用户名: 密码: 验证码:
低水平铅暴露对不同发育期大鼠学习记忆及mGlur1、NMDA受体表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会工业进程和现代化步伐的加快,工业垃圾不断倾倒危险品对土壤和水体造成严重污染,其中铅由于在土壤中的持续蓄积和对农产品、人体健康的高毒性,而受到越来越多的关注。铅作为一种常见的金属毒物,对人体多种组织、器官造成损害,尤其对发育中的神经系统造成损害,具有兴奋性神经毒性。它对认知能力影响而引起巨大的公众健康问题。铅可以通过胎盘向胎儿转运,并通过胎儿发育尚不完善的血脑屏障,进入胎儿中枢神经系统,并对中枢神经系统的生长发育造成损害进而影响胎儿出生后的学习记忆能力;也可以通过乳汁进入新生儿体内,造成婴幼儿铅负荷升高;早期铅暴露还将影响儿童和青春期智发育,并且这些影响将持续到成年以后。
     在神经系统的发育和再生过程,海马是负责学习记忆的关键脑区,特别是短期记忆和近期记忆。海马长时程增强效应(Long term potentiation,LTP)被认为是海马学习和记忆的储存功能单位。兴奋性神经递质特定受体——谷氨酸触发了LTP。
     N-甲基-D-天冬氨酸受体(N–methyl-D-aspartate Receptors,NMDARs)是一种兴奋性氨基酸受体亚单位,在脑的发育、学习与记忆机制中起重要作用。NMDARs作为一个双向受体,可检测到突触受体释放谷氨酸,突触后去极化,使Mg2+阻滞作用消失,通道开放,导致Ca2+内流,激活一系列酶作用反应,同时这些又是构成LTP诱导和维持的物质基础。NMDAR表达存在选择性,主要功能和特性差异源于NR2亚基的不同表达和分布,故此测定NR2。NR2在神经细胞生长发育、突触传递、LTP、神经信号传导和神经递质释放过程中起着重要作用。
     生长发育期脑NMDAR是铅作用的重要目标,铅是NMDAR的非竞争性拮抗剂。离体海马神经元电生理研究发现,铅能抑制NMDA激活的全细胞电流,抑制NMDAR单通道的开放频率,且其抑制作用的强度与神经元的成熟程度有关,幼稚神经元对铅的抑制作用更加敏感。但目前还不清楚铅影响NMDA受体mRNA表达的机理,以及暴露水平与影响之间的具体关系。
     代谢性谷氨酸受体(Metabotropic glutamate receptors,mGluR)是G蛋白偶联受体(G protein-coupled receptors,GPCR),依据序列的同源性、受体的药理学特性及其所偶联的细胞内第二信使的不同超家族,将8个受体分为中分为三组。代谢性谷氨酸受体亚型1(mGlur1)属于I组,是GPCRs家族的重要成员可能在调节中枢神经系统作用、学习记忆突触的形成和维持、神经元信号转导过程中起重要作用,可引起强烈的兴奋性神经毒性,导致神经元的肿胀和坏死,和神经退行性病变有关,并参与了LTP过程,但具体机理尚不清楚。I组受体和蛋白激酶C偶联,增强NMDA受体通道的开放。mGluR介导的NMDAR活性增强在突触传递和突出可塑性,包括LTP过程中起重要作用。
     众所周知,铅毒性通过活性氧族产物诱发氧化损伤,包括超氧离子(O2?),羟基(·OH)和过氧化氢(H2O2)。这些自由基和过氧化物引起膜损伤,常与脂质过氧化有关,影响发育时期暴露于铅的大鼠中枢神经系统。值得注意的是,染铅后大鼠脑组织内可观察到脂质过氧化反应增强,以及抗氧化酶如超氧化物歧化酶(Superoxide dismutase,SOD)、谷胱甘肽超氧化物酶(Glutathione peroxidase,GSH-Px)活性降低。
     一氧化氮(Nitric oxide,NO)被认为是典型的逆行信使分子,在学习和记忆中起到重要作用,其生物合成主要受一氧化氮合酶(Nitric oxide synthase,NOS)的调节,目前多是以NOS活性来反映NO的水平。而铅对NOS活性有抑制作用,可使NO减少甚至消失。
     目的:
     本研究通过建立一系列在生长发育时期的不同阶段低水平大鼠铅暴露模型,检测铅在子代全血和脑组织中的浓度,全血δ-ALAD活性,及不同脑组织中mGlur1、NMDAR亚单位mRNA,SOD,GSH-Px,NOS活性。从一个广泛的角度研究各项指标变化与铅暴露浓度、暴露时间之间的关系,为铅损伤对学习记忆功能及神经行为的改变的研究提供一定的实验依据,进一步探讨醋酸铅的神经毒作用机制。
     方法:
     1.在不同发育阶段,采用0.2%的醋酸铅溶液自由饮水作为处理因素,建立铅暴露的动物模型,设立正常对照组、孕期暴露组(A组)、哺乳期铅暴露组(B组)、断乳后铅暴露组(C组)。于PND60取材,测量体重及脑重,海马、双侧皮质的重量。
     2.用石墨炉-原子吸收光谱法测定血脑组织中铅的含量;用分光光度计测量全血ALAD,评价铅吸收程度。
     3.以Morris水迷宫检测不同发育阶段铅暴露后动物的空间学习记忆能力。
     4.用半定量RT-PCR方法,结合技术图像分析系统,检测皮层、海马组织中mGlur1及NMDA相关受体mRNA表达量,比较不同时期染毒的变化,观察醋酸铅对大鼠脑组织mGlur1及NMDA受体表达的影响。
     5.测定脑组织中的过氧化物酶指标,SOD,GSH-Px和NOS,探讨铅对神经系统损伤的氧化损伤机制。
     结果:
     1.与对照组相比,染毒剂量组的大鼠体重、脑体重比率差异无显著性(P>0.05),不同时期染毒组之间差异无显著性(P>0.05)。相对于对照组,A组的脑重、海马重量,B组的脑重有显著性减少(P<0.01),A组的皮质重量大于B、C组(P<0.01)。
     2.醋酸铅处理后,各剂量染铅组大鼠相对于对照组全血、皮层、海马组织中铅含量显著增加,ALAD活力下降,差异有显著性。A组:与对照组相比,脑铅含量有显著性增加(P<0.01);B组:与对照组相比,血铅升高、ALAD含量降低,差别有显著性(P<0.01,P<0.05);C组:与对照组相比,仔鼠的血铅、脑铅、ALAD含量改变显著,差别有显著性(P<0.01,P<0.05)。
     3.在Morris水迷宫测试中,第1天各组动物的测试成绩之间无显著性差异,从第2天起,各染铅组仔鼠的逃避潜伏期(Escape Latency)值均高于对照组,其差别有显著性(P<0.05,P<0.01)。虽然在训练过程中各染铅组的成绩有所提高,但各染铅组后3天的潜伏期曲线始终无法恢复到正常水平,尤其是C组相对于对照组以及其它各组在各象限都有显著性差异(P<0.05)。与对照组相比,A组在第I象限,B组在第I、IV象限的潜伏期时间差异显著(P<0.05)。但是A组在第II、IV象限的潜伏期时间和对照相比无统计学差异(P>0.05)。
     4. RT-PCR结果显示,染毒组NR2AmRNA在海马和皮层中表达较对照组有不同程度升高,尤其在A组中的表达大于其他各组,有显著性差异(P<0.05);各染毒组NR2BmRNA在海马表达较对照组有不同程度的下降,并有显著性差异(P<0.05),B组的受体在皮质中表达量与对照有显著性差异(P<0.05);NR2CmRNA在皮质中的表达与对照没有统计学差异(P>0.05),A组NR2CmRNA在海马中较对照组表达增加,差异具有统计学意义(P<0.01);与对照组相比,A组在皮质、海马中,以及B组在皮质中的mGlur1受体表达减少,C组正好相反,受体表达不论在皮质还是海马中均高于对照组,两组结果都具有显著性差异(P<0.01)。
     5.过氧化物酶测定结果显示,不同时期染毒组SOD活性呈波形趋势,A、B组较对照组不同程度升高,其中B组与对照组、C组差异具有统计学意义(P<0.05),C组较对照组SOD活性降低,但无统计学差异(P>0.05);各染毒组GSH-Px活性较对照组有不同程度升高,尤其B组与对照组、A组差异都具有统计学意义(P<0.05,P<0.01);NOS活性染毒组较同时期对照组有不同程度下降,C组与对照组相比有显著性差异(P<0.05)。
     结论:
     1.醋酸铅处理后,铅在各染毒组大鼠全血、海马、皮质组织中的含量显著增加,ALAD活性降低。停止铅暴露后,脑组织中的铅含量随年龄增长浓度不断下降。
     2.低浓度的铅暴露对学习记忆造成损伤,且损伤将一直持续到成年。
     3.孕鼠血中的铅可以通过胎盘屏障进入胎鼠,也可通过发育尚不完善的血脑屏障到达神经系统。在哺乳阶段铅可通过乳汁在子代体内蓄积。通过上述一系列途径,醋酸铅可干扰其子代神经系统的正常生长发育,进而影响仔鼠的学习记忆能力,并且这种损害作用将持续到仔鼠的成熟期。
     4.铅可改变脑组织中mGlur1和NMDAR受体mRNA的表达,尤其是低浓度铅暴露使生长发育时期的大鼠脑组织中NR2BmRNA的表达降低,同时可观察到学习记忆能力的下降,所以可以推测mGlur1和NMDAR受体可能是铅神经毒性的机制之一。
     5.不同发育期醋酸铅暴露可使脑组织中抗氧化酶类活性升高将加重脑损伤。同时NOS活性的降低可推断NO生成减少,可能是一方面铅作为重金属与NOS的活性中心结合进而产生抑制作用,使NOS酶活性降低或完全失活;另一方面,铅通过影响谷氨酸递质、NMDA受体及Ca2+等进一步抑制NOS酶活性。从某种程度上说,这些作用影响了信号转导和认知能力
With the acceleration of the industrialization and modernization of community, continuous discharge and disposal of industrial waste products containing hazardous materials have resulted in serious contamination of the soil and water bodies, but Pb has grabbed more attention due to its longer persistence in soil and highly toxic effects on both crop production and human health. Lead is a kind of common toxic heavy metal that has obvious and sure damage to apparatus and tissue of individual, especially strong neurotoxicity, which can damage the developmental central nervous system (CNS). It caused major public health problem because of the documented effects on cognitive development. Lead can be transported from mother to fetus through placenta easily and it also can come into the CNS of fetus through the incomplete blood-brain barrier and do harm to the developmental CNS. As a result, the offspring’s ability of learning and memory would be affected; it also can transport into newborn by sucking lacto, which induced to the increase of lead burden in baby body; during the childhood, it can cause destruction of child’s IQ exposed to lead. Furthermore, these destroy will last during the whole life.
