用户名: 密码: 验证码:
根系分区交替供水对玉米养分吸收影响的机理与效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究新型的节水灌溉技术—根系分区交替灌水对玉米养分吸收影响的机理与效应。以玉米
    为材料进行了两次试验,设计3种灌水方式:(1)常规灌水方式(对照),每次对盆内全部土壤均
    匀灌水;(2)固定灌水方式,每次固定1/2区域的土壤灌水;(3)交替灌水方式,每次交替1/2区
    域土壤灌水。第1次试验每次灌水量,常规灌水方式为w,而固定灌水方式与交替灌水方式则为w/2;
    第2次试验每次灌水量,常规、固定、交替灌水方式均为w。主要试验结果如下:
     (1)光合速率、气孔导度和蒸腾速率等结果表明,随着处理时间延长,交替方式的光合速率
    逐渐增加,而固定与常规灌水方式的光合速率呈减少趋势,到拔节后期,交替方式比其他两种方式
    增加65.0%和51.7%。交替灌水方式气孔导度比常规和固定方式低,到孕穗期,交替灌水气孔导度
    低于固定及常规方式51%和71%。交替灌水整个生育期叶片蒸腾速率都比固定、常规方式低,分别
    降低15%-110.7%和5.1%-78.4%,这表明交替方式可有效抑制蒸腾而使光合作用维持较高水平。固
    定方式受到水分胁迫相对严重,非气孔因素对光合限制占比例更大,导致光合器官的光合活性降低。
     (2)交替灌水方式的总根长和根长密度均大于其它两种灌水方式。交替灌水两区域总根长、
    根密度差异不大,但固定灌水干湿两区域随处理时间延长,差异有增大趋势。苗期3个处理根条数
    基本相同;拔节后期交替处理比常规的根条数增加36.3%,比固定增加50%。交替灌水方式两个区
    域根条数相差2条,固定灌水方式相差了6条。交替处理经过干湿交替灌水,刺激了根系生长,促
    进根系下扎,两个区域根系分布比较均匀;而固定方式干燥区域抑制了根系生长,甚至后期由于水
    分胁迫严重导致部分根系死亡,不利于根系的生长。
     (4)孕穗期交替方式叶面积比固定方式增加58.1%,比常规方式增加13.5%。交替方式新叶发
    生速率明显大于其它两种方式,而枯叶数目明显减少。各个生育时期交替灌水处理株高均比常规方
    式和固定方式高,平均高2.8-4.3cm。
     (5)不同灌水方式改变了光合产物在根冠之间的分配。从拔节前期到孕穗期,交替方式根重
    增加67.0%,而冠重增加81.2%;固定方式根重增加57.9%,冠重增加74.6%;常规方式根重增加47.4%,
    冠重增加80.6%。表明交替方式有利于光合产物向地上部分的运输,而固定方式遭受水分胁迫,对
    根系生长造成伤害,导致根生长一直较弱,由此抑制了冠部生长。常规灌水方式下由于土壤板结对
    根系生长产生机械阻力,从而影响冠层生长。
     (6)交替方式与固定方式湿润根区相比,根系活力稍高一些,两者相差不大;与固定方式干
    燥区域相比,根系活力明显增加,大约提高30%—98%。交替方式根系活力均比常规灌高,上述结
    
