用户名: 密码: 验证码:
有机复合膜与传感器的室温气敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气敏材料与传感器已广泛用于电子鼻、电子舌等仿生系统的设计。在食品工业、环保检测、反恐、防恐、毒品检测、人类、动物一些疾病的早期预测和适时在线监控等方面具有重要的应用价值。研究高灵敏度、快速响应、重现性良好和室温可逆的有机薄膜传感器。同时,通过材料-工艺-器件性能的相关性研究,探讨有机膜的气敏规律性,用于指导新材料的设计和开发。对该领域的深入研究开发和材料与器件的推广应用具有重要的意义。
     本文概述了有机气敏材料的研究进展,分析了影响气敏性的主要因素及改进措施。针对这些问题,从敏感材料和制备工艺入手,探讨了如何改善这些性能的有效途径。
     研究了酞菁薄膜-非氧化性气体这一弱相互作用体系,比较了全氟代酞菁化合物对室温气敏性的影响。结果表明,氟取代明显改善了ZnPc对系列还原性气体(氨、三甲基胺、甲基胺和三乙基胺)的敏感性和选择性,对部分气体大幅度提高了其响应速度和灵敏度。其灵敏度可提高2-3个数量级。对卟啉类化合物及其全氟代衍生物电响应敏感性的考察结果表明,氟代显著改善了卟啉锌对氨的敏感性,响应速度提高了30倍以上。
     为进一步提高有机薄膜的灵敏度和响应速度,对导电性聚合物进行了相应研究。基于导电聚合物的电导强烈依赖于掺杂和去掺杂,采用原位制备、自掺杂等方式,获得了快速响应、高灵敏的有机薄膜。其灵敏度和响应速度远远高于采用传统的旋涂方式获得的相应薄膜,其灵敏度提高了3-4个数量级。为进一步完善旋涂工艺,通过添加少量聚电解质诱导的方式,在保持较高敏感性和快速响应的前提下,改善了其成膜工艺。
     通过添加少量的三氟化硼乙醚,利用分子间的相互作用降低噻吩的
Gas-sensitive materials and sensors have been widely used in the designs of electronic nose and tongue of bionic systems, and have many potential applications in food industry, environmental monitoring, and counter terror, inspection of drugs and toxic gases, and prognoses of some diseases. To study an organic film sensor with high sensitivity, rapid response and good reproducibility, and attempt to explore some rules to conduct the design and development of new materials by the research of relationship among materials, technologies and properties of devices, it would be very important for investigations in-depth and accelerating applications in these fields.The progresses of organic gas-sensitive materials were reviewed in this paper, and the affecting factors and improving approaches to gas-sensitivity were also analyzed. Being aimed at the sensitivity, response rate, reproducibility and reversibility at room temperature, how to improve these properties were discussed from sensitive materials and film-forming technologies.The gas-sensitivities of weak interaction systems between phthalocyanine film and absorbed gases were studied in this paper, good results on recovery at room temperature were obtained. The gas-sensitivities of zinc phthalocyanine (ZnPc) and its fluorinated derivative (zinchexadecafluorophthalocyanine-ZnF16Pc) films to a series of reducing gases at room temperature are investigated. The results indicate that the gas-sensitivities and the response rates of ZnPc film to ammonia, trimethylamine and methylamine can be improved significantly via fluorination, the gas-sensitivity values to some vapors were increased 2-3 orders, and the fluorination film has a good selectivity and stability, and it can be completely recovered by high-purity N2 at room temperature. The results of examination on the gas-sensitivities of zinc tetraphenylporphyrin evaporation film and zinc-meso-tetra (2,3,4,5,6-pentafluorophenyl)-porphyrin film to a series of organic volatiles under similar conditions show that the sensitivity of zinc porphyrin film to ammonia can also be improved greatly via fluorination, the response speed was enhanced over 30 folds.In order to enhance the sensitivities and response rates of organic films greatly, the gas-sensitivities of conductive polymers and their composite films were studied. Basing on the conductivity of polymer strongly depending on the doping and undoping, several organic films with high sensitivity and rapid response were obtained via in-situ polymerization approach and self-doping
    method. The values of gas-sensitivity and response rate are much higher than that of poly(aniline) film obtained via conventional spin-coating (polyaniline was dissolved in N-methylpyrrolidone). The gas-sensitivity value was increased 3-4 orders. To improve the film-forming further, the film-forming technology was improved greatly by adding a small amount of poly (sodium-p-styrenesulfonate) under holding high sensitivity.Polythiophene composite film on the interdigital electrodes of carbon was formed with an in-situ polymerization approach at room temperature by adding a small amount of boron trifluoride etherate, which purpose is decreasing the oxidation potential utilizing interaction between molecules. The results indicated that this film showed a good sensitivity to ammonia, and had also a good selectivity to analogy gases and a fast response while exhibiting a good reproducibility. The gas-sensitivity value can reach to 3 orders within 250s.To increase the heat stability of organic films, and expect to obtain new kind composite materials with synergetic or complementary behaviors, and be used in electronic or nanoelectronic devices. Considering P-zeolite being one of type materials with regular channels, which has outstanding surface feature, and is widely used in carrier of catalyze. At the same time, it is also good candidates for template of nano-materials preparation, some organic-inorganic hybrid materials were investigated. The results indicated that, in spite of the heat stability of organic films increasing at certain extent, the gas-sensitivities of some composite systems were decreased. However, the gas-sensitivity was enhanced obviously via adjusting the ratio of Si/Al in zeolite, organic-inorganic hybrid materials with synergetic or complementary behaviors was obtained.Some conductive polymers with nano-structure were obtained via several simple methods, such as: template method, non-template approach and nano-fiber seeding method. Their gas-sensitivities were also examined, and preliminary discussions on dependences among materials, technology, structure and their properties to obtain some valuable information. Comparing to that of conventional polyaniline film via organic solution spin-coating, the value of gas-sensitivity and response rate of the film with nano-wire structure obtained by non-template approach were increased dramatically. Its gas-sensitivity value was increased 3-4 orders.