     During neuronal development and regeneration, hippocampus is an important encephalic region that charge for learning and memory, especially for short-term memory and recent memory. Long-term potentiation (LTP) is a cellular model of the synaptic plasticity that may underlie memory acquisition, which may be representative of learning and memory processes in mammalian brain. LTP is triggered by certain receptors for the excitatory neurotransmitter, glutamate.
     The N-methyl-D-aspartate (NMDA) receptor receptors are a subclass of excitatory amino acid receptors which play an important role in brain development learning and memory processes. NMDAR on the synaptosome acts as a co-incidence receptor, detecting presynaptically released glutamate, and postsynaptic depolarization, which removes the Mg2+ block leading to Ca2+ influx and the activation of various enzymes involved in LTP. The gene expression of NMDAR subunits differs neuroanatomically and temporally. NMDAR2R play an important role during the course of neuron cell growth and development, synaptogenesis, LTP, neuro signal transduction and the release of neurotransmitter.
     The NMDAR in developing brain is an important target of lead. Lead is a potent noncompetitive antagonist of the NMDA receptor. In vitro electro-physiological studies showed that lead could inhibit the NMDA activated whole cell currents, and that lead could also inhibit the opening of the single gate of NMDAR. Immature neurons are more sensitive to lead poison than mature neurons. But it is not known clearly whether Pb impairs the expression level of mRNA of NMDAR subunits. And the relationship between the effects and the exposure level of lead also isn’t known yet.
     Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors (GPCRs) with eight cloned subtypes classified into three groups based on sequence homology, pharmacology and transduction mechanism. Metabotropic glutamate receptors 1(mGluR1) belonged Group I is an important member of family of GPCRs. The signal transduction induced by mGluR1 plays an important role in the regulation of the central nervous system functions, and is involved in many neurodegenerative diseases participates in LTP; the role of these receptors remains unclear. A pathway linking class I-mGluRs with PKC is sure to enhance the open probability of the NMDAR channel. The mGluR-mediated potentiation of NMDAR activity may play a role in synaptic transmission and plasticity including LTP.
     Pb toxicity is also known to induce oxidative stress through over production of reactive oxygen species (ROS) including superoxide radicals (O2?), hydroxyl radicals (·OH) and hydrogen peroxide (H2O2). These free radicals and hydrogen peroxides cause membrane damage (which is often related to lipid peroxidation); which effect the development of central nerve system of rats exposed to lead. We have noted enhanced lipid peroxidation and disorders in the activity of antioxidative enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the brain of rats exposed to Pb.
     Nitric oxide (NO) is regarded as typical retrograde messenger, important in learning and memory. Its biosynthesis is modulated by nitric oxide synthase (NOS). At Present, the level of NO is reflected mainly by NOS activity. Lead can inhibit NOS activity and therefore reduce NO.
     Objectives:
     We established a series of rat models exposure to low-level Lead in different developmental stages, and then measured the concentration of lead in the blood and brain,δ-ALAD in blood, determinate the changes of mRNA expression of mGlur1、NMDAR-2R in different brain regions(hippocampus, cortex), evaluate SOD, GSH-Px, NOS activity. From a widespread domain, research the relationship among the change of each index and lead level, time of exposure, and provid experiment evidences on how lead harms learning and memory function, explore the likely mechanism for the lead neurotoxicology.
     Methods:
     1. The rat models were established by exposing rats to 0.2% mg/ml lead acetate solution via drinking water respectively in different developing stages and divided into control group, lead exposure during pregnancy group (GroupA), lead exposure lactation period group (GroupB), and lead exposure after ablactation (GroupC). The samples were taken on 60th~68th day, the body, brain, hippocampus and cerebral cortex weights were measured respectively.
     2. The contents of lead in blood, hippocampus and cerebral cortex were measured by graphite furnace atomic absorption spectrometry; the activities of ALAD in blood were measured by spectra photometer.
     3. The ability of learning and memory was tested by Morris water maze.
     4. Expression of NMDA receptor 2A, 2B, 2C subunits mRNA and mGlur1 mRNA in rat cerebral cortex and hippocampus were measured by semi-quantitative reverse transcript polymerase-chain reaction (RT-PCR), withβ-actin as standard.
