用户名: 密码: 验证码:
铈掺杂Ti/Sn-Sb阳极制备及催化氧化苯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以电沉积-热分解法制备铈掺杂钛基锡锑电极。主要以电极对苯酚的催化降解性能和电解时的槽压作为主要指标,对钛基锡锑电极进行了优化,确定了铈掺杂比例、热处理温度等工艺条件。采用SEM、EDX、EPMA及XRD等检测方法对所制备电极的微观形貌、元素组成、分布及相组成进行了分析。研究了铈的掺杂和热处理温度对电极性能的影响,结果表明铈适量掺杂能使晶粒细化,电极涂层结构致密,氧化物分布均匀,基体覆盖完全,对苯酚有较好的催化性能;过量的铈掺杂导致晶格破坏,电极性能降低。热处理温度对电极性能有较大影响。温度不同导致涂层形貌、析氧电位和电极的导电性不同,热处理温度为550℃较为适宜。
     以优化的Ti/SnSbCe电极为阳极,钛板为阴极,在无隔膜电解槽中,采用恒流电解法对苯酚模拟废水进行氧化降解研究。系统地研究了电解质浓度、溶液初始pH值、苯酚初始浓度、电流、溶液温度及电极材料对降解的影响。实验结果表明:在0.1~0.5mol/L的范围内,电解质浓度越高,苯酚和COD的去除效果越好;初始pH在5到7苯酚的去除效果最好,碱性条件下最差;苯酚初始浓度增加,苯酚和COD的去除率有较大降低,但去除量却有大幅度的提高;电流增大,苯酚和COD的去除效果有很大提高,但是电流效率降低;溶液温度升高,苯酚和COD的去除率都有所增加,槽压降低;不同的电极材料对苯酚的催化性能有明显差异,SnSbCe/Ti电极降解效果最好,SnSb/Ti电极次之,RuO_2/Ti电极最差。
     采用电化学测试系统,以循环伏安法和极化法对苯酚在Ti/SnSbCe阳极上的氧化降解行为进行了研究。结果表明,苯酚在Ti/SnSbCe阳极氧化为典型的不可逆反应过程,反应受扩散控制;电极对苯酚的催化活性和析氧电位密切相关,析氧电位高,催化活性好;苯酚浓度增加,析氧曲线没有发生变化,析氧电位也没有随苯酚浓度的变化发生移动,反应过程中电极表面不存在有机物的聚合现象,电极在苯酚浓度较高时保持了良好的催化活性;电极在经过40次的循环伏安后曲线不变,电极的稳定性较好。
     通过对不同电解时间溶液的高效液相色谱分析,发现高浓度苯酚降解过程较复杂,倾向于电化学转化过程,首先苯酚吸附在阳极表面,随后被氧化为各种中间产物,然后中间产物继续被氧化,苯环被打开生成有机酸,最终把苯酚降解为CO_2和H_2O;低浓度苯酚的氧化降解过程倾向于电化学燃烧过程,降解更为彻底,没有中间产物生成。
In this paper,the Ce-doped Ti/SnSb electrode was prepared by electrodeposition and thermal decomposition methods.Ti/SnSb electrode was optimized with catalytic properties and cell voltage as the main assessing items and finally,the optimum doping ratio and thermal oxidation temperature was determined.The microstructure,element compositions and distributions,phase compositions of the Ce-doped Ti/Sn-Sb electrode had been studied by means of scanning electron microscopy with energy dispersive X-ray(SEM-EDX),electron probe microanalysis(EPMA),X-ray diffraction(XRD).The effects of Ce doping and thermal oxidation temperature on the properties of electrode were investigated and the results have shown that grains can be facilitated in fine size with suitable content of Ce,the anode has a compact texture,the oxide of its coat distributes equably and completely covers the Ti matrix,it has catalysis for the oxidative degradation of phenol.However,SnO_2 crystal lattice can be destroyed and the performance of electrode can be decreased with excess content of Ce. Thermal oxidation temperature has significant effect on the performance of the electrode.The micrographs of the surface layer,oxygen evolution potential,electrical conductivity differ with diffrient oxidation temperature and the suitable oxidation temperature is about 550℃.