    果表明交替方式增加根系活力,有助于很系吸收衣分和养分。此外,交替方式根系传导度明显高于
    固定方式和充分灌水的常规方式。
     ()交替处理与固定方式相比,1lljlt脯氨已含量降低 26.7%-38.1%,表明固定方式水分亏缺
    程度相对较重,而交替灌水使作物水分条件得到改善,能够维持作物的生长需求,有利于维持细胞
    膨压和细胞正常延伸生长。叶片硝酸还原酶在前月各处理间无差异,到抽雄期,交替方式叶片硝酸
    还原酶活性增加57.4%,而固定方式却降低15%,孕穗期交替方式分别高于固定、常规方式121刀%
    和23.5%,从而保持较高的硝酸还原酶活性,利于甫态氮转化和植株吸收。
     (8)固定方式根系N、P吸收量比其‘占两种方式都低。第1次结果表明拔节前期交替方式地上
    部N吸收量比固定和常规方式高;地上部P吸收量在苗期表现出交替方式比常规方式低。第2次结
    果表明各生育时期交替方式地上部N吸收量比其它两种方式都高,拔节后期以后交替方式地上部P
    吸收量比固定方式、常规方式都高。
     (9)第互次结果表明拔节前期交替方式N吸收总量比固定和常规方式高;交替方式P吸收总
    量均比其它两种方式高。第2次结果是拔节前期交替方式N吸收总量比固定方式高,和常规方式相
    差不大,而到生育后期比固定和常规方式都高:拔节后期以后交替方式P吸收总量比固定方式、常
    规方式都高。试验结果还表明,生育后‘田交替方式更有利于氮、磷向地上部分转移,固定方式氮素
    向地上部分转移相对减少,而常规方式磷素向地上部转移减少。
     (10)3种灌水方式耗水量有明显的差异,交替灌水比常规灌水节水 10.26%-27.6%。交替方
    式在整个生育期叶片水分利用效率逐渐增加,拔节后期交替方式水分利用效率比同期固定与常规方
    式增加 41.3%和 29.7%。孕穗期交替方式水分利用效率比同期固定与常规方式增加 70.5%和 53.6%。
    交替灌水方式群体水分利用效率最高,卜匕常规灌水方式提高5.8%-20.l%。
     (11)交替灌水方式比常规灌水方式的氮利用效率提高 4.76%-25.1%,磷利用效率提高
    4.79%一25.3%。
The mechanism and effect of the new water-saving method梒ontolled roots-divided alternative
     irrigation on maize nutrient uptake were studied in this paper. The treatments consist of controlled fixed
     irrigation for half part of root zone (CFI), controlled alternate irrigation for half part of root zone
     (CAl) and conventional irrigation for whole root zone (Cl) . Two experiments were carried out in pots
     containing soil. In the first experiment, CI was irrigated for total amount of water (w), but CAl and CFI
     only half amount of water (w/2); but in the second experiment, the irrigation amount was w for three
     treatments during the period of irrigation experiment. Main experiment results were shown as followed:
    
     With the developing of maize, the photosynthetic rate (P11) of CAl was increased, but that of CFI
     and Cl tended to decrease. At the later jointing stage. P,, in CAl treatment was increased by 65.0% and
     5 1.7% compare with CFI and Cl. Leaf stomata! conductance (Cs) of CAl was lower than that of CFI
     and CI. At ear pregnant stage, stomata! conductance (C5) of CAl was reduced by 51% and 71%
     compared with CFI and CI. During whole experiment, transpiration rate (TR) of CAl was lower than
     that of CFI and CI, reduced by 15%-I 10.7% and 5.1%-78.4% compared with CFI and Cl, respectively.
     The above-mentioned results were shown that CAl inhibited TR effectively and stimulated
     photosynthesis. Because of corn in CFI treatment under water stress condition, P,, limitation was mainly
     controlled by non-stomatal factors, thus reduced photosynthetic activity.
    
     Root length and density of CAT was higher than CFI and CI. Root length and density of two root
     zones of CAl did not show any difference, but that of two root zones of CFI tended to show significant
     difference as maize growing. At the later jointing stage, compared with CFI and CI, root numbers of
     CAl were increased by 36.3% and 50%. Thus, by alternate irrigation for root zone, root growth was
     stimulated and root was distributed evenly in both root zones in CAl. While in CFI treatment, root
     growth was inhibited by water stress in drying root zone, even part of root dead in the end of
     development, therefore CFI method is unfavorable to root growth.
    
     At ear pregnant period, plant leaf area of CAl was greater than that of CI and CFI, the relative
     increment were 58.1% and 13.5%, respectively. In CAl treatment, leaf growth rate was far greater, but
     dead leaves are lower compared with CFI and Cl treatments. Plant height of CAl was higher than that of
     CFI and CI.
    
     The distribution of photosynthetic products between roots and shoots was changed by water
     method treatments. From jointing stage to ear pregnant stage, root biomass and shoot biomass in CAT,
     CFI and CI were increased by 67.0% and 81.2%, 57.9% and 74.6%, 47.4% and 80.6%, respectively.
    
    
    
     The above-mentioned result suggested the photosynthetic product of CAl be transported to shoot more
     than roots compared with other treatments. Since root growth in CFI was under stress condition, shoot
     growth was limited. In CI treatment because hardened soil had effect on root growth, therefore, the
     photosynthetic product transported to shoot was reduced.
    