     5. Hippocampus and cerebral cortex tissue respectively were detected activity of SOD, GSH-Px and NOS by commercial kits.
     Results:
     1. Compare with the control, no differences in body weights, brain/body of dams were measured between any two groups (P>0.05). Compare with the control, hippocampus weights, brain weights of GroupA, brain weights of GroupB were decrease (P<0.01), Cortex weights of GroupA were higher than those of GroupB and GroupC (P<0.01).
     2. The blood and brain lead level of Pb-exposed dams were higher than those of control group; the activity of ALAD were lower than those of control group, especially the GroupC (P<0.01, P<0.05). Compare with the control, lead concentra- tion in both hippocampus and cerebral cortex is elevated significantly in GroupA (P<0.01); lead concentration in blood is increase (P<0.01) and the activity of ALAD in blood is decrease (P<0.05).
     3. The results of Morris water maze showed that the escape latencies in all groups were not significantly different in the first day of the test. In the last three days of the test, the escape latencies in treatment groups were significantly longer than the control group, particularly the GroupC, the average escape latency was significantly elevated compared with the control, while it is different from any other group in any quadrant (P<0.05); Compared with the control, the escape latencies is long in I quadrant of GroupA, and in I, IV quadrant of GroupB (P<0.05). But there was no significant difference between GroupA and the control group (P>0.05) in II and IV quadrant.
     4. The expression levels of NR2A mRNA in treatment groups were significantly higher than the control group, particularly the GroupA were highest of groups; The expression levels of NR2B mRNA in hippocampus were significantly decreased compared the control (P<0.05), contrary to the control, the expression levels of NR2B mRNA of the GroupB in cerebral cortex were decrease (P<0.05); The expression levels of NR2C mRNA in hippocampus of GroupA were higher than the control (P<0.01).
     Contrary to the control, the expression of mGlur1 mRNA were significantly lower in both cerebral cortex and hippocampus of GroupA and cortex of GroupB (P<0.01). But contrary to the control, expression of mGlur1 mRNA in cerebral cortex and hippocampus of GroupC were significantly elevated (P<0.01).
     5. The activity of SOD in GroupA and B increased compared with the control, especially the GroupB is higher than the control and GroupC (P<0.05); Compared with the control, the activity of GSH-Px is elevated, GroupB is higher than the control and GroupA (P<0.05, P<0.01). The activity of NOS is decrease, GroupC is lower than the control (P<0.05).
     Conclusions:
     1. The contents of lead in blood, cerebral cortex and hippocampus were significantly increased in treatment groups. Lead acetate could inhabit the concentration of ALAD. Concentration of Pb in brain would decrease with time went by once without Pb exposure.
     2. The low level Pb do exposure would result in impairment of learning and memory ability for life long.
     3. The lead in blood in the pregnant rat can come into the body of fetus through the placenta. It also can come across the incomplete blood-brain barrier and reach to nervous system. Lead poisoning can also through latex accumulate in offspring during sucking period. By this way, the abilities of learning and memory would be affected. Further more, the effects would last to the period of maturation.
     4. Lead could change the expression of mGlur1and NMDAR mRNA in brain. Developmental low level lead exposure of rats can decrease the expression level of NR2BmRNA in brain. Meantime, the abilities of learning and memory would be affected. So, effects on NMDAR, mGlur1may be one of the neurotoxic mechanisms of lead.
     5. The activity of anti-oxidative enzymes increase after Pb exposure, which would attribute to oxidative injury in brain; the activity of NOS depress indicated that there would be a decrease production of NO. It may be because that lead as a kind of heave mental can inhibit the production of NO by combining with the centre activity of NOS, or it would affect glutamic acid and NMDA receptor as messenger leading to excitatory neurotoxicity. Changes in cognitive ability were perhaps dependent on these results in some degree.
引文
1.孙胜龙.环境污染与生物变异[M].北京:化学工业出版社·环境科学与工业出版社中心, 2003. 17.
    2.万双秀,王俊东.铅污染的危害及防治.微量元素与健康研究, 2005, 22(1): 63~65.
    3.马海燕,李红.铅的胎盘毒性.中国临床医生, 2006, 34(9): 21~23.
    4.陶勇,白雪涛,张洪桥,等.出生前后铅暴露对婴幼儿智商发育的影响.环境与健康杂志, 2001, 18(2): 73~76.
    5.陈桂霞,曾国章,李健.婴儿血铅与母亲血铅和乳铅等因素的相关性研究.中华预防医学杂志, 2006, 40(3): 189~191.
    6. Satcher, DS. The surgeon general on the continuing tragedy of childhood lead poisoning. Public Health Reports, 2000, 115(6): 579~580.
    7.秦根林.我国儿童铅中毒现状及原因分析(综述).中国学校卫生, 2000, 21(3): 214~215.
    8.孟金萍,孙淑华,王艳蓉,等.铅的生物学毒性效应.中国比较医学杂志, 2007, 17(1): 58~61.
    9. Ellis MR, Kane KY. Lightening the lead load in children. Am Fam Physician, 2000, 62(3): 545~554.
    10. Koike S. Low-level lead exposure and children’s intelligence from recent epidemiological studies in the USA and other countries to progress in reducing lead exposure and screening in the USA. Nippon Eiseigaku Zasshi, 1997, 52(3): 552~561.
    11.周敏.环境铅污染与铅毒危害.中国煤炭工业医学杂志, 2005, 8(3): 207~209.
    12. Emory E, Pattillo R, Archibold, et al. Neurobehavioral effects of low-level lead exposure in human neonates. Aw J Obstet Gynecol, 1999, 181(1): S2~11.
    13. Wasserman GA, Liu X, Popovac D, et al. The Yugoslavia Prospective Lead Studay: contributions of prenatal and postnatal lead exposure to early intelligence.Neurotoxicol Teratol, 2000, 22(6): 811~818.
    14. Needlema HL, Gatsonis CA. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. Jama, 1990, 263(5): 673~678.
    15. Tong S, Baghurst PA, Sawyer MG, et al. Declining blood lead levels and changes in cognitive function during childhood: the Port Pirie Cohort Studay. Jama, 1998, 280(22): 1915~1919.
    16. Schneider JS, Lee MH, Anderson DW, et al. Enriched environment during development is protective against lead-induced neurotoxity. Brain Research, 2001, 896(1-2): 48~55.
    17.程明,朱熊兆.学习记忆的行为学研究方法.中国行为医学科学, 2005, 14(1): 65~66.
    18.黄金祥.铅中毒的实验室检查指标.中国预防医学科学院劳动卫生与职业病研究所.中国医刊, 2000, 35(7): 12~14.
    19.欧梅,孙东红,孙毅,等. ALAD基因多态性对职业铅接触工人甲状腺激素水平的影响.环境与职业医学, 2005, 22(6): 486~489.
    20. Gurer-Orhan H, Sabir HU, Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology, 2004, 195(2-3): 147~154.
    21.吕京,张军,张丽丽,等.宫内铅暴露的行为畸胎学毒性及脑海马神经化学的改变.卫生研究, 2002, 31(6): 405~407.
    22.李晓婷.低水平铅暴露对中枢神经系统的毒性作用及其分子机制.今日化学, 2005, 20(1): 55~58.
    23. Nishioku T, Takai N, Miyamoto K, et al. Involvement of caspase 3-like proteases in methylmercury-induced apoptosis of primary cultured rat cerebral microglia. Brain Res, 2000, 871(1): 160~164.