     Take the optimized electrode as anode,titanic plate as cathode,the simulant phenolic wastewater is degraded in a electrolytic cell without diaphragm.The effects of influencing factors of degradation of phenol such as electrolyte concentration,original pH value of electrolyte,initial concentration of phenol,electrical current,electrolyte temperature,electrode material on degradation of phenol are systematically investigated.It has been found that,the greater the Na_2SO_4 concentration,the better the removal effect of phenol and COD in the concentration range of 0.1 to 0.5 mol/L;the best removal effect of phenol is in the original pH value from 5 to 7 of electrolyte and the worst is under the condition of high pH value;phenol and COD removal rate decrease as initial phenol concentration increases,but the absolute wiping off value increases obviously;the removal effect of phenol and COD increase with increasing of electrical current,but the current efficiency decrease;An increase in electrolyte temperature is found to reduce cell voltage and have a beneficial effect on the phenol oxidation degradation;catalytic properties of different electrode vary considerably, SnSbCe/Ti anode is the best,SnSb/Ti anode is in the middle,RuO_2/Ti anode is the worst.
     Using electrochemical test System,the oxidation degradation behaviors of phenol on SnSbCe/Ti electrode were studied by cyclic voltammetry and polarization curves.The results of the tests indicate that,the process of anodic oxidation of phenol on SnSbCe/Ti electrode is irreversible,and it is controlled by diffusion process;catalytic activity of the electrode is closely bound up with oxygen evolution potential,high oxygen evolution potential can improve catalytic activity for phenol;there is no variation of oxygen evolution curve with the increase of phenol concentration,there was no phenomena of organic matter polymerization during the reaction and the electrode keeps good catalytic activity for oxidation of high concentration phenol;cyclic voltammetry curve remains the same after 40 times scans,the electrode shows the merit of good stability.
     The results of high performance liquid chromatographic analysis of electrolyte with different degradation time show that degradation of phenol with high concentration is complex and the degradation process inclines to electrochemical conversion;first,phenol is adsorbed on the surface of electrode and is oxidized to intermediate products,and then intermediate products are converted to organic acids along with the break of benzene ring, finally the organic intermediate products are oxided to CO_2 and H_2O;the degradation process of low concentration inclines to electrochemical combustion,the degradation is more thorough and there is no organic intermediate product in the process of the degradation.
引文
[1]Stucki S,K(o|¨)tz R,Carcer B,Suter.Electrochemical waste water treatment using high overvoltage anodes[J].Journal of Applied Electrochemistry,1991,21:99-104.
    [2]Gandini D,Mah(?) E,Michaud P A,Haenni W,Perret A,Comninellis Ch.Oxidation of carboxylic acids at boron-doped diamond electrodesfor wastewater treatment[J].Journal of Applied Electrochemistry,2000,30(12):1345-1350.
    [3]Comninellis Ch,Pulgarin C.Electrochemical oxidation of phenol for wastewater treatment using SnO_2 anodes[J].Journal of Applied Electrochemistry,1993,23:108-112.
    [4]Comninellis Ch.Electrocatalysis in the electrochemical conversion/ combustion of organic pollutants for wastewater treatment[J].Electrochimica Acta,1994,39(11/12):1857-1862.
    [5]Kirk D W,Sharifian H,Foulkes F R.Anodic oxidation of aniline for waste water treatment[J].Journal of Applied Electrochemistry,1985,15:285-292.
    [6]Comninellis Ch,Vercesi G P.Characterization of DSA-type oxygen evolving electrodes choice of coating[J].Journal of Applied Electrochemistry,1991,21(4):335-345.
    [7]Comninellis Ch,Nerini A.Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J].Journal of Applied Electrochemistry,1995,25:23-28.
    [8]Comninellis Ch,pulgarin C.Anodic oxidation of phenol for waste water treatment[J].Journal of Applied Electrochemistry,1991,21:703-708.
    [9]冯玉洁,崔玉虹,孙丽欣等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [10]王慧,王建龙,占新民等.电化学法处理含盐染料废水[J].中国环境科学,1999,19(5):441-444.
    [11]Patricia A C,Marly E O,Boralle N,et al Evaluation of diferent electrochemical methods on the oxidation and degradation of reactive blue 4 in aqueous solution[J].Chemosphere,2005,59:431-439.
    [12]景晓辉,丁欣宇,石健等.纳米TiO2修饰电极制备及对活性染料废水的降解试验[J].精细石油化工进展,2006,7(11):41-44.