     Root activity of CAl was significantly higher than that of dry root zones of CFI and CI. And root
     hydraulic conductance of CAl increased more than that of CFI and CI, thus, CAL treatment is beneficial
     to water and nutrient absorption.
    
     Leaf proline content in CAl was less than in CFI, with reduction of 26.7%-38.I%, which suggest
     corn suffer stronger water stress in CFI treatment than in CAl. There
引文
1 张其德.漫谈水资源与水污染.科学世界,1995,12:77~79
    2 山仑,黄占斌,张岁岐.节水农业.清华大学和暨南大学出版社.2000,6
    3 黄荣翰.干旱半干旱地区灌溉农业发展的一些问题和发展方向.灌溉排水.1989,8(3):1~8
    4 康绍忠.农田灌溉原理研究领域几个问题的思考与探索.灌溉排水.1992,11(3):1~7
    5 马忠明.有限灌溉条件下作物-水分关系的研究干旱地区农业研究.1998,16(2):77~79
    6 康绍忠,张建华,梁宗锁等.控制性分根交替灌溉—一种新的农田节水调控思路.干旱地区研究.1997,15(1):1~6
    7 梁宗锁,康绍忠,高俊风等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响.作物学报.2000,26(2):250~255
    8 梁宗锁,康绍忠等.植物对土壤干旱信号的感知,传递及其水分利用的控制.干旱地农业研究.1999,17(2):72~78
    9 王小彬,蔡典雄,高绪科等.作物的缺水反应及其抗旱生理适应性的调节.土壤.1997(1):6~12
    10 梁宗锁,康绍忠等.控制性分根交替灌水的节水效应.农业工程学报.1997,4:58~63
    11 山仑,徐萌.节水农业中的若干生理生态问题.生态学报.1991,2(1):70~76
    12 冯广龙,刘昌明.土壤水分对作物根系生长及分布的调控作用.生态农业研究.1996,4(3):5~9
    13 山仑.提高半干旱地区农田生产力的现实途径和未来策略.《中国科学院西北水土保持研究所集刊》.1998:1~9
    14 曹仪植,吕忠恕.水分胁迫下植物体内游离脯氨酸的累积及 ABA 在其中的作用.植物生理学报.1985,11(1):9~16
    15 卢从明,张其德等.水分胁迫对光合作用影响的研究进展.植物学通报.1994,11(增刊):9~14
    16 康绍忠,张建华.土壤水分与温度共同作用对植物根系水分传导的效应.植物生态学报.1999,23(2):211~219
    17 梁银利.小麦根系生长及对土壤水分的反应.山仑,陈培元主编.旱地农业生理生态基础.北京:科学出版社.1998(1):203~213
    18 陈培元.作物对水分胁迫的生理反应.山仑,陈培元主编.旱地农业生理生态基础.北京:科学出版社,1998(1);18~34
    19 山仑.植物水分利用效率和半干旱地区农业用水.植物生理学通讯.1994,30(1):61~66
    20 汤章诚.植物对水分胁迫的反应和适应性.植物生理学通讯.1983,4:1~7
    21 冯广龙,罗远培,刘建利等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究.1997,15(2):73~79
    