    24.董丽萍,韩明,袁芳. I组mGluRs反义寡核苷酸抗谷氨酸对小鼠大脑皮层神经元的兴奋毒作用.中国应用生理学杂志, 2007, 23(4): 438~440.
    25.徐仁四.兴奋性氨基酸与脑缺血损伤的研究概况.国外医学神经病学神经外科分册, 1998 , 25(2): 62~64.
    26.刘海泉,葛坚,杨智宽,等. N-甲基-D-天冬氨酸及其非竞争性受体阻滞剂和钙离子对培养的鼠视网膜神经细胞的作用.中华眼科杂志, 2002, 38(3): 148~150.
    27. Lau WK, Yeung CW, Lui PW, et al. Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure. Brain Res, 2002, 932(1-2): 10~24.
    28. Tsien JZ, Chen DF, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87(7): 1317~1326.
    29. Murphy KP, Reid GP, Trentham DR, et al. Activation of NMDA receptors is necessary for the induction of associative long-term potentiation in area CA1 of the rat hippocampal slice. J Physiol, 1997, 504(Pt2): 379~385.
    30.朱启文,张奇.铅暴露大鼠脑不同区域NMDA受体亚基(NR1、NR2A、NR2B)表达的研究.沈阳医学院学报, 2007, 9(3): 132~134.
    31.徐健,颜崇淮,余晓刚,等.在体铅暴露对发育脑海马mGluR基因表达的影响.中华医学杂志, 2005, 85(10): 705~707.
    32.曹芳丽,涂海军,刘剑峰. mGluR1/5介导的下游信号通路.医学分子生物学杂志, 2007, 4(2): 136~139.
    33.郭国庆,山爱景,沈伟哉,等.大鼠纹状体神经元型一氧化氮合酶神经元的分布和超微结构特征.南方医科大学学报, 2007, 27(1): 1~4.
    34. Cheyne JE, Montgomery JM. Plasticity-dependent changes in metabotropic glutamate receptor expression at excitatory hippocampal synapses. Mol Cell Neurosci, 2008, 37(3): 432~439.
    35. Fitzjohn SM, Irving AJ, Palmer MJ, et al. Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett, 1996, 203(3): 211~213.
    36. Lan JY, Skeberdis VA, Jover T, et al. Activation of metabotropic glutamate receptor 1 accelerates NMDA receptor trafficking. J Neurosci, 2001, 21(16): 6058~6068.
    37. Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci, 2002, 22(22): 9679~9686.
    38. Harney SC, Rowan M, Anwyl R. Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J Neurosci, 2006, 26(4): 1128~1132.
    39. Page G., Khidir FA, Pain S, et al. Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int, 2006, 49(4): 413~421.
    40. Riedel G, Wetzel W, Reymann KG. Comparing the role of metabotropic glutamate receptors in long-term potentiation and in learning and memory. Prog Neuropsychopharmacol Biol Psychiatry, 1996, 20(5): 761~789.
    41. Fujii S, Mikoshiba K, Kuroda Y, et al. Cooperativity between activation of metabotropic glutamate receptors and NMDA receptors in the induction of LTP in hippocampal CA1 neurons. Neurosci Res, 2003, 46(4): 509~521.
    42. Fujii S, Sasaki H, Mikoshiba K, et al. A chemical LTP induced by co-activation of metabotropic and N-methyl-D-aspartate glutamate receptors in hippocampal CA1 neurons. Brain Res, 2004, 99(9): 20~28.
    43.陈丹,刘文英,包国荣.中药清除自由基的ESR分析研究概况.中华中医药学刊, 2007, 25(4): 675~677.
    44.李明正.褪黑素的抗自由基氧化损伤和防护作用.国外医学卫生学分册, 2000, 27(1): 26~29.
    45.刘涛(综述).自由基与甲状腺功能减退肾脏损伤的关系.中国实用医药, 2007, 2(12): 11~12
    46.林洪.自由基的产生、应用及人体健康.玉溪师范学院学报, 2006, 22(9): 84.
    47. Yong-Fu WANG, Chao-Cui LI, Jing-Xia CAI. Aniracetam attenuatesH202-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro. Neuroscience Bulletin, 2006, 22(5): 274~279.
    48. Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev, 2004, 3(4): 431~443.
    49. Pellmar TC, Hollinden GE, Sarvey JM. Free radicals accelerate the decay of long-term potentiation in field CA1 of guinea-pig hippocampus. Neuroscience, 1991, 44(2): 353~359.
    50. Avshalumov MV, Chen BT, Rice ME. Mechanisms underlyin H2O2-mediated inhibition of synaptic transmission in rat hippocampal slices. Brain Res, 2000, 882(1-2): 86~94.
    51. Luine V, Villegas M, Martinez C, et al. Repeated stress causes reversible impairments of spatial memory performance. Brain Res, 1994, 639(1): 167~170.
    52.蔡原,姜厚波,张颖花,等.铅对大鼠肾脏的脂质过氧化作用.中国医科大学学报, 1994, 23(6): 21~23.
    53.宋旭红,李晶,刘继文,等.低铅染毒大鼠体内脂质过氧化及抗氧化水平改变.新疆医科大学学报, 2001, 24(1): 21~22.
    54.胡锦东,高秋华,余灯广,等.牛磺酸对染铅大鼠学习记忆影响的改善作用.中华劳动卫生职业病杂志, 2003, 21(6): 413~416.
    55.阮素云,顾组维,陆纯英,等.低浓度铅对大鼠血脑屏障超微结构的损害.中华劳动卫生职业病杂志, 1998, 16(6): 339~341.
    56.孙莹,逯晓波,黄秀双,等.孕哺期染铅致幼鼠中枢系统氧化损伤的研究.中国公共卫生, 2004, 20(2): 200~201.
    57. Othman AI, El Missiry MA. Role of selenium against lead toxicity in male rats. J Biochem Mol Toxicol, 1998, 12(6): 345~349.
    58. Dafre AL, Medeiros ID, Muller IC, et al. Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel Perna perna exposed to lead and paraquat. Chem Biol lnteract, 2004, 149(2-3): 97~105.
    59. Fracasso ME, Perbellini L, Solda S, et al. Lead induced DNA strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinaseC. Mutat Res, 2002, 515(1-2): 159~169.
    60. Chiba M, Shinohara A, Matsushita K, et al. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. Tohoku J Exp Med, 1996, 178(1): 49~62.
    61.连灵君,徐立红.氧化损伤与铅毒性研究进展.环境与职业医学, 2007, 24(4): 435~439.
    62. Othman AI, EI Missiry MA. Role of selenium against lead toxicity in male rats. J Biochem Mol Toxicol, 1998, 12(6): 345~349.
    63.董桂娟,赵正言,竺智伟.孕期铅暴露对仔鼠海马一氧化氮含量的影响.浙江预防医学, 2004, 16(8): 11~12.
    64. Sengoku K, Takuma N, Horikawa M, et al. Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol Reprod Dev, 2001, 58(3): 262~268.
    65.王韵,韩济生.一氧化氮在医学中的现在和将来-1998年诺贝尔生理学或医学奖评价.生理科学进展, 1999, 30(1): 94~95.
    66.林玉珊.脑发育不同阶段慢性铅暴露对大鼠在体海马不同时间一氧化氮含量及合酶活性的影响.四川生理科学杂志, 2007, 29(2): 63~65.
    67.王亚珍,刘莹.对一氧化氮作用的新认识.江汉大学学报(自然科学版), 2006, 34(3): 37~40.
