研究[J].中国科学:C辑,2002,32(5):454-463.
    [163]李萌,刘全宏,齐浩,张金选,张坤,王攀.超声激活血卟啉杀伤癌细胞的扫描电镜观察[J].西北大学学报:自然科学版,2003,33(2):223-226.
    [164]刘全宏,王筱冰,王攀等.原卟啉Ⅸ2声动力学疗法诱导S180肿瘤细胞的凋亡[J].动物学报,2007,53(2):303-314.
    [165]蔡金华,冯敢生,刘官信等.不同浓度菲立磁对大鼠间充质肝细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193.
    [166]P.L.McNeil.Incorporation of macro molecules into living cells[J].Met.hods Cell Biol.,1989,29(1):153-173.
    [167]薛静,高培毅.超顺磁性氧化铁粒子标记神经干细胞与磁共振示踪成像研究进展[J].中华放射学杂志,2006,40(2):213-215.
    [168]朱文珍,项红兵,漆剑频等.磁性对比剂标记的细胞移植研究进展[J].放射学实践,2005,20(10):931-932.
    [169]D.L Miller.A review of the ultrasonic bioeffects of microsonation,gas-body activation,and related cavitation-like phenomena.Ultrasound Med.Biol.,1987,13(8):443-470.
    [170]J.Wu.J.R.Ross,J.F.Chiu.Reparable sonoporation generated by microstreaming [J],J.Acoust.Soc.Am.,2002,111:1460-1464.
    [171]J.Wu,Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells[J].Ultrasound Med.Biol.,2002,28(1):125-129.
    [172]J.Whelan.Electroporation and ultrasound for gene and drug delivery[J].Drug Delivery Today,2002,7(11):585-586.
    [173]E.Sackmann,A.R.Bausch,L.Vonna.Physics of composite cellmembrane and action based cytoskeleton.Juelicher F.Ormos P.et al.edited.In:Flyvbjerg H.Physics of Bio-Molecules and Cells[C].Berlin:Springer,2002.
    [174]Z.Tu,Z.Ouyang.Geometric theory of elasticity on biomembranes[J].中国科学院研究生院学报,2008,25(6):849-854
    [175]F.Massines.Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J].Appl.Phys.,1998,83:2950-2956
    [176]S.Lee,T.Anderson,H.Zhang,T.J.Flotte,and A.G.Doukas.1996.Alteration of cell membrane by stress waves in vitro[J].Ultrasound Med.Biol,22:1285-1293.
    [177]M.Lokhandwalla,B.Sturtevant.Mechanical haemolysis in shock wave lithotrip- sy(SWL)-Ⅰ.Analysis of cell deformation due to SWL flow-fields.Phys.Med.Biol.,2001,46:413-437.
    [178]J.Sundaram,B.R.Mellein,S.Mitragotri.An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes[J].Biophys.J.2003,84:3087-3101.
    [179]M.Lokhandwalla,J.A.McAteer,J.C.Williams,Jr.,and B.Sturtevant.Mechanical haemolysis in shock wave lithotripsy(SWL).Ⅱ.In vitro cell lysis due to shear [J].Phys.Med.Biol.2003,46:1245-1264.
    [180]C.D.Ohl,B.Wolfrum.Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation[J].Biochim.Biophys.,Acta Gen.Subj.,2003,1624:131-138.
    [181]B.Wolfrum,R.Mettin,T.Kurz,and W.Lauterborn.Observations of pressure-wave -excited contrast agent bubbles in the vicinity of cells[J].Appl.Phys.Lett.,2002,81:5060-5062.
    [182]A.R.Williams,S.Bao,D.L.Miller.Filtroporation:A simple,Reliable technique for transfection and macromolecular loading of cells in suspension[J].Biotechnology and Bioengineering,1999,65(3):341-346.
    [183]M.W.Miller,D.L.Miller,A.A.Brayman.A review of inertial cavatation-induced damage from a mechanical propectives[J].Ultrasound Med.Biol.,1998,22:1131- 1154.
    [184]Saito K,Miyake K,McNeil PL,et al.Plasma membme disruption under-lies injury of cormeal endpthelium ultrasoud[J].Exp.Eye Res.,1999,68:431-437.
    [185]Tang Wei,Liu Quarthong,Wang Xiaobing,et al.Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro[J].Ultrasonics,2008,48(1):66-73.
    [186]Alter A,Rozensva LA,Miller HI,et al.Ultrasound inhibttes the adhension and migration of smooth muscle cells in vitro[J].Ultrasound Med.Biol.,1998,24:711-721.
    [187]卢群,丘泰球,杨红.Rh123-FDA荧光法测定超声作用对大肠杆菌细胞膜的影响[J].广东药学院学报,2006,22(2):179-184.
    [188]U.Zimmermann,et al.Monolaycr adsorption and thin film growth of big aromatic moleculesc on Si(111)[J].Biophys.,1991,14:881-899.
    [189]W.L.Nyborg.Basic physics of low frequency therapeutic ultrasound in Ultrasound Angioplasty[M].Boston:edited by Siegel R.J.,Kluwer Academic.1996,232-241.