    
    22 王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报.1992,7(4):1~8
    23 马瑞昆,赛家利,贾秀领等.供水深度与冬小麦根系发育的关系.干旱地区农业研究.1991,(3):1~9
    24 贾树龙,孟春香,唐亚霞等.水分胁迫条件下小麦的产量反应及对养分的吸收特征.土壤通报.1995,26(1):6~8
    25 康绍忠,张建华.不同土壤水分与温度条件下土根系统中水分传导的变化及其相对重要性.农业工程学报.1997,13(2):76~81
    26 周苏玫,马元喜,王晨阳等.干旱胁迫对冬小麦根系生长及营养代谢的影响.华北农学报.2000,15(2):57~62
    27 汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯.1984(1):15~21
    28 王邦锡,黄久常,王辉等.不同植物在水分胁迫条件下脯氨酸的累积与抗旱性的关系.植物生理学报.1989,15(1):46~51
    29 张喜英,裴冬,由懋正.几种作物的生理指标对土壤水分变动的阈值反应.植物生态学报.2000,24(3):280~283
    30 王学臣,贾文锁.水分胁迫下蚕豆气孔关闭与叶片细胞中 ABA 的区隔化.
    31 杨建昌,乔纳圣,威尔斯.水分胁迫对水稻气孔导度及 ABA 含量的影响.作物学报.1995,21(5):534~539
    32 王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递.物生理学通讯.1992,28(6):397~402
    33 关义新,戴俊英,林艳.水分胁迫下植物光合气孔和非气孔限制.植物生理学通讯.1995,31(4):293~297
    34 马富裕,李蒙春,张秀英等.控制供水对棉花叶片的光合生理特性和水分利用效率的影响,棉花学报.1997,9(6):308~313
    35 昌小平,王嬛,杨莉.变水条件下不同抗旱性的冬小麦品种苗期根系活力及其水分状况变化.植物生理学通讯.1996,32(3):178~172
    36 魏虹,林魁,李风民等.有限灌溉对半干旱区春小麦根系发育的影响.植物生态学.2000,24(1):106~110
    37 陈立玲,曹敏.干旱条件下 ABA 与气孔导度和叶片生长的关系.植物生理学通讯,1999,35(5):398~403
    38 陈晓远,罗远培,李韵珠.拨节期复水对苗期受旱冬小麦的激发效应.中国农业大学学报.1999,4(3):23~28
    
    
    39 苏德纯,任春玲,王兴仁.不同水分条件下施磷位置对冬小麦生长及磷营养的影响.中国农业大学学报.1998,3(5):55~60
    40 李风民,王俊,郭安红.供水方式对春小麦根源信号和水分利用效率的影响.水利学报.2000,1:23~27
    41 李风民,王俊,赵松岭等.分层供水施磷对春小麦光合性能、同化产物流向和水分利用效率的影响.植物生态学报.1999,23(2):177~188
    42 庞欣,李春俭,张福锁.部分根系供磷对小麦幼苗生长及同化物分配的影响作物学报.2000,26(6):719~724
    43 穆兴民.旱地农田水肥耦合效应研究进展.生态农业研究.1999,7(1):43~46
    44 韩仕峰,史竹叶,徐建荣.关于限制冬小麦产量土壤施肥边界值的研究.西北农业学报,1995(增刊):28~32
    45 李英,陈培元,范德纯,水分胁迫下钾素营养对小麦渗透调节和光合作用的影响.西北植物学报.1992,(5):92~97
    46 李秧秧.钾营养对玉米抗旱性的影响.华北农学报.1993,8(4):14~18
    47 宋茹艳.植物生理学报.1981;7:67~72
    48 李生秀,高亚军,王喜庆.水分对土壤养分迁移的影响.汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业出版社.6~11
    49 史奕,陈利军.从施肥促进小麦根系活力看以肥调水的效果.汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业出版社.111~115
    50 李英,陈培元,陈建军.水分胁迫下不同抗旱类型品种对氮素营养反应的比较研究.西北植物学报.1991,11(4):309~315
    51 张福锁,江荣风.植物氮素和水分相互作用机理.土壤水分和养分的有效利用(李韵珠等主编).北京:北京农业大学出版社.1994,149~155
    52 张殿忠,汪沛洪.水分胁迫植物氮代谢的关系.西北农业大学学报.1988,16(3):9~15
    53 徐萌,山仑.不同水分条件下无机营养对春小麦水分状况和渗透调节的影响.植物学报.1992,34(80):596~602
    54 薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响.植物生理学报.1990,16(1):49~56
    55 胡荣海,王嬛,朱志华.作物根系特征及其抗旱性研究的进展.作物高产高效生理学研究进展.科学出版社.1994.
    56 李跃强,盛承发.植物的超补偿反应.植物生理学通讯.1996,32(6):457~464
    57 赵柄梓,徐富安.水肥条件对小麦、玉米N、P、K以及收的影响.植物营养与肥料学报.2000,6(3):260~266
    58 徐世昌,戴俊英,沈秀瑛.水分胁迫对玉米光合性能及产量的影响.作物学报.2000,6(3):357~363
    