    68.王红梅,于云江,赵秀阁,等.铅神经毒性的分子生物学研究回顾与展望.现代预防医学, 2007, 34(20): 3856~3857.
    69.张琰,金仙玉.一氧化氮、一氧化氮合成酶与女性压力性尿失禁.中国妇产科临床杂志, 2007, 8(1): 72~74.
    70. Garcia AG, Claudio L, Perez-Severiano F, et al. Lead acetate exposure inhibits nitric oxide synthase activity in capillary and synaptosomal fractions of mousebrain. Toxicol Sci, 1999, 50(2): 244~248.
    71.朱兴族.一氧化氮合酶在中枢神经系统作用的研究进展.药理学进展, 1997, 5(1): 19.
    72.熊伟,赵英,万炜,等.铅暴露对大鼠大脑皮质和海马NOS的影响.南华大学学报·医学版, 2007, 35(3): 329~331.
    73.吴萍,申东晓,赵冰樵,等.铅对大鼠脑组织脂质过氧化及自由基作用的研究.铁道劳动安全卫生与环保, 1998, 25(2): 91~92.
    74.肖婷婷.母体孕期低水平铅暴露对子代学习记忆功能及其脑海马区神经生长相关蛋白表达的影响[D].河北医科大学, 2007.
    75.王娟,尹洁,孟焕平,等.硒对铅暴露孕鼠胎盘损伤拮抗作用.中国公共卫生, 2007, 23(10): 1229~1231.
    76.李守明,杨凡,刘志勇,等.经胎盘和乳汁铅暴露对大鼠子代神经行为发育的影响.实验动物与比较医学, 2006, 26(3): 140~143.
    77.匡晓宁,雷洁,古桂雄.铅对新生大鼠生长发育的影响.东南国防医药, 2007, 9(4): 283~285.
    78.雷洁,古桂雄,马如娅.新生大鼠铅损伤动物模型的建立.实验动物科学与管理, 2003, 20(1): 8~10.
    79.张荣,牛玉杰,程云会,等.醋酸铅对大鼠脑细胞凋亡及bcl-2基因表达的影响.中华劳动卫生职业病杂志, 2000, 18(4): 232~234.
    80.杨龙,周红梅,孔祥英.锌对宫内外铅暴露幼鼠微量元素铁、血红蛋白含量及学习记忆的保护作用.第三军医大学学报, 2007, 29(16): 1597~1600.
    81.杨箐,孙黎光,宗志宏,等.铅对大鼠行为功能及海马CA1区ERK2活力的影响.工业卫生与职业病, 2007, 33(5): 262~265.
    82.马威,王芳,吴文莉,等.低浓度铅接触大鼠海马突触损伤和学习记忆能力改变及中药的干预作用.中国儿童保健杂志, 2007, 15(4): 378~381.
    83.崔利敏,张明,王晓鸣,等.降铅冲剂对低水平铅暴露仔鼠血铅及脑铅的影响.广东微量元素科学, 2006, 13(10): 21~24.
    84. Papanikolaou NC, Hatzidaki EG, Belivanis S, et al. Lead toxicity update. A briefreview. Med Sci Monit, 2005, 11(10): RA329~336.
    85.董桂娟,赵正言,竺智伟.铅暴露对生长发育期大鼠不同脑区一氧化氮合酶活力的影响.中华劳动卫生职业病杂志, 2003, 21(4): 263~265.
    86.李秋莲,高秋华,薛承斌,等.牛磺酸对染铅大鼠生长发育和贫血的改善作用.中国药学杂志, 2005, 40(9): 675~677.
    87. H. G.沃格尔等编著,杜冠华等译.药理学实验指南[M].第一版.北京:科学出版社, 2001, 214~217.
    88. Weihong Y, Scott KH, Kim MC, et al. The Impact of Early Childhood Lead Exposure on Brain Organization: A Functional Magnetic Resonance Imaging Study of Language Function. Pediatrics, 2006, 118(3): 971~977.
    89. Bressler JP, Goldstein GW. Mechanisms of lead neurotoxicity. Biochem Pharmacol, 1991, 41(4): 479~484.
    90.孙永虎,古桂雄,洪庆成.儿童血铅与神经元特异性烯酵化醉的关系.毒理学杂志, 2006, 20(4): 272~273.
    91. Wasserman GA, Musabegovic A, Li X, et al. Lead exposure and motor functioning in 4(1/2)-year-old children: the Yugoslavia prospective study. J Pediatr, 2000, 137(4): 555~561.
    92. Zheng W, Lu YM, Lu GY, et al. Transthyretin, thyroxine, and retinol-binding protein in human cerebrospinal fluid: effect of lead exposure. Toxicol Sci, 2001, 61(1): 107~114.
    93. Goyer RA. Results of lead research: prenatal exposure and neurological consequences. Environ Health Perspect, 1996, 104(10): 1050~1054.
    94.赵生全,马越明,倪林仙,等.孕鼠铅暴露对仔鼠血铅水平及听力影响的研究.临床耳鼻喉科杂志, 2006, 20(4): 172~173.
    95.杨颖,董胜璋,林忠宁.母体铅暴露对大鼠子代学习记忆的影响.环境与健康杂志, 2003, 20(2): 86~88.
    96.时利德,蔡葵,滕国玺,等.脑发育不同阶段慢性铅暴露对大鼠在体海马齿状回LTP的影响.中国应用生理学杂志, 1999, 15(2): 154~158.
    97. Altmann L, Weinsberg F, Sveinsson K et al. Impairment of long-term potentiation and learning following chronic lead exposure. Toxicol Lett, 1993, 66(1): 105~112.
    98.万伯健,蔡原,李北利,等.染铅大鼠血铅、脑铅的剂量反应关系探讨.卫生毒理学杂志, 1996, 10 (3): 193.
    99.高万珍.δ-氨基乙酰丙酸脱水酶与铅中毒的关系.国外医学·卫生学分册, 1997, 24(6): 345~348.
    100.Yusof M, Yildiz D, Ercal N. N-acetyl-L-cysteine protects against delta-aminolevulinic acid-induced 8-hydroxydeoxyguanosine formation. Toxicol Lett, 1999, l06 (l): 41~47.
    101.Hussain RJ, Parsons PJ, Carpenter DO. Effects of lead on long-term potentiation in hippocampal CA3 vary with age. Brian Res Dev Brian Res, 2000, 121(2): 243~252.
    102.Kuhlmann AC, McGlothan JL, Guilarte TR. Developmental lead exposure causes spatial learning deficits in adult rats. Neurosci Lett, 1997, 233(2-3): 101~104.
    103.付大干.不同发育阶段慢性低水平铅暴露对大鼠学习记忆影响的研究[D].第三军医大学, 2001.
    104.杨绍杰,孟金萍,屈祎等.铅影响学习记忆的机制.医学综述, 2007, 13(16): 1206~1208.
    105.Izumi Y, Zarrin AR, Zorumski CF. Arachidonic acid rescues hippocampal long-term potentiation blocked by group I metabotropic glutamate receptor antagonists. Neuroscience, 2000, 100(3): 485~491.
    106.Jia Z, Lu YM, Agopyan N, et al. Gene targeting reveals a role for the glutamate receptors mGluR5 and GluR2 in learning and memory. Physiol Behav, 2001, 73(5): 493~802.
    107.Xu J, Yan CH, Wu SH, et al. Developmental lead exposure alters gene expression of metabotropic glutamate receptors in rat hippocampal neurons. Neurosci Lett, 2007, 413(3): 222~226.