引文
1 F. Quarantaa, R. Rellaa, et al, Preparation and characterization of nanostructured materials for an artificial olfactory sensing system, Sensors and Actuators, 2002, B 84: 55-59;
    2 Manuela O'Connell, Gabriela Valdora, et al, A practical approach for fish freshness determinations using a portable electronic nose, Sensors and Actuators, 2001, B 80: 149-154;
    3 Julian W.Gardner, et al, An electronic nose system to diagnose illness, Sensors and Actuators, 2000,B70:17-24;
    4 Susanne Hulmin, et al, Compression of electronic tongue data based on voltammetry-a comparative study, Sensors and Actuators, 2001, B76: 455-464;
    5 Wolfgang G. Chemical imaging: Ⅰ. Concepts and visions for electronic and bioelectronic nose, Sensors and Actuators, 1998, B52:125-142;
    6 Udo Weimar, Wolfgang G. Chemical imaging: Ⅱ. Trends in practical mutiparameter sensor systems, Sensors and Actuators, 1998, B52: 143-161;
    7 E. Cominia, M. Ferronib, et al, Nanostructured mixed oxides compounds for gas sensing applications, Sensors and Actuators, 2002, B 84: 26-32;
    8 Dae Sik Lee, et al, Fablication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition, Thin Solid Film, 2002, 416:271-278;
    9 M.Passard, C.Maleysson, et al, Gas sensitivity of phthalocyanine thin films, Sensors and Actuators, 1994, B 19: 489-492;
    10 C. Maleysson, M.Passard, et al, Elaboration and tests of microelectronically designed gas sensors with phthalocyanines sensitive layers, Sensors and Actuators, 1995, B26-27:144-149
    11 R.Zhou, F.Josse, et al, Phthalocyanines as sensitive materials for chemical sensors, Applied Organometallic Chemistry, 1996, 10:557-577;
    12 R.L.Van Ewyk, et al, Electron donor-acceptor interactions surface semiconductivity in molecular crystals as a function of ambient gas, J.Chem.Soc.Faraday Trans. Ⅰ, 1980, 76: 2194-2205;
    13 R.Zhou, M.Haug, et al, NOx sensitivity of monomeric and polymeric N-macrocyclic compounds, Sensors and Actuators, 1993, B 16 (1): 312-316;
    14 T.A.Temofonte and K.F.Schoch, Phthalocyanine semiconductor sensors for room-temperature ppb level detection of toxic gases, J.Appl.Phys.1989, 65: 1350-1355;
    15 John D.Wright, Gas adsorption on phthalocyanines and its effects on electrical properties, Progress in surface science, 1989,31:1-60;
    16 Y.Sadaoka, Effects of morphology on NO2 detection in air at room temperature with phthalocyanine thin films, J.Mater.Sci, 1990, 25: 5257-5268;
    17 P.M.Burr, P.D.Jeffery, et al, A gas-sensitive field effect transistor utilizing a thin film of lead phthalocyanine as the gate material, Thin Solid Films, 1987,151(1): L111-L113;
    18 K.F.Schoch, et al, IR response of phthalocyanine thin films to nitrogen dioxide, Thin Solid Films, 1988, 165: 83-89;
    19 S. Karosawa, et al, Gas sorption to plasma-polymerized copper phthalocyanine film formed on a piezoelectric crystal, Anal.Chem. 1990,62(4): 353-359;
    20 H.Wohltjen and R.Dessy, Surface acoustic wave probe for chemical analysis, Ⅰ .Introduction and instrument description, Anal.Chem. 1979, 51: 1458-1464;
    21 H.Wohltjen and R.Dessy, Surface acoustic wave probe for chemical analysis, Ⅱ .Gas chromatography detector, Anal.Chem. 1979, 51: 1465-1470;
    22 H. Wohltjen and R.Dessy, Surface acoustic wave probe for chemical analysis, Ⅲ. Thermomechanical polymer analyzer, Anal.Chem. 1979, 51:1470-1475;
    23 Saeed Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysleine-selective electrode, Anal.Chem.2001, 73:5972-5978;
    24 A.Wilson, J.D.Wright, et al, A microprocessor-controlled nitrogen dioxide sensing system, Sensors and Actuators, 1991, B4 (3-4): 499-504;
    25 Neal A.Rakow and Kenneth S. Suslick, A colorimetric sensor array for odour visualization, Nature, 2000, 406: 710-713;
    26 David Delmarre, Claude Bied-Charreton, Grafting of cobalt porphyrins in sol-gel matrices: application to the detection of amines, Sensors and Actuators B 62 2000 136-142;
    27 Florence A. Nwachukwua, Mark G. Baronb, Polymeric matrices for immobilising zinc tetraphenylporphyrin in absorbance based gas sensors, Sensors and Actuators B 90 (2003) 276-285;
    28 V.C.Smith,S.V.Batty,T.Richardson,K.A.Foster,R.A.W.Johnstone,A.J.F.N.Sobral ,A.M.D.A.Rocha Gonslves, Chorine sensing properties of porphyrin thin films,Thin Solid Films,284-285(1996):911-914;
    29 Isabelle Leray, Marie-Claude Vernie'res, Claude Bied-Charreton, Porphyrins as probe molecules in the detection of gaseous pollutants: detection of benzene using cationic porphyrins in polymer films, Sensors and Actuators B 54 (1999) 243-251;
    30 Jafar H. Khorasani, Mohammad K. Amini, Hasan Motaghi, Shahram Tangestaninejad, Majid Moghadam, Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties, Sensors and Actuators B 87 (2002) 448-456;