    
    59 梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应.西北植物学报.1995,15(1):21~25
    60 吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报.2000,15(1):92~96
    61 汪德水主编.旱地农田肥水协同效应与耦合模式.气象出版社.1999
    62 史文娟,分根区垂直交替供水与调亏灌溉的节水机理及效应.[硕士学位论文].1999
    63 赵增煜,常用农业科学试验法.农业出版社.1986,20
    64 西北农林科技大学植物生理及生化教研组主编的《植物生理学试验指导》
    65 A.D.Mackay and S.A.Barber. Effect of cyclic wetting and drying of a soil on root hair growth of maize roots. Plant and Soil. 1987, 104:291-293
    66 A.R.Mitchell and C.L.Yang. Alternating Furrow Irrigation of pepperrnent. Hort Science.1998, 33(2): 266~269
    67 Amabin, S, Stern, W.R.; Turner, N.C., Seed yield of three annual pasture legumes in respones. to. water. deficts. during. flowering. and. seed. development. Agorn. conf. Melbourne. 1987, 165
    68 Bingru Huang. Water relations and root activities of Buchloe dactyloides and zoysia japonica in response to localized soil drying. Plant and Soil. 1999, 208:179~186
    69 B. Loveys, J crant and P. Dry et al. Progress in the development of partial root-zone drying.
    70 Bingru Huang. Linking Hydraulic conductivity to anatomy in plants that vary in specific root length. J. Amer. Soc. Hort Sci. 2000, 125(2): 260~264
    71 Brower. R. Function equilibrium: sense or nonsense, J. Agric. Sci. 1983, (31): 335~348
    72 Collan. T, Passioura. J, Munns. R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves Aust. J. Plant. Physiol. 13:459~464
    73 Chapin E.S. Effects of nutrient deficiency on plant growth: Evidence for a centralized stress response system. 1990, 135~148 74 Evans. L. T. Crop physiology Cambridge Unversity .1975, 12:140~144
    75 Fehrenbacher, J.B, Sinder, H.J. Corn root penetration in muscatine, elliot and cisne soils. Soil Science. 1954, 77:281~292
    76 F. H. Gutierrez, G. W. Thomas. Phosphorus nutrition and water defects in field grown soybeans. Plant and Soil. 1999, 207:87~96
    77 G. B. North, ES. Nobel. Radial hydraulic conductivity of individual root tissues of opunntia fieusindica Miller as soil moisture varies. Annals of Botany. 1996, 77:133~142
    78 G. B. North and P. S. Nobel. Drought-induced changes in hydraulic conductivity and structure in
    
     roots of Ferocactus acanthodes and Opuntia fiens-imdiea, New Phyto. 1992, 120: 9-19
    79 G.B.North, Nobel, P. S. Change in root hydraulic conductivity for two tropical epiphytic cacti as soil moisture varies. American Journal of Botany. 1994, 81(1) : 46-49
    80 Gowing, D.J, Davies.W and Jones, H. G. A positive root-sourced singal as an indicator of soil drying in apple. Journal of Experimental Botany. 1990,441: 1935-1940
    81 Hearn, A. B. The growth and performance of cotton in a desert environment. J. Agric. Sci. 1976, (73) : 87-97
    82 Hearn, A. B. Response of cotton to water and nitrogen in a tropical environment. J. Agri. Sci. 1975,84:407-417
    83 Haign, J. and B, Tucker. Fertilization of dry land and irrigated soils. New York. Springer-Verlag 1982,98-119
    84 J. G. Benjamin, L. K. Portor, H. R. Duke et al. Corn Growth and Nitrogen uptake with Furrow irrigation and Fertilizer Bands. Agronomy Journal. 1997, 89: 609-612
    85 J.S.Liang, Jian Hua zhang, M.H.Wang. How do roots control xylem sap ABA concentration in response to soil drying. Plant Cell Physiol. 1997, 38(1) : 10-16
    86 J. Liang, J, Zhang, M. H. Wong. Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropicl trees Acacia confusa and Litsea glutinosa. Plant, Cell and Environment. 1996,19:93-100
    87 Jian Hua zhang, Wen suo jia, Da-peng Zhang. Re-export and metabolism of xylem-delivered ABA attached maize leaves under different transpirational fluxs and xylem ABA concentrations. Journal of Experimental Botany. 1997,48(313) : 1557-1564
    88 Jianhua Zhang, Xiaoping Zhang, Jian Shenliang. Exudation by soil drying and abscisic acid treatment. New Phy. 1995, 131: 329-336
    89 Kumer.R, Srivastava.G.C. Effects of water stress on ammonia assimilating enzymes in the peaves of sunflower Indina. J. Plant Physiol. 1992, 12: 140-144
    90 M.A.Gullo, R.Nardini S.Salleo et al. Changes in root hydraulic conductance (Kr)of Olea oleaster seedlings following drought stress and irrigation. New Phy. 1998, 210: 26-31
    91 Mooney.H, Wimmerw, E. Partitioning responses of plant to stress. 1991,129-141
    92 Munns.R. A. Leaf elongation assay detects on unknown growth inhibition in xylem sap from wheat and barely. Australian Journal of Plant Physiology. 1992,19:127-135
    93 N.C.Turer. Plant water relations and irrigation in management. Agricultural Water Management. 1990, (17) :59-73
    94 Passioura.J.B. Water transport in plants and roots. Annual Review of Plant Physiology and Molecular Biology. 1988,39:245-248
    