    108.Sze SC, Wong CK, Yung KK. Modulation of the gene expression of N-methyl-D-aspartate receptor NR2B subunit in the rat neostriatum by a single dose of specific antisense oligodeoxynucleotide. Neurochem Int, 2001, 39(4): 319~327.
    109.Lai SK, Wong CKC, Yang MS, et al. Changes in expression of N-methyl-D-aspartate receptor subunits in the rat neostriatum after a single dose of antisense oligonucleotide specific for N-methyl-D-aspartate receptor1 subunit. Neuroscience, 2000, 98(3): 493~500.
    110.Lau WK, Lui PW, Yung KK. Developmental expression of NMDA receptors in the rat basal ganglia. Soc Neurosci Abstr, 2000, 26: 19~28.
    111.Lau WK, Lui PW, Wong CK, et al. Differential expression of N-methyl-D- aspartate receptor subunit messenger ribonucleic acids and immunoreactivity in the rat neostriatum during postnatal development. Neurochem Int, 2003, 43(1): 47~65.
    112.Yoshioka A, Ikegaki N, Williams M, et al. Expression of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cells lines. J Neurosci Res, 1996, 46(2): 164-178.
    113.袁芳,王忠诚,徐立新,等.代谢型谷氨酸受体1亚型选择性拮抗剂LY367385对抗大鼠缺血性脑水肿.中华神经外科杂志, 2006, 22(4): 245~248.
    114.Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology, 1995, 34(1): 1~26.
    115.Nicoletti F, Bruno V, Copani A, et al. Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci, 1996, 19(7): 267~271.
    116.董丽萍,韩明,袁芳. LY367385对谷氨酸钠及缺糖缺氧引起的培养小鼠大脑皮层神经元损伤的保护作用.中国康复理论与实践, 2005, 11(12): 975~977.
    117.Simonyi A, Ngomba RT, Storto M, et al. Expression of groups I and IImetabotropic glutamate receptors in the rat brain during aging. Brain Res, 2005, 1043(1-2): 95~106.
    118.Zhao W, Bianchi R, Wang M, et al. Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. J Neurosci, 2004, 24(1): 76~84.
    119.Moldrich RX, Chapman AG, De Sarro G, et al. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol, 2003, 476(1-2): 3~16.
    120.何远东,段安安,丁育基,等.迷走神经刺激对红藻酸致痛大鼠谷氨酸受体和行为学的影响.中国临床康复, 2004, 8(25): 5276~5277.
    121.郝玉曼,罗祖明,周东,等.代谢性谷氨酸受体1α在大鼠脑缺血再灌注算上中的基因表达变化.中华老年心脑血管杂志, 2004, 6(2): 119~122.
    122.Leon D, Albasanz JL, Ruiz MA, et al. Effect of chronic gestational treatment with caffeine or theophylline on Group I metabotropic glutamate receptors in maternal and fetal brain. J Neurochem, 2005, 94(2): 440~451.
    123.Kane JK, Hwang Y, Konu O, et al. Regulation of Homer and group I metabotropic glutamate receptors by nicotine. Eur J Neurosci, 2005, 21(5): 1145~1154.
    124.江文,黄远桂,高华,等.红藻氨酸诱导大鼠癫痫发作时海马mGluR1 mRNA表达的动态变化.第四军医大学学报, 1999, 20(9): 779~782.
    125.Henrich-Noack P, Hatton CD, Reymann KG. The mGlu receptor ligand (S)-4C3HPG protects neurons after global ischaemia in gerbils. Neuroreport, 1998, 9(6): 985~988.
    126.Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 1995, 373 (6510): 151~155.
    127.Beas-Zarate C, Rivera-Huizar SV, Martinez-Contreras A, et al. Changes in NMDA-receptor gene expression are associated with neurotoxicity induced neonatally by glutamate in the rat brain. Neurochem Int, 2001, 39(1): 1~10.
    128.Toscano CD, Hashemzadeh -Gargari H, McGlothan JL, et al. Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain. Brain Res Dev Brain Res, 2002, 139(2): 217~226.
    129.Rodrigues SM, Schafe GE, LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci, 2001, 21(17): 6889~6896.
    130.Sze C, Bi H, Kleinschmidt-DeMasters BK, et al. N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer's disease. J Neurol Sci, 2001, 182 (2): 151~159.
    131.Kumar A, Zou L, Yuan X, et al. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res, 2002, 67(6): 781~786.
    132.Bi H, Sze CI. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. J Neurol Sci, 2002, 200(1-2): 11~18.
    133.张彦文,余争平,谢燕,等.微波辐照对大鼠海马NMDA受体NR1和NR2B亚基基因及蛋白表达的影响.解放军预防医学杂志, 2007, 25(3): 167~170.
    134.高明奇,孙黎光,周彬,等.慢性铅暴露小鼠海马NMDAR亚单位基因表达.中国公共卫生, 2006, 22(5): 574~575.
    135.Nihei MK, Desmond NL, McGlothan JL, et al. N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience, 2000, 99(2): 233~242.
    136.阮迪云.铅对钾通道亚单位和NMDA受体亚单位的影响.环境与职业医学, 2002, 19(3): 187.
    137.刘丽莉,王爱云,郑俊青,等.儿童血铅与钙、铁、锌的关系及干预方法研究.中国妇幼保健, 2007, 22(4): 470~471.
    138.Flora GJ, Seth PK. Alterations in some membrane properties in rat brain following exposure to lead. Cytobios. 2000, 103(430): 103~109.
    139.Gurer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med. 2000, 29(10): 927~945.
    140.Adonaylo VN, Oteiza PI. Lead intoxication: antioxidant defenses and oxidative damage in rat brain. Toxicology. 1999, 135(2-3): 77~85.
    141.逯晓波,陈葆春,于丽华,等.铅致新生大鼠脑氧化损伤及细胞凋亡的某些改变.中国职业医学, 2002, 29(3): 34~36.
    142.逯晓波,李北利,欧阳煜宏,等.铅致幼鼠脑脂质过氧化的实验研究.中国医科大学学报, 2002, 31(3): 184~186.
    143.El-Sokkary GH, Kamel ES, Reiter RJ. Prophylactic effect of melatonin in reducing lead-induced neurotoxicity in the rat. Cell Mol Biol Lett. 2003, 8(2): 461~470.
    144.宫丽崑,郭纳新,蔡原.铅对怀孕大鼠及其胎鼠肝脏脂质过氧化的影响.中国工业医学杂志, 2001, 14(4): 206~207.
    145.陈文华,王丽萍,潘洪志,等.铅中毒大鼠抗氧化酶活性的改变及核酸的干预效应.中国临床康复, 2005, 9(43): 78~79.
    146.Sandhir R, Julka D, Gill KD. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacol Toxicol, 1994, 74(2): 66~71.
    147.Moreira EG, Rosa GJ, Barros SB, et al. Antioxidant defense in rat brain regions after developmental lead exposure. Toxicology, 2001, 169(2): 145~151.
    148.Robertson FM, Long BW, Tober KL, et al. Gene expression and cellular sources of inducible nitric oxide synthase during tumor promotion. Carcinogenesis, 1996, 17(9): 2053~2059.
    149.Xie K, Huang S, Dong Z, et al. Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J Natl Cancer Inst, 1997, 89(6): 421~427.
    150.Lipton SA. Neuronal protection and destruction by NO. Cell Death Differ, 1999, 6(10): 943~951.
    151.安兰敏,牛玉杰,安宝恒,等.铅对大鼠脑细胞一氧化氮合酶表达的影响.环境与健康杂志, 2004, 21(5): 296~297.