    31 Isabelle Leray, Marie-Claude Vernieres, Rafika Loucif-Saibi, Claude Bied-charreton, Jean Faure, Porphyrins as probe molecules in the detection of gaseous pollutants Ⅰ: Diffussion of pyridine in polystyrene films containing Zinc-tetraphenylporphyrin, Sensors and Actuators B37 (1996) : 67-74;
    32 arcus Andersson, Martin Holmberg, Ingemar Lundstrom, Anita Lloyd-Spetz, Per Martensson, Roberto Paolesse, Charistian Falconi, Emanuela Proietti, Corrado Di Natale, Arnaldo D Amico, Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer, Sensors and Actuators B77 (2001): 567-571;
    33 O. Worsfold, C.M. Dooling, T.H. Richardson, M.O. Vysotsky , R. Tregonning , C.A. Hunter , C. Malins, Thermal characteristics of porphyrin entrapped sol-gels during exposure to toxic gases , Colloids and Surfaces A: Physicochemical and Engineering Aspects 198-200 (2002) 859-867;
    34 D. Delmarre, R. Mealletl, C. Bied-Charreton, R.B. Pansu, Heavy metal ions detection in solution, in sol±gel and with grafted porphyrin monolayers, Journal of Photochemistry and Photobiology A: Chemistry 124 (1999) 23-28;
    35 J.A.J.Brunink, C.Di Natale, F.Bungaro, F.A.M. Davide, A.Damico, R. Paolesse, T.Boschi, M.Faccio, G.Ferri, The application of metalloporphyrins as coating material for quartz microbalancece-based chemical sensors, Analytica Chimica Acta, 325 (1996): 53-64;
    36 J.Spadavecchia, GCiccarella, T.Stomeo, R.Rella, S. Capone and P.Siciliano,
     Variation in the Optical Sensing Responses toward Vapors of a Porphyrin/phthalocyanine Hybrid Thin Film, Chem Mater. 2004, 16:2083-2090;
    37 D. P. Arnolda, D. Mannob, G. Micoccib, A. Serrab, A. Teporeb, L. Vallib, Gas-sensing properties of porphyrin dimer Langmuir-Blodgett films, Thin Solid Films 327-329 (1998) 341-344;
    38 V. Guidia, d, M.A. Butturia, M.C. Carottaa, B. Cavicchia, M. Ferronia, C. Malagu'a, G. Martinellia, D. Vincenzia, M. Sacerdotib, M. Zenc, Gas sensing through thick film technology, Sensors and Actuators B 84 (2002) 72-77;
    39 Dae-Sik Lee , Youn Tae Kim , Jeung-Soo Huh , Duk-Dong Lee a, a b, Fabrication and characteristics of SnO gas sensor array for volatile organic compounds recognition, Thin Solid Films 416 (2002) 271-278;
    40 C. Legrand-Buscema, C. Malibert, S. Bach, Elaboration and characterization of thin films of TiO prepared by sol-gel process, Thin Solid Films 418 (2002)79-84;
    41 Toru Maekawa, Kengo Suzuki, Tadashi Takada, Tetsuhiko Kobayashi, Makoto Egashira, Odor identification using a SnO2-based sensor array, Sensors and Actuators B 80(2001):51-58;
    42 E. Comini, V. Guidi, C.Friger, I. Ricco, GSberveglieri, Co sensing properties of titanium and iron oxide nanosized thin films, Sensors and Actuators B 77(2001): 16-21;
    43 M .A. Aronova, K.S.Chang, and I.Takeuchi, H.Jabs, D.Westerheim, A.Gonzalez-Martin, J.Kim, and B. Lewis, Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Applied Physics Letters, 2003,83(6): 1255-1257;
    44 A. K. Srivastava, Detection of volatile organic compounds (VOCs) using SnO_2 gas-sensor array and artificial neural network, Sensors and Actuators B 96 (2003) 24-37;
    45 E. Comini, GFaglia, and GSberveglieri, Zhengwei Pan and Zhong L.Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters, 2002,81(10): 1869-1871;
    46 Atul Khanna, Rajesh Kumar, and S.S.Bhatti, CuO-doped SnO2 thin films as hydrogen sulfide gas sensor, Applied Physics Letters, 2003,82(24): 4388-4390;
    47 Arijit Chowdhuri, Vinay Gupta, and K.Sreenivas, Rajeev Kumar and Subho
     Mozumdar, P.K.Patanjali, Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Applied Physics Letters, 2004,84(7): 1180-1181;
    48 V. R. Katti a, A.K. Debnath a, K.P. Muthea, Manmeet Kaur a, A.K. Duab, S.C. Gadkari a, S.K. Gupta a, V.C. Sahni , Mechanism of drifts in H_2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation, Sensors and Actuators B 96 (2003) 245-252;
    49 S. Chopra, K.McGuire, N.Gothard and A. M. Rao, A. Pham, J. Selective gas detection using a carbon nanotube sensor, Applied Physics Letters, 2003,83(11): 2280-2282;
    50 L. valentini, I.Armentano, and J.M.Kenny, C.Cantalini, L.Lozzi and S. Santucci, Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films, Applied Physics Letters, 2003,82(6):961-963;
    51 S. Chopra and A. Pham, J. Gaillard, A.Parker, and A. M. Rao, Carbon-nanotube-based resonant-circuit sensor for ammonia, Applied Physics Letters, 2002,80(24): 4632-4634;
    52 Jing Kong, Nathan R.Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjiae Cho, Hongjie Dai, Nanotube Molecular Wires as Chemical Sensors, Science, 2000,287:622-625;