    
    95 P.G.Blackman, W.J.Daries. Root to shoot communication in maize plants of the effects of soil drying. Journal of Experimental Botany. 1985, 36(62) : 39-48
    96 P.Laine, A.Ourry, J. Boucanel et al. Effects of a localized supply of nitrate on NO_3~1 uptake rate and growth of roots in lolium multiflorum lam. Plant and Soil. 1998, 202: 61-67.
    97 Radin, J.W, Ackerson, R. C. Water relation of cotton plant under nitrogen deficiency: stomatal conductance photosynthesis and ABA accumulation during drought. Plant Physiol. 1981, 67: 115-119
    98 Raney.W.A.and C.D.Hoover.Soil.Sci.Soc.Am. 1946,11:231
    99 R.E.Sharp, W.J.Davies. Root growth and water uptake by maize plants in drying soil. Journal of Experimental Botany.l985,36(170) :1441-1456
    100 R. H. Skinner, J. D. Hanson, J. G. Benjamin. Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn. Plant.and.Soil. 1998,199: 187-194
    101 R.W.F.Cameron, R.S.Warrison, M.A.Scott. The use of controlled water stress to manipulate growth of container-grown Rhododenchon c vhoppy. Journal of Hort Sci and Bio. 1999, 74(2) : 161-169
    102 S.Green and B.Clothier. Root zone dynamics of water uptake by a mature apple tree. Plant and Soil. 1999,206:61-77
    103 Shaozhong Kang, Zongsuo Liang, Wei Hu et al. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric Water Manage. 1998, 38:69-76
    104. orabor, M.A, Turner, N. C. A comparison of the water relation characteristic of helianthus annuus and telianthus petiolaris when subjected to water deficits.1986,58:309-313
    105 S.Snapp, R, Koide, J. Lynch. Exploitation of localized phosphorus-patches by common bean roots Plant and Soil.1995,177:211-218
    106 Tardieu.E. Zhang J, Davies.W.J. What information is conveyed by an ABA signal from maize roots in drying field soil. Plant Cell and Environment. 1992,15:185-191
    107 T.M.Reinbott, D.G.Blerins. Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant and Soil. 1999, 209: 263-273
    108 Tisdale, S. L, Nelson, W.L. Soil Fertility and Fertilizers. 1975, 622-646
    109 T.Tsegye, J.F.Stone, H.E. Reeves. Water use characteristics of wide-spaced furrow irrigation. Soil Soc.Amer. 1993,57:240-245
    110 Wen Suojia and Jianhua Zhang. Comparison of exportation and metabolism of xylem-delivered ABA in maize leaves at different water status and xylem sap pH. Plant Growth Regulation. 1997, 21:43-49
    
    
    111 Weaver.J.E. Root development of field crops. McGraw-Hill Book Co. New York. 1926
    112 W.R.Scheible, M. Lauerer, E.D. Schuiize et al. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant Journal .1997,11(4) :671-691
    113 Rawon. H. N. and Turner. N. C. Recovery from water stress in five sunflower cultivers. J. Plant. Phy. Siol. 1982a,9:437-448
    114 X.Socias, M.J. Correia and M. chares et al. The role of abscisic acid and water relations in drought responses of subterranean clover. Journal of Experimental Botany. 1997, 8(311) : 1281-1288
    115 Y.E. Grateron, D.E. Eisenhauer.and.R.W. Elmore. Alternate furrow irrigation for soybean production. Agric. Water Manage. 1993, 24:133-145
    116 Zhang.J, Davies.W.J. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plant. Journal maize and sunflower plant. Journal of Experimental Botany. 1990, 41:1125-1132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700