    [13]郑曦,陈日耀,陈晓等.电化学法生成Fenton试剂及其在工业染料废水降解中的应用[J].环境污染治理技术与设备,2001,2(4):72-76.
    [14]陈武,李凡修,梅平.三维电极方法降解模拟废水COD机理研究[J].环境科学技术,2002,25(1):11-12.
    [15]李海涛,朱其佳,祖荣.电化学氧化法处理海洋油川废水[J].工业水处理,2002,6:23-25.
    [16]李桂英,安太成,陈嘉鑫等.光电催化氧化处理高含氯采油废水的研究[J].环境科学研究,2006,19(1):30-34.
    [17]李庭刚,陈坚,张国平等.电化学氧化法处理高浓度垃圾渗滤液的研究[J].上海环境科学,2003,22(12):892-897.
    [18]邓莉娟,王中琪,兰紫荆.电化学氧化预处理垃圾渗滤液的实验研究[J].环境科学与管理,2008,33(5):115-117.
    [19]何晓莉,王志盈,袁林江等.管式电凝聚法处理印染废水COD的特性研究[J].给水排水,2000,26(5).
    [20]乔启成,王立章,邓霞等.三维电极法处理垃圾渗滤液的实验研究[J].苏州科技学院学报(工程技术版),2007,20(1):39-42.
    [21]Fuchs U,Furst P.Method and apparatus for electro-biological reactor,especially water purification[P].DE 3838170
    [22]Mellor R B,et al.Reduction of nitrate and nitrite in water by immobilized enzymes[J].Nature,1992,355:717-719.
    [23]Genders JD,Hartsough D,etal[J].Journal of Applied Electrochemistry,1996,26:1-9.
    [24]吴星五,高廷耀,李国建等.电化学消毒水处理实验[J].化工标准·计量·质量,2001,2:38-41.
    [25]范彬,曲久辉,刘锁祥等.复三维电极—生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报,2001,21(1):39-43.
    [26]陈晓青,郭世柏,袁兴中.电解法制备活性氯的研究[J].化学世界,2001,8:395-398.
    [27]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002
    [28]Kato Isto,et al.Apparatus for disinfection of tap water or groundwaters by adsorption and electrolysis[P].JP 11 347538.
    [29]Tsuzuki K,et al.Effects of electrochemical treatment on microcystis extinction[J].Mizu Kankyo Gakkaishi,1999,22(3):228-231.
    [30]Polcaro A M,Vacca A,Mascia M.Characterization of a stirred tank electrochemical cell for water disinfection process[J].Electrochimica Acta,2007,52(7):2595-2602.
    [31]Correa-Lozano B,Comninellis Ch,DeBattisti A.Electrochemical properties of SnO_2-Sb_2O_5 electrodes prepared by spray pyrolysis technique[J].Journal of Applied Electrochemistry 1996,(26):683-688.
    [32]侯俭秋,赵吉寿,王金城等.钛基修饰氧化物电极制备及降解苯胺的研究[J].环境工程学报,2007,1(9):86-89.
    [33]刘文武,涂学炎,王伟等.两种DSA电极的制备及其对有机废水降解的电催化性能[J].环境化学,2007,26(2):152-156.
    [34]Grimm J H,Bessaeabov D G.Characterization of doped tin dioxide anodes Prepared by sol-gel technique and their application in an SPE-reactor[J].Journal of Applied Electrochemistry,2000,30:293-302.
    [35]刘峻峰,冯玉杰,孙丽欣等.钛基SnO_2纳米涂层电催化电极的制备及性能研究[J].材料科学与工艺,2006,14(2):200-203.
    [36]Isamu K,Masaaki S,Shigeharu O.Development of positive electrodes with an SnO_2coating by applying a sputtering technique for lead-acid batteries[J].Journal of Power Sources,2001,95(1/2):125-129.
    [37]陶自春,潘建跃,罗启富.铂中间层的制备及对铱钽涂层钛阳极性能的影响[J].材料科学与工程学报,2004,22(2):240-244.
    [38]Chiang L C.Electrochemical oxidation pretreatment of refractory organic pollutants[J].Water Science &Technology,1997,34(2-3):123-130.