    53 Ashish modi, Nikhil Koratkar, Eric Lass, Bingqing Wei, and Pulickel M.Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature, 2003,424(10): 171-174;
    54 Shi Guo Chen, Ji Wen Hu, Ming Qiu Zhang, Ming Wei Li, Min Zhi Rong, Gas sensitivity of carbon black/waterborne polyurethane composites, Carbon, 2004, 42:645-651;
    55 Xian Ming Dong, Ruo Wen Fu, Ming Qiu Zhang, Bin Zhang, Jun Rong Li, Min Zhi Rong, Vapor-induced variation in electrical performance of carbon black/poly (methyl methacrylate) composites prepared by polymerization filling, Carbon, 2003,41:369-384;
    56 Jun Rong Li, Jia Rui Xu, Ming Qiu Zhang, Min Zhi Rong, Carbon black/polystyrene composites as candidates for gas sensing materials, Carbon, 2003,41:2353-2360;
    57 Xian Ming Dong, Ruo Wen Fu, Ming Qiu Zhang, Bin Zhang, Min Zhi Rong, Electrical resistance response of carbon black filled amorphous polymer
     composite sensors to organic vapors at low vapor concentrations, Carbon, 2004, 42:2551-2559;
    58 Afshad Talaie, Conducting polymer based pH detector: a new outlook to pH sensing technology, Polymer, 1997,38(5): 1145-1150;
    59 S.C.K. Misraa, Prafull Mathura, Maneesha Yadava, M.K. Tiwaria, S.C. Garga, P. Tripathib, Preparation and characterization of vacuum deposited semiconducting nanocrystalline polymeric thin film sensors for detection of HCl, Polymer 45 (2004) 8623-8628;
    60 V. V. Chabukswar, Sushama Pethkar, Anjali A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators, 2001,B77: 657-663;
    61 A. Riul Jr., A. M. Gallardo Soto, S. V. Mello, S. Bone, D. M. Taylor, L. H. C. Mattoso, An electronic tongue using polypyrrole and polyaniline, Synthetic Metals, 2003, 132:109-116;
    62 HiShirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang. A. J. Heeger, J. Chem. Soc. Chem. Commun. 1977,578.
    63 Samuel, I. D. W.; Rumbles, G; Collison, C. J.; Friend, R. H. Moratti, S. C; Holmes, A. B. Picosecond Time-Resolved Photoluminescence of PPV Derivatives, Synth. Met. 1997, 84, 497-500.
    64 P. R. Teasdale, G. G. Wallace, Characterizing the chemical interactions that occur on polyaniline with inverse thin layer chromatography, Polymer. Int. 1994, 35, 197-205.
    65 H. Chriswanto, G. G. Wallace, Redox chromatography using polypyrrole as a stationary phase, J. Liq. Chromatogr. 1996, 19, 2457.
    66 R. S. Deinhammer, M. D. Porter, K. Shimazu, Retention characteristics of polypyrrole as a stationary phase for the electrochemically modulated liquid chromatographic (EMLC) separations of dansyl amino acids, J. Electroanal. Chem. 1995,387:35-46.
    67 P. Akhtar, C. O. Too, G. G. Wallace, Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis .2. Use of microelectrodes, Anal. Chim. Acta, 1997, 339 (3): 211-223.
    68 P. Akhtar, C. O. Too, G. G. Wallace, Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis .1. Use of macroelectrodes, Anal. Chim. Acta, 1997, 339 (3): 201-209.
    69 L. L. Miller, B. Zinger, O. X. Zhou, Electrically controlled release of hexacyanoferrate(4-) from polypyrrole, J. Am. Chem. Soc. 1987,109, 2267-2272.
    70 M. M. Chehimi, M. L. Abel, B. Saoudi, M. Delamar, N. Jammul, J. F. Watts, P. A. Zholan, Polimery, 1996, 41, 75.
    71 H. Ge, K. Gilmore, S. A. Ashraf, C. O. Too, G. G. Wallace, Separation of small molecules in the presence of proteins using conducting polymer stationary phases, J. Liq. Chromatogr. 1993, 16: 95-108.
    72 H. Ge, Investigations into the use of poly (3-methylpyrrole-4-carboxylic acid) coated silica as a chromatographic stationary phase, J. Liq. Chromatogr. 1993, 16: 1023-1044.
    73 H. Ge, K. J. Gilmore, G. G. Wallace, Studies on poly(3-octadecyl pyrrole) modified silica as a reversed phase HPLC packing material, J. Liq. Chromatogr. 1994, 17: 1301-1316.
    74 G. F. Khan, W. Wernet, Adsorption of proteins on electro-conductive polymer films, Thin Solid Films, 1997, 300,265 -271.
    75 D. Zhou, C. O. Too, A. M. Hodges, A. W. H. Mau, G. G. Wallace, Protein transport and separation using polypyrrole coated, platinised polyvinylidene fluoride membranes, React. Funct. Polym. 2000, 45: 217-226.
    76 D. Zhou, C. O. Too, G. G. Wallace, Synthesis and characterisation of polypyrrole/heparin composites, React. Funct. Polym. 1999, 39 (1): 19-26.
    77 F. A. Armstrong, A. A. Hill, N. J. Walton, Direct electrochemistry of redox proteins, Acc. Chem. Res. 1988, 21,407-413.
    78 J. M. Cooper, D. G. Morris, K. S. Ryder, A Bio-electronic Interface using Functionalised Conducting Poly(pyrroles, J. Chem. Soc, Chem. Commun. 1995, 697.
    79 W. Lu, G. G. Wallace, A. A. Karayakin, Use of prussian blue conducting polymer modified electrodes for the detection of cytochrome c, Electroanalysis, 1998, 10 (7): 472-476.