    [190]宋关斌,赵彦华,龙勉等.微吸管法研究肝癌细胞粘弹性的理论模型[J].2003,26(4):104-107.
    [191]W.L.Nyborg.Physical Principles of Ultrasound[M].Elsevier Scientific Publishing Co.,Amsterdam.In:Fry,FJ.(Ed.).1978.43-56.
    [192]J.Wu.Shear stress in cells generated by ultrasound[J].Progress in Biophysics and Molecular Biology,2007,93:363-373.
    [193]李太宝.计算声学-声场的方程和计算方法[M].北京:科学出版社,2005:249-263.
    [194]王荣,焦群英.渗透对细胞穿刺力学响应的影响[J].中国农业大学学报,2008,13(5):88-92.
    [195]P.A.Lewin,Leif Bjφrnφ.Acoustically induced shear stresses in the vicinity of microbubbles in tissue[J].J.Acoust.Soc.Am.,1982,71(3):728-734.
    [196]W.L.Nyborg.Mechanism for nonthermal effects of sounds[J].J.Acoust.Soc.Am.,1968,44:1302-1308.
    [197]A.Rooney,Shear as a mechanism for sonically induced biological effects[J].J.Acoust.Soc.Am.,1972,52:1718-1724.
    [198]P.A.Lewin,L.Bjφrnφ.Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue[J].J.Acoust.Soc.Am..,1981,69:864-852.
    [199]M.Strasberg.The pulsation frequency of nonspherical gas bubbles in liquids[J].J.Acoust.Soc.Am.,1953,25:536-537.
    [200]A.Prosperetti.Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[J].J.Acoust.Soc.Am.,1977,61:17-27.
    [201]R.B.Chapman,M.S.Pleasset.Thermal effects in the free oscillations of gas bubbles[R].Report NRD,No.AD.708454.
    [202]A.M.Mastro,M.A.Babich,W.D.Taylor,A.D.Keith.Diffusion of a small molecule in the cytoplasm of mammalian cells[C].Proc.Natl.Acad.Sci.USA.1984,81(11):3414 -3418.
    [203]戚定满,鲁传敬等.空泡溃灭及空化噪声研究综述[J].上海力学,1999,20(1):1-9.
    [204]许文林,何玉芳,王雅琼.超声空化气泡运动方程的求解及过程模拟[J].扬 州大学学报,2005,8(1):55-60.
    [205]陈谦,邹欣晔,程建春.超声波声孔效应中气泡动力学的研究[J].物理学报.2006,52(12):6476-6481.
    [206]W.L.Nyborg.Acoustisct reaminnge ara boundary[J].J.Acoust Soc.Am.,1958,30:329-339
    [207]M.S.Longuet-Higgins.Mass transport in the boundary layer at a free oscillations surface[J].J.Fluid Mech.,1960,8:293-306.
    [208]A.R.Williams,D.E.Hughes,W.L.Nyborg.Hemolysis near a transversely oscillating wire[J].Science,1970,169:871-873.
    [209]J.A.Rooney.Hemolysis near an ultrasonically pulsating gas bubble[J].Science,1970,169:869-871.
    [210]L.B.Leverett,J.D.Hellums,C.P.Alfrey,and E.C.Lynch.Red blood cell damage by shear stresses[J].Biophys.J.,1972,12:257-273.
    [211]R.E.Apfel.Sonic effervescence:a tutorial on acoustic cavitation[J].J.Acoust.Soc.Am.,1997,101:1227-1237.
    [212]胡江,胡嘉,高宇欣等.流动剪切和不同流型对血管内皮细胞增殖的影响[J].生物医学工程学杂志,2003:20(3):422-424.
    [213]秦廷武,杨瑞芳,蒋稼欢等.一种新的颗粒白细胞粘弹性模型的理论和实验探讨[J].生物医学工程学杂志,1999:16(1):71-76.
    [214]R.L.Satcher,C.F.Dewey.Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton[J].Biophys.J.,1996,71:109-118.
    [215]C.Dong,R.Skalak,K.L.P.Sung,G.W.Schmid-Schonben,and S.Chien.Passive deformation analysis of human leukocytes[J].J.Biomech.Eng.,1988,110:27-36.
    [216]K.L.P.Sung,C.Dong,G.W Schmid-Schonbein,et al.Leukecyte relaxation properties[J].Biophys.J.,1988,54(2):331-337.
    [217]E.Evans,B.Kukan.Passive material behavior of granulocytes based on large deformation and recovery after deformation tests[J].Blood,1984,64:1028-1033.
    [218]Tran-Son-Tay,D.Needham,A.Yeung,et al.Time-dependent recovery of passive neutrophils after large deformation[J].Biophys.J.,1991,60:856-862.
    [219]J.R.Pappenheimer.Passage of molecules through capillary walls[J].Physiological Review,1953,33:387-423.
    [220]李敬生,昌庆,林家敏等.细胞结构的力学模型及模拟的最新进展[J].力学进展,2004,32(3):393-397.
    [221]龙勉,吴泽志,王红兵等.肝细胞粘弹性试验研究[J].生物物理学报,1996,12(1):169-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700