    [39]Stucki S,Kotz R,Carcer B.Electrochemical waste water treatment using high overvoltage anodes:Anode performance and applications[J].Journal of Applied Electrochemistry,1991,21:99-10.
    [40]Vlyssides A G,Loizidou M,et al.Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J].Journal of Hazardous Materials,1999(B70):41-52.
    [41]Rodgers J D,Jedral W,Bunce N J.Electrochemical oxidation of chlorinated Phenols [J].Environmental science&Technology,1999,33(9):1453-1457.
    [42]Polcaro A M,Renoldl F,et al.The performance of Ti/PbO_2 anode in the oxidation of 2-chlorophenols[J].Journal of Applied Electrochemistry,1999,29:147-151.
    [43]王雅琼,顾彬,许文林,等.钛基PbO_2电极上苯酚的电化学氧化[J].稀有金属材料与工程,2007,36(5):874-878.
    [44]梁镇海,张福元,樊彩梅等.钛基二氧化锡电极的制备及性能研究[J].稀有金属材料与工程,2007,36(2):278-281.
    [45]崔玉虹,冯玉杰,刘峻峰.Sb掺杂钛基SnO_2电极的制备、表征及其电催化性能研究[J].功能材料,2005,2(36):234-237.
    [46]赵国华,胡惠康,李楹等.氧化物修饰电极降解有机污染物的电催化特性[J].中国环境科学,2003,23(4):385-389.
    [47]张国珍,何春生,崔彬.TNT炸药废水三维电解氧化实验研究[J].水资源与水工程学报,2008,19(6):28-31.
    [48]杨芬,甘复兴,侯能邦等.Sb-SnO_2/Ti电极对对硝基苯酚电催化氧化影响因素和机理研究[J].水处理技术,2009,35(2):58-61.
    [49]刘海萍,李宁,周德瑞等.掺锑二氧化锡多孔钛阳极对苯酚的催化氧化[J].环境科学学报,2005,8(8):1015-1020.
    [50]侯俭秋,崔阳.钛基修饰锡锑铅氧化物电极制备及性能研究[J].环境科学与技术,2008,31(8):117-124.
    [51]韩国成,刘峥,王永燎.Pr改性SnO_2/Ti电催化电极制备、表征及性能的研究[J].稀土,2008,29(2):30-34.
    [52]何春,安太成,熊亚等.三维电极电化学反戍器对有机废水的降解研究[J].电化学,2002,8(3):327-332.
    [53]Chiang L C,et al.Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate.Water Research,1995,29(2):671-678.
    [54]Polcaro A M,etal.On the performance of ri/SnO_2 and ri/PbO_2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment[J].Journal of Applied Electrochemistry,1999,29:147-151.
    [55]Kirk DW,etal.Anodic oxidation of aniline forwastewater treamient[J].Journal of Applied Electrochemistry,1985,15:285-292.
    [56]Marco P,et al.Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J].Water Research,2000,34(9):2601-2605.
    [57]Yang C H,et al.Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater[J].Journal of Applied Electrochemistry,2000,30:1043-1051
    [58]Ribordy P,et al.Electrochemical versus photochemicalpretreatment of industrial wastewaters[J].Water Science and Technology,1997,35(4):293-302
    [59]Smith V,Sucre D,Watkinson A P.Anodic oxidation of phenol for waste water treatment[J].rhe Canadian Journal of Chemical Engineering,1981,68:997.
    [60]朱锡海,陈卫国,范娟等.氧化絮凝复合床水处理新技术的研究[J].中山大学学报(自然科学版),1998,37(4):80-84.
    [61]梁爱琴,匡少平.电化学降解含酚废水动力学研究[J].青岛化工学院学报,2002,23(4):4-6.
    [62]Moreno-Castilia C,Rivera-Ulrilia J.Adsorption of some substituted phenols on activated carbons from a bituminious coal[J].Carbon,1995,33(6):845-851.
    [63]徐伟辉,严叶卫.含酚废水处理工艺综述[J].上海船舶运输科学研究所学报,2005,28(1):53-55.
    [64]Rajeshwar K,Ibanez J G,Swain G M.Electrochemistry and Environment[J].Journal of Applied Electrochemistry,1994,24(7):1077-1091.