    80 W. Lu, H. Zhao, G. G. Wallace, Detection of cytochrome c using a conducting polymer mediator containing electrode, Electroanalysis, 1996, 8, 248 -252.
    81 K. S. Ryder, D. G. Morris, J. M. Cooper, Role of conducting polymeric interfaces in promoting biological electron transfer, Biosens. Bioelectron,
     1997,12:721-727.
    82 Cooper, J. M.; Bloor, D. Evidence for the functional mechanism of a polypyrrole glucose oxidase electrode, Electroanalysis 1993, 5: 883-886.
    83 Foulds, N. C; Lowe, C. R. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers, Anal. Chem. 1988, 60: 2473-2478.
    84 Couves, L. D.; Porter, S. J. Polypyrrole as a potentiometric glucose sensor, Synth. Met. 1989, 28: 761-768.
    85 Li, J. R.; Cai, M.; Chen, T. R; Jiang, L. Enzyme electrodes with conductive polymer membranes and Langmuir-Blodgett films, Thin Solid Films 1989, 180: 205-210.
    86 Yon-Hin, B. F. Y.; Sethi, R. S.; Lowe, C. R. Multi-analyte microelectronic biosensors, Sens. Actuators B, 1990, 1:550-554.
    87 Hoa, D. T.; Suresh, T. N.; Punekar, N. S.; Srinivasa, R. S.; Lai, R.; Contractor, A. Q. A biosensor based on conducting polymers, Anal. Chem. 1992, 64: 2645-2646.
    88 Koopal, C. G. J.; Feiters, M. C; Nolte, R. J. M; de Ruiter, B.; Schasfoort, R. B. M. Glucose sensor utilizing polypyrrole incorporated in track-etch membranes as the mediator, Biosens. Bioelectron. 1992, 7: 461-467.
    89 Koopal, C. G. J.; Feiters, M. C; Nolte, R. J. M; de Ruiter, B.; Schasfoort, R. B. M.; Czajka, R.; Van Kempen, H. Polypyrrole microtubules and their use in the construction of a third generation biosensor, Synth. Met. 1992, 51: 397-405.
    90 Wolowacz, S. E.; Yon-Hin, B. F. Y; Lowe, C. R. Covalent electropolymerization of glucose oxidase in polypyrrole, Anal. Chem. 1992, 64: 1541-1545.
    91 Bartlett, P. N.; Tebbutt, P.; Tyrrell, C. H. Electrochemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols, Anal. Chem. 1992,64: 138-142.
    92 Sun, Z.; Tachkikawa, H. Enzyme-based bilayer conducting polymer electrodes consisting of polymetallophthalocyanines and polypyrrole-glucose oxidase thin films, Anal. Chem. 1992, 64: 1112-1117.
    93 Koopal, C. G. J.; Eijsma, B.; Nolte, R. J. M. Chronoamperometric detection of glucose by a third generation biosensor constructed from conducting microtubules of polypyrrole, Synth. Met. 1993, 55-57: 3689-3695.
    94 Schuhmann, W.; Kranz, C; Huber, J.; Wohlschlager, H. Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors, Synth. Met. 1993, 61: 31-35.
    95 Genies, E. M.; Marchesiello, M. Conducting polymers for biosensors, application to new glucose sensors GOD entrapped into polypyrrole, GOD adsorbed on poly (3-methylthiophene, Synth. Met. 1993, 55-57: 3677-3682.
    96 Yon-Hin, B. F. Y.; Smolander, M.; Crompton, T.; Lowe, C. R. Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors, Anal. Chem. 1993, 65: 2067-2071.
    97 Schuhmann, W.; Huber, J.; Mirlach, A.; Daub, J. Covalent binding of glucose oxidase to functionalized polyazulenes. The first application of polyazulenes in amperometric biosensors, Adv. Mater. 1993, 5: 124-126.
    98 Karyakin, A. A.; Lukachova, L. V.; Karyakina, E. E.; Orlov, A. V.; Karpachova, G. P. The improved potentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor, Anal. Commun. 1999, 36: 153-156.
    99 Koopal, C. G. J.; Bos, A. A. C. M.; Nolte, R. J. M. Third-generation glucose biosensor incorporated in a conducting printing ink, Sens. Actuators B 1994, 18-19, 166-170.
    100 Kuwabata, S.; Martin, C. R. Mechanism of the Amperometric Response of a Proposed Glucose Sensor Based on a Polypyrrole-Tubule-Impregnated Membrane, Anal. Chem. 1994, 66: 2757-2762.
    101 Rockel, H.; Huber, J.; Gleiter, R.; Schuhmann, W. Synthesis of functionalized poly(dithienylpyrrole) derivatives and their application in amperometric biosensors, Adv. Mater. 1994, 6: 568-571.
    102 Kojima, K.; Nasa, J.; Shimomura, M.; Miyauchi, S. An interfering factor in the glucose oxidase sensing system with polypyrrole/glucose oxidase membrane, Synth. Met. 1995, 71: 2245-2246.
    103 Sangodkar, X. X.; Sukeerthi, S.; Srinivasa, R. S.; Lai, R.; Contractor, A. Q. A Biosensor Array Based on Polyaniline, Anal. Chem. 1996, 68: 779-783.
    104 Warriner, K.; Higson, S.; Christie, I.; Ashworth, D.; Vadgama, P. Electrochemical characteristics of two model electropolymerised films for
     enzyme electrodes, Biosens. Bioelectron. 1996, 11: 615-623.
    105 Hiller, M; Kranz. C; Huber, J.; Bauerle, P.; Schuhmann, W. Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces, Adv. Mater. 1996, 8: 219-222.