    152.黄芬,李积胜,杨烽,等.慢性染铅大鼠皮层NOS和nNOS神经元数量的变化.武警医学, 2004, 15(8): 573~575.
    153.蔡文琴.发育生物科学[M] .北京:科学出版社, 1999: 314~347.
    154.文涛,孙黎光,宗志宏,等.慢性染铅对小鼠海马Ca2+-钙调蛋白依赖性蛋白激酶Ⅱ表达的影响.中国药理学与毒理学杂志, 2005, 19 (5): 393~395.
    155.李积胜,闫蓓,张进,等.铅对大鼠海马生长抑素神经元及其基因表达的影响.卫生研究, 2003, 32 (4): 313~315.
    1.张玲.青岛市环境水源中铅含量调查.职业与健康, 2002, 18(7): 91.
    2.杨克敌主编.微量元素与健康[M].第一版.北京:科学出版社, 2003: 316~327.
    3.熊亚.环境铅接触对健康的影响.微量元素与健康, 2003, 20(1): 48~50.
    4.蔡宏道主编.现代环境卫生学[M].第一版.北京:人民卫生出版社, 1995.
    5.沈彤.环境铅对女性生殖生育及子代影响的研究进展.安徽预防医学杂志, 2001, 7(2): 148.
    6.唐清.铅污染与儿童健康.城市环境与城市生态, 2003, 16(5): 48~50.
    7.李兴祥,李永华,王五一,等.铅暴露与健康风险研究之回顾与展望.广东微量元素科学, 2004, 11(11): 1~3.
    8.王永芳.铅与儿童健康(综述).中国食品卫生杂志, 2000, 12(1): 33~34.
    9.靳翠红,吕相征,郑丽舒,等. 32例儿童血铅和骨铅水平的测定和浅析.中国医科大学学报, 2001, 30(6): 442~446.
    10.杨建雄,张瑾锦.铅中毒的危害及其预防和治疗.陕西师范大学继续教育学报(西安), 2006, 23(2): 114~116.
    11. Ping-Chi Hsua, Yueliang, Leon Guo. Antioxidant nutria-ents and lead toxicity. Toxicology, 2002, 180(1): 33~44.
    12.周敏.环境铅污染与铅毒危害.中国煤炭工业医学杂志, 2005, 8(3): 207.
    13. Gong Jian-fu, Huang Xian–yi. Pathological Ultra microstructure Changes in Rats’Kidney Induced by Experimental Acetic Lead.广东微量元素科学, 2001, 8(9): 29.
    14. Hung - Yi Chuang, Song - Yen Tsai, Kun - Yu Chao, et al. The Influence of Milk Intake on the Lead Toxicity to the Sensory Nervous System in Lead Workers Neuro Toxicology, 2004 (25): 941~949.
    15.陈炳卿,孙长颢.食品污染与健康[M].北京:化学工业出版社.环境科学与工业出版社中心, 2002 : 156~158.
    16.周敏.环境铅污染与铅毒危害.中国煤炭工业医学杂志, 2005, 8(3): 208.
    17.秦俊法,潘伟清,华栋,等.微量元素与心血管疾病Ⅱ:微量元素在心血管病中的可能作用及机制.广东微量元素科学, 2002, 9(12): 1~17.
    18.孙永虎(综述),古桂雄,洪庆成(审校).铅对人体危害的研究.医学综述, 2004, 10(8): 504.
    19.沈彤综述,朱启星审校.环境铅对女性生殖生育及子代影响的研究进展.安徽预防医学杂志, 2001, 7(2): 148.
    20.沈彤.铅对男(雄)性生殖生育的影响研究现状.国外医学卫生学分册, 2001, 28(6): 342.
    21. McCabe MJ, Singh KP, Reiners JJ. Low level lead exposure in vitro stimulates the proliferation and expansion of alloantigen-reactive CD4 high T cells. ToxicolApp Pharmacol, 2001, 177: 219~231.
    22.乔玉峰(综述),蒋云生(审校).铅的免疫毒性研究新进展.国外医学医学地理分册, 2004, 25(4): 163.
    23. Levin SM, Goldberg M. Clinical evaluation and management of lead-exposed construction workers. Am J Ind Med, 2000, 37(1): 23~43.
    24.王永芳.铅与儿童健康(综述).中国食品卫生杂志, 2000, 12(1): 33~34.
    25. Pruppers MJM, Janssen MPM, Ale BJM, et al. Accumulation of environmental risks to human health: geographical difference in the Netherlands. Journal of Hazardous Materials. 1998, 61(1): 187~196.
    26.曾光明,卓利,钟政林等.水环境健康风险模型及其应用.水电能源科学, 1997, 15(4): 28~32.
    27.王振刚主编.环境医学[M].第一版.北京:北京医科大学出版社, 2001: 177.
    28.应桂英,李宁秀,任晓晖.健康危险因素评估方法的应用及其效果.中国健康教育, 2004, 20(1): 70.
    29.王永杰.健康风险评价中的不确定性分析.环境工程, 2003, 21(6): 66~68.
    30. D Kofi, Asante-Duah. Risk Assessment in Environmental Management Waste Management. 1999, 19(3): 541~542.
    31. George C. Becking. Use of mechanistic information in risk assessment for toxic chemicals. Toxicology Letters, 1995, (77): 15~24.
    32.杨克敌主编.环境卫生学[M].第五版.北京:人民卫生出版社, 2003: 52.
    33.高仁君,陈隆智,郑明奇,等.农药对人体健康影响的风险评估.农药学学报, 2004, 6(3): 09~14.
    34. Victor J, Feron, et al. Exposure to combinations of substances:a system for assessing health risks. Environmental Toxicology and Pharmacology, 2004, 2(18): 215~222.
    35.冉涛,吴朝正,李晓.环境污染对人类健康影响的研究进展.云南环境科学, 2005, 24(增刊1): 171.
    36. Nakanishi J, Gamo M, Iwasa Y, et al. Environmental risk evaluation of chemicals:achievements of the project and seeds for future-development of metrics for evaluating risks. Chemosphere, 2003, 53(4): 389~398.
    37.张楠,季民,张俊贞.城市污水回用健康风险评价.城市环境与城市生态, 2003, 16(6): 263.
    38.仇付国,王晓昌.污水再生利用的健康风险评价方法.环境污染与防治, 2003, 25(1): 49~56.
    39.王英英,魏世强.致癌物质的健康风险评价方法与评述.微量元素与健康研究, 2006, 23(5): 53~55.
    40.陈秉衡,宋伟民,毛惠琴.环境化学品的危险度评价、危险度管理和可持续发展.环境与健康杂志, 2000, 17(1): 4.
    41.毛小苓.国内外环境风险评价研究进展.应用基础与工程科学学报, 2003, 11(3): 266~271.
    42. Clew H. Use of mode of action in risk assessment: Past, present, and future. Regulatory Toxicol Pharmacol, 2005, 42(1): 3~14.
    43.孙冬,王玉才,谢春梅.垃圾焚烧烟气中污染物对人体健康风险评价.环境卫生工程, 2004, 12(3): 145.
    44.金泰廙,雷立健,常秀丽.镉接触健康效应危险度评价.中华劳动卫生职业病杂志, 2006, 24(1): 2.
    45.郭新彪.环境健康危险评定.卫生毒理学杂志, 2000, 14(1): 16.
    46.汪晶.健康风险评价的基本程序与方法.环境科学研究, 1993, 6(5): 52~56.
    47.陈晶中,陈杰,谢学俭,等.土壤污染及其环境效应.土壤, 2003, 35(4): 298~303.