    [65]Gurol M,Vatistas R.Oxidation of phenolic compound by ozoneando zone/UV radiation:a comparative study[J].Water Science and Technology,1987,35(40):95-102.
    [66]Hirgaonkar L S Z,Pandit A B.Sonophoto chemical destruction of aqueous solution of 2,4,6-trichlorophenol,Ulrtason[J].Sonochem,1998,5(16):53-57.
    [67]丁军委,陈丰秋,吴素芳等.超临界水氧化方法处理含酚废水[J].环境污染与防治,2000,22(1):1-4.
    [68]郑红艾,潘理黎.高级氧化技术在水处理中的研究进展[J].上海电力学院学报,2006,22(2):158-162.
    [69]周珊.超声技术降解造纸废液[J].湖北师范学院学报(自然科学版),2002,2(2):12-24.
    [70]丁志勇,姚林.高级氧化技术在含酚废水处理中的应用[J].环境污染治理技术与设备,2003,4(7):52-55.
    [71]邵李华,韩建华,邓德刚.湿式氧化工艺处理乙烯废碱液的开工运行[J].石油化工环境保护,2004,27(2):56-5
    [72]Fajerwery K.Wet oxidation of phenol by hydrogen peroxide:the key role of pH on the catalytic behavivour of Fe-2SM-5[J].Water Science and Technology,1997,35(4):103-110.
    [73]杨天鸣,胡小安,陆俭沽等.PVC膜修饰粉末微电极的研制及应用[J].高等学校化学学报,1998,19(11):1743-1745.
    [74]奚旦立,孙裕生,刘秀英.环境检测(修订本)[M].高等教育出版社,2001.
    [75]尤宏,崔玉虹,冯玉杰等.钛基Co中间层SnO_2电催化电极的制备及性能研究[J].材料科学与工艺,2004,12(3):230-233.
    [76]张翼,王磊,闫红娟等.钕掺杂Ti基Sn-Sb涂层电极的制备及性能评价[J].中国稀土学报,2007,25(6):760-764.
    [77]李善评,胡振,曹翰林.钕改性钛基SnO_2/Sb电催化电极的制备及表征[J].中国稀土学报,2008,26(3):291-297.
    [78]崔玉虹,刘正乾,刘志刚等.Ce掺杂钛基二氧化锡电极的制备及电催化性能研究[J].功能材料,2004,35:2035-2039.
    [79]范洪富,王磊,关杰等.稀土掺杂PbO_2电极的制备及催化性能研究[J].中国稀土学报,2007,25(3):299-304.
    [80]潘会波,刘宏,焦文强等.Ti/IrO_2涂层阳极热氧化处理温度的选择[J].稀有金属材料与工程,1999,28(1):50-52.
    [81]Yu Jie F,et al.Electrocatalytic Oxidation of Phenol on Several Metal-oxide Electrodes in Aqueous Solution[J].Water Research,2003,37:2399-2407.
    [82]中国腐蚀与防护学会.中国腐蚀与防护学会成立20周年论文集[C].北京:化学工业出版社,1999.10:529-531.
    [83]Kuramitz H,Saitoh J,Hattonri T,et al.Electrochemical removal of p-nonylphenol from dilutes solution Using a carbon fiber anode[J].Water Research,2002,36:3323-3329.
    [84]Raffaello C,Polcaro A M,Lavagnolo M C,etal.Electrochemical treatment of landfill leachate:oxidation at Ti/PbO_2 and Ti/SnO_2 anodes[J].Enviormental Science and Technology,1998,32:3570-3573.
    [85]Pak D,Chakrovortty S.Hydroxyl radical production in electrochemical reactor[J].Int J Environment and Pollution,2006,27(1):195-203.
    [86]陈建孟,潘伟伟,刘臣亮.电化学体系中羟基自由基产生机理与检测的研究进展[J].浙江工业大学学报,2008,8,36(4):416-422.
    [87]K.彼得C.福尔哈特,尼尔E.肖尔.有机化学结构与功能(原著第4版)[M].北京:化学工业出版社,2006:863.
    [88]高占先,陈宏博,袁覆冰等.有机化学[M].北京:高等教育出版社,2000(2004重印).
    [89]乔继欣,张虎,叶国安.模拟草酸钚沉淀母液中草酸电解破坏研究[J].原子能科学技术2008,11,42(11):974-979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700