    106 Rikukawa, M; Nakagawa, M.; Nishizawa, N.; Sanui, K.; Ogata, N. Electrochemical and sensing properties of enzyme-polypyrrole multicomponent electrodes, Synth. Met. 1997, 85: 1377-1378.
    107 Warriner, K.; Higson, S.; Ashworth, D.; Christie, I.; Vadgama, P. Stability of dodecyl sulphate-doped poly(pyrrole)/glucose oxidase modified electrodes exposed in human blood serum, Mater. Sci. Eng. C 1997, 5: 81-90.
    108 Kojima, K.; Unuma, T.; Yamauchi, T.; Shimomura, M.; Miyauchi, S. Preparation of polypyrrole covalently attached with glucose oxidase and its application to glucose sensing, Synth. Met. 1997, 85: 1417-1418.
    109 Yamato, H.; Koshiba, T.; Ohwa, M.; Wernet, W.; Matsumura, M. A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors, Synth. Met. 1997, 87: 231-236.
    110 Lu, W.; Zhou, D.; Wallace, G. G. Enzymatic sensor based on conducting polymer coatings on metallised membranes, Anal. Comm. 1998, 35: 245-248.
    111 Daly, D. J.; O'Sullivan, C. K.; Guilbault, G. G. The use of polymers coupled with metallised electrodes to allow H2O2 detection in the presence of electrochemical interferences, Talanta 1999, 49: 667-678.
    112 Guerreiri, A.; De Benedetto, G. E.; Palmisano, F.; Zambonin, P. G. Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer, Biosens. Bioelectron. 1998, 13: 103-112.
    113 Vidal, J.-C; Mendez, S.; Castillo, J. R. Electropolymerization of pyrrole and phenylenediamine over an organic conducting salt based amperometric sensor of increased selectivity for glucose determination, Anal. Chim. Acta 1999, 385: 203-211.
    114 Vidal, J.-C; Garcia, E.; Mendez, S.; Yarnoz, P.; Castillo, J.-R. Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization, Analyst 1999, 124, 319-324.
    115 Li, Q.-S.; Ye, B.-C; Liu, B.-X.; Zhong, J. Improvement of the performance of H2O2 oxidation at low working potential by incorporating TTF-TCNQ into a platinum wire electrode for glucose determination, J. Biosens. Bioelectron. 1999, 14: 327-334.
    116 Karyakin, A. A.; Lukachova, L. V.; Karyakina, E. E.; Orlov, A. V.; Karpachova, G. P. The improved potentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor, Anal. Commun. 1999,36: 153-156.
    117 Yamauchi, T.; Kojima, K.; Oshima, K.; Shimomura, M.; Miyauchi, S. Glucose-sensing characteristics of conducting polymer bound with glucose oxidase, Synth. Met. 1999, 102: 1320.
    118 Garjonyte, R.; Malinauskas, A. Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer, Sens.Actuators B 1999, 56: 85-92.
    119 Jinqing, K.; Huaiguo, X.; Shaolin, M.; Hong, C. Effects of conducting polymers on immobilized galactose oxidase, Synth. Met. 1997, 87, 205-209.
    120 Ghosh (Hazra), S.; Sarker, D.; Misra, T. N. Development of an amperometric enzyme electrode biosensor for fish freshness detection, Sens. Actuators B, 1998, 53, 58-62.
    121 Wang, H. Y; Mu, S. L. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film, Sens. Actuators B 1999, 56, 22-30.
    122 Miland, E.; Miranda Ordieres, A. J.; Tunon Blanco, P.; Smyth, M. R.; Fagain, C. O. Poly (o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid, Talanta 1996, 43, 785-796.
    123 Adeloju, S. B.; Shaw, S. J.; Wallace, Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor, G. G. Anal. Chim. Acta 1997, 341 (2-3): 155-160.
    124 Hianik, T.; Cervenanska, Z.; Krawczynski vel Krawczyk, T.; Snejdarkova, M. Conductance and electrostriction of bilayer lipid membranes supported on conducting polymer and their application for determination of ammonia and urea, Mater. Sci. Eng. C 1998, 5, 301-305.
    125 Cho, W.-J.; Huang, H.-J. An Amperometric Urea Biosensor Based on a Polyaniline-Perfluorosulfonated Ionomer Composite Electrode, Anal. Chem. 1998,70,3946-3951.
    126 Dobay, R. D.; Harsanyi, G.; Visy, C. Detection of uric acid with a new type of conducting polymer-based enzymatic sensor by bipotentiostatic technique, Anal. Chim. Acta 1999, 385, 187-194.
    127 Lobo Castanon, M. J.; Miranda Ordieres, A. J.; Tunon Blanco, P. Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes, Biosens. Bioelectron. 1997, 12, 511-520.
    128 Alvarez-Crespo, S. L.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P. Amperometric glutamate biosensor based on poly(o-phenylenediamine) film electrogenerated onto modified carbon paste electrodes, Biosens. Bioelectron. 1997, 12, 739-747.
    129 Welzel, H.-P.; Kossmehl, G.; Engelmann, G; Neumann, B.;Wollenberger, U.; Scheller, F.; Schroder, W. Reactive groups on polymer covered electrodes, 4. Lactate-oxidase-biosensor based on electrodes modified by polythiophene, Macromol. Chem. Phys. 1996, 197, 3355-3363.
    130 Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.; Tunon-Blanco, P. Anal. Chim. Acta 1997, 346, 165-174. More recently, see: Gerard, M.; Ramanathan, K.; Chaubey, A.; Malhotra, B. D. Immobilization of Lactate Dehydrogenase on Electrochemically Prepared Polyaniline Films, Electroanalysis 1999, 11, 450-452.
    131 Karyakin, A. A.; Bobrova, O. A.; Lukachova, L. V.; Karyakina, E. E. Potentiometric biosensors based on polyaniline semiconductor films, Sens. Actuators B 1996, 33, 34-38.