    48. Hao XZ, Zhou DM, Si YB. Revegetation of copper mine tailings with ryegrass and willow (In Chinese). Pedosphere, 2004, 14(3): 283~288.
    49. Otte PF, Lijzen J PA, Otte JG, et al. Evaluation and Revision of the CSOIL Param eter Set. RIVM Report, 711701021. The Netherlands, 2001.
    50. Lijzen JPA, Baars AJ, Otte PF, et a1. Technical Evaluation of the Intervention Values for Soil/Sediment and Groundwater. RIVM Report 711701023. TheNetherlands. 2001.
    51.王国庆,骆永明,宋静等.土壤环境质量指导值与标准研究I.国际动态及中国的修订考虑.土壤学报, 2005, 42(4): 666~673.
    52.李勇辉.低浓度血铅对儿童神经心理的影响.湖南师范大学社会科学学报, 2001, 30(2): 340~342.
    53.叶萍,刘筱娴,柯富荣等.脐血铅胎粪铅含量与新生儿神经行为发育的关系.中华预防医学杂志, 2001, 35(4): 257.
    54.吕京.骨铅的生物学意义.国外医学卫生学分册, 2000, 27(3): 148~149.
    55.胡二邦主编.环境风险评价实用技术和方法.北京:中国环境科学出版社, 2000.
    56.李志博,骆永明,宋静等.土壤环境质量指导值与标准研究Ⅱ.污染土壤的健康风险评估.土壤学报, 2006, 43(1): 142.
    57.黄泽春,宋波,陈同斌,等.北京市菜地土壤和蔬菜锌含量及其健康风险分析.地理研究, 2006, 25(3): 439~448.
    58.陈煌,郑袁明,陈同斌.面向应用的土壤重金属信息系统(SHMIS)-以北京市为例.地理研究, 2003, 22: 272~280.
    59.陈同斌,宋波,郑袁明等.北京市菜地土壤和蔬菜铅含量及其健康风险评估.中国农业科学, 2006, 39(8): 1590.
    60.杨惠芬,李明元,沈文.食品卫生理化检验标准手册.北京:中国标准出版社, 1998, 101~104.
    61. E1-Ghonemy H, Watts L, Fowler L. Treatment of uncertainty and developing conceptual models for environmental risk assessments and radioactive waste disposal safety cases. Environment International, 2005, 31(1): 89~97.
    62. Cirone PA, Duncan PB. Integrating human health and ecological concerns in risk assessments. Journal of Hazardous Materials, 2000, 78(1/3): 1~17.
    63. Iscan M. Hazard identification for contaminants. Toxicology, 2004, 205(3): 195~199.
    64.刘洪莲,李艳慧,李恋卿等.太湖地区某地农田土壤及农产品中重金属污染及风险评价.安全与环境学报, 2006, 6(5): 60.
    65.何振宇,许风华,徐云斌等.市售化妆品中3种有害物质对人体的健康风险评价.中国卫生检验杂志, 2005, 15(10): 1238.
    66.孙树青,胡国华,王勇泽等.湘江干流水环境健康风险评价.安全与环境学报, 2006, 6(2): 12~15.
    67. Krishnan Kannan, Paterson Joel, Williams David T. Health risk assessment of drinking water contaminants in Canada: the applicability of mixture risk assessment methods. Regul Toxicol Pharm, 1997, 26(3): 179~187.
    68.葛元新,朱志良,陆雍森等.饮用水消毒的健康风险分析及评价.净水技术, 2006, 25(3): 2~4.
    69.何星海,马世豪,李安定等.再生水利用健康风险暴露评价.环境科学, 2006, 27(9): 1912.
    70.王振刚,何海燕.砷污染的健康危险度评价.中国药理学与毒理学杂志, 1997, 11(2): 93~94.
    71.付在毅,许学工.区域生态风险评价.地球科学进展, 2001, 16(2): 267~271.
    72. USEPA. An Examination of EPA Risk Assessment Principles and Practices. EPA/ 100/ B204/ 001, 2004.
    73.杜锁军.国内外环境风险评价研究进展.国内外环境风险评价研究进展, 2006, 31(5): 193~194.
    74. Pollard S, Rogeryearsley, Nickreynard, et al. Current directions in the practice of environmental risk assessment in the United Kingdom. Environmental Science and Technology, 2002, 36(4): 530~538.
    75.钟政林.环境风险评价研究进展.环境科学进展, 1996, 12(3): 18~20.
    76.陆军,郝大举.环境风险评价简介.污染防治技术, 2005, 18(6): 31~36.
    77.李健.环境风险评价探讨.核动力工程, 1994, 8(2): 30.
    78.毛小苓,刘阳生. Current progress of environmental risk assessment research. Journal of Basic Science and Engineering(应用基础与工程学报), 2003, 9(3):266~272.
    79.中国环境影响评价:培训教材[M].国家环保总局监督管理司. Beijing: Chemical Industry Press, 2000.
    80.钱家忠,李如忠,汪家权等.城市供水水源地水质健康风险评价.水利学报, 2004, 8(4): 90~93.
    81.李秋娟,杨光,孙鲜策等.健康风险评估与控制在预防医学教学中的应用.大连医科大学学报, 2006, 28(3): 270.
    82.夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学, 1997, 5(3): 72.
    83. Bell F, Genske D, Bell A. Rehabilitation of industrial areas:case histories from England and Germany.Environmental Geology, 2000, 40(1-2): 121~134.
    84.蒋海燕,刘敏,黄沈发,等.城市土壤污染研究现状与趋势.安全与环境学报, 2004, 4(5): 74~75.
    85. Pohl HR, Roney N, Wilbur S, et al. Six interaction profiles for simple mixtures. Chemosphere, 2003, 53(2): 183~197.
    86.任慧敏,王金达,张学林.沈阳市土壤铅的空间分布及风险评价研究.地球科学进展, 2004, 19(增刊): 429~433.
    87.吴新民,李恋卿,潘根兴,等. Soil pollution of Cu, Zn, Pb and Cd in different city zone.环境科学, 2003, 24(3): 105~111.
    88.王永杰,贾东红.健康风险评价中的不确定性分析.环境工程, 2003, 21(6): 66~67.
    89.张金良,吴海磊,胡永华.健康危险度评价在建立环境健康指标中的作用.国外医学卫生学分册, 2004, 31(4): 194~197.
    90.李正文,李久海,潘根兴,等. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake.环境科学, 2003, 24(3): 112~115.
    91.田裘学.健康风险评价的不确定性及癌风险评价.甘肃环境研究与监测, 1999, 12(4): 202.
    92.杨智宽,袁扬.有毒化学品健康危险评价方法.环境与健康杂志, 1999, 16(2): 124.
    93.张楠,季民,张俊贞.城市污水回用健康风险评价.城市环境与城市生态, 2003, 16(6): 263.
    94. Hyner GC, Peterson KW, Twavis JW, et al. SPM handbook of health assessment tools. 2nd ed. Pittsburgh, PA: The Society of Prospective Medicine, 1999.
    95. Ann S. Me Alearney SCD. Population health management: strategies for health improvement. Chicago: Health Administration Press, 2002.
    96.胥卫平,曹子栋,胡健.城市水污染人群健康危险度评价系统分析方法.西安石油大学学报(社会科学版), 2004, 13(2): 47.
    97.张莉,王五一,廖永丰.城市空气质量健康风险评估研究进展.地理科学进展, 2006, 25(3): 40.
    98.苗普.浅谈健康危险因素评价.医学与哲学, 2006, 27(3): 51~56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700