    132 Tatsuma, T.; Gondaira, M.; Watanabe, T. Peroxidase-incorporated polypyrrole membrane electrodes, Anal. Chem. 1992, 64,1183-1187.
    133 Tatsuma, T.; Ariyama, K.; Oyama, N. Electron Transfer from a Polythiophene Derivative to Compounds I and II of Peroxidases, Anal. Chem. 1995,67,283-287.
    134 Tatsuma, T.; Ariyama, K.; Oyama, N. Peroxidase-incorporated hydrophilic polythiophene electrode for the determination of hydrogen peroxide in acetonitrile, Anal. Chim. Acta 1996, 318, 297-301.
    135 Iwuoha, E. I.; de Villaverde, D. S.; Garcia, N. P.; Smyth, M. R.; Pingarron, J. M. Reactivities of organic phase biosensors. 2. The amperometric behaviour of
     horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film, Biosens. Bioelectron. 1997, 12, 749-761.
    136 Khan, G. F.; Wernet, W. A highly sensitive amperometric creatinine sensor, Anal. Chim. Acta 1997, 351, 151-158.
    137 Shih, Y. T.; Huang, H. J. Anal. Chim. A creatinine deiminase modified polyaniline electrode for creatinine analysis, Acta 1999, 392, 143-150.
    138 Nishizawa, M.; Matsue, T.; Uchida, I. Penicillin sensor based on a microarray electrode coated with pH-responsive polypyrrole, Anal. Chem. 1992, 64, 2642-2644.
    139 Cosnier, S.; Fombon, J.-J.; Labbe, P.; Limosin, D. Development of a PPO-poly(amphiphilic pyrrole) electrode for on site monitoring of phenol in aqueous effluents, Sens. Actuators B 1999, 59, 134-139.
    140 Cosnier, S.; Fontecave, M.; Limosin, D.; Niviere, V. A Poly(amphiphilic pyrrole)-Flavin Reductase Electrode for Amperometric Determination of Flavins, Anal. Chem.1997, 69, 3095-3099.
    141 A. Kros, S. W. F. M. van Howell, N. A. S. M. Sommerdijk, R. J. M. Nolte, Poly(3,4-ethylenedioxythiophene)-Based Glucose Biosensors, Adv. Mater. 2001, 13,1555-1557.
    142 P. N. Bartlett, P. R. Birkin, J. H. Wang, F. Palmisano, G. De Benedetto, An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film, Anal. Chem. 1998, 70, 3685.
    143 T. Tatsuma, T. Ogawa, R. Sato, N. Oyama, Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H_2O_2, J. Electroanal. Chem. 2001, 501, 180 - 185.
    144 W. Lu, D. Zhou, G. G. Wallace, Enzymatic sensor based on conducting polymer coatings on metallised membranes, Anal.Comm. 1998,35,245-248.
    145 C. H. Tzang, R. Yuan, M. Yang, Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH, Biosens. Bioelectron. 2001, 16: 211 -219;
    146 P. N. Bartlett, E. N. K. Wallace, The oxidation of P-nicotinamide adenine dinucleotide (NADH) at poly (aniline)-coated electrodes: Part II. Kinetics of reaction at poly (aniline)-poly(styrenesulfonate) composites, J. Eleectroanal.
     Chem. 2000, 486: 23 -31;
    147 Rachov, A. R; Rozhko, M. I.; Sergeyeva, T. A.; Piletsky, S. A. Sens. Method and apparatus for the detection of the binding reaction of immunoglobulins, Actuators B 1994, 18-19, 610-613.
    148 Sergeyeva, T. A.; Lavrik, N. V.; Piletsky, S. A.; Rachkov, A. E.; El'skaya, A. V. Polyaniline label-based conductometric sensor for IgG detection, Sens. Actuators B 1996, 34, 283-288.
    149 Englebienne, P.; Weiland, M. Water-soluble conductive polymer homogeneous immunoassay (SOPHIA) A novel immunoassay capable of automation, J. Immunol. Methods 1996, 191, 159-170. Recently, McCullough used a method similar to detect amines, see refs 84 and 85.
    150 Fare, T. L.; Cabelli, M. D.; Dallas, S. M.; Herzog, D. P. Functional characterization of a conducting polymer-based immunoassay system, Biosens. Bioelectron. 1998, 13, 459-459.
    151 Barisci, J. N.; Hughes, D.; Minett, A.; Wallace, G. G. : Characterisation and analytical use of a polypyrrole electrode containing anti-human serum albumin, Anal. Chim. Acta 1998, 371 (1): 39-48.
    152 Campbell, T. E.; Hodgson, A. J.; Wallace, G. G. Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for Rhesus (D) blood groups and rhesus (D) antibodies, Electroanalysis1999, 11 (4): 215-222.
    153 Masila, M.; Sargent, A.; Sadik, O. A. Pattern Recognition Studies of Halogenated Organic Compounds Using Conducting Polymer Sensor Arrays, Electroanalysis 1998, 10, 312-320.
    154 Bender, S.; Sadik, O. A. Direct Electrochemical Immunosensor for Polychlorinated Biphenyls, Environ. Sci. Technol. 1998, 32, 788-797.
    155 B. Saoudi, N. Jammul, M. L. Abel, M. M. Chehimi, G. Dodin, DNA adsorption onto conducting polypyrrole, Synth. Met. 1997, 87, 97 -103.
    156 W. Liu, A. L. Cholli, R. Nagarajan, J. Kumar, S. K. Tripathy, F. F. Bruno, L. A. Samuelson, The Role of Template in the Enzymatic Synthesis of Conducting Polyaniline, J. Am. Chem. Soc. 1999,121, 11345-11355.
    157 R. Nagarajan, W. Liu, J. Kumar, S. K. Tripathy, F. F. Bruno, L. A. Samuelson, Manipulating DNA Conformation Using Intertwined Conducting Polymer Chains, Macromoleculars, 2001, 34, 3921-3927.
    158 J. Wang, M. Jiang, Toward Genolelectronics: Nucleic Acid Doped Conducting Polymers, Langmuir, 2000, 16, 2269-2274.
    159 J. Wang, M. Jiang, A. Fortes, B. Mukharjee, New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films, Anal. Chim.Acta, 1999, 402,7-12.
    160 T. Livache, B. Farque, A. Roget, J. Marchand, G. Bidan, R. Teanle, G. Matis, Polypyrrole DNA Chip on a Silicon Device: Example of Hepatitis C Virus Genotyping, Anal. Biochem. 1998, 255,188 -194.
    161 N. Lasalle, P. Mailley, E. Vieil, T. Livache, A. Roget, J. P. Correia, L. M. Abrantes, Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA: Preliminary study of real time monitoring by in situ techniques, J. Electroanal. Chem. 2001, 509, 48 - 57.
    162 F. Gamier, H. Korri-Youssoufi, P. Srivastava, B. Mandrand, T. Delair, Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles, Synth. Met. 1999, 100, 89, 89-94.
    163 J. Wang, M. Jiang, A. N. Kawde, Flow Detection of UV Radiation-Induced DNA Damage at a Polypyrrole-Modified Electrode, Electroanalysis, 2001, 13, 537-540.
    164 M. Pyo, J. R. Reynolds, Electrochemically Stimulated Adenosine 5'-Triphosphate (ATP) Release through Redox Switching of Conducting Polypyrrole Films and Bilayers, Chem. Mater. 1996, 8, 128-133.
    165 Emge, A.; Bauerle, P. Molecular Recognition Properties of Nucleobase-functionalized Polythiophenes, Synth. Met. 1999, 102, 1370-1373.
    166 Baurele, P.; Emge, A. Specific Recognition of Nucleobase-Functionalized Polythiophenes, Adv. Mater. 1998, 10, 324 -330.
    167 T. E. Campbell, A. J. Hodgson, G. G. Incorporation of erythrocytes into polypyrrole to form the basis of a biosensor to screen for Rhesus (D) blood groups and rhesus (D) antibodies, Wallace, Electroanalysis, 1999, 11 (4): 215-222.
    168 A. J. Hodgson, K. Gilmore, C. Small, G. G. Wallace, I. L. Mackenzie, T. Aoki, N. Ogata, Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of
     'intelligent biomaterials, Supramolec. Sci. 1994, 1, 77-83.
    169 B. Garner, A. Georgevich, A. J. Hodgson, L. Liu, G. G. Wallace, Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth, J. Biomed. Mater. Res. 1999, 44, 121-129.
    170 B. Garner, A. J. Hodgson, G. G. Wallace, P. A. Underwood, Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent, J. Mater. Sci. Mater. Med. 1999, 10, 19-27.
    171 A. Kotwal, C. E. Schmidt, Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials, Biomaterials, 2001,22, 1055-1064.
    172 X. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, O. J. Anderson, D. C. Martin, Surface modification of neural recording electrodes with conducting polymer/biomolecule blends, Biomed. Mater. Res. 2001, 56, 261-272.
    173 Akhtar, P.; Too, C. O.; Wallace, G. G. Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part Ⅰ. Use of macroelectrodes, Anal. Chim. Acta 1997, 201-209.
    174 Akhtar, P.; Too, C. O.; Wallace, G. G. Detection of amino acids at conducting electroactive polymer modified electrodes using flow injection analysis. Part Ⅱ. Use of microelectrodes, Anal. Chim. Acta 1997, 211-223.
    175 Akhtar, P.; Too, C. O.; Wallace, G. G. Detection of haloacetic acids at conductive electroactive polymer-modified microelectrodes, Anal. Chim. Acta 1997,341 (2-3): 141-153.
    176 Carabias Matinez, R.; Becerro Dominguez, F.; Sierra Garcia, I. M.; Hernandez Mendez, J.; Cordova Orellana, R.; Schrebler Guzman, R. Electrochemical response of a polypyrrole-dodecylsulphate electrode with multicharged cations and vitamins B1 and B6. Application as a microsensor in flow-injection analysis, Anal. Chim. Acta 1996, 336, 47-56.
    177 Lyons, M. E. G; Breen, W.; Cassidy, J. Ascorbic acid oxidation at polypyrrole-coated electrodes, J. Chem. Soc, Faraday Trans. 1991, 87, 115-123.
    178 Casella, I. G; Cataldi, T. R. I.; Guerrieri, A.; Desimoni, E. Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds, Anal. Chim. Acta 1996, 335, 217-225.
    179 Casella, I. G; Guascito, M. R. Electrocatalysis of ascorbic acid on the glassy
     carbon electrode chemically modified with polyaniline films, Electroanalysis 1997,9,1381-1386.
    180 Faguy, P. W.; Ma, W.; Lowe, J. A.; Pan, W.-P.; Brown, T. J. Mater. Chem. 1994,4,771-772.
    181 Kaneto, K.; Bidan, G. Electrochemical recognition and immobilization of uranyl ions by polypyrrole film doped with calix[6]arene, Thin Solid Films 1998,331,272-278.
    182 Bidan, G.; Niel, M.-A. Electrode modified by sulfonated calixarenes immiobilized into a polypyrrole film: A step towards new ion-sensitive layers, Synth. Met. 1997, 84, 255-256.
    183 Migdalski, J.; Blaz, T.; Lewenstam, A. Conducting polymer-based ion-selective electrodes, Anal. Chim. Acta 1996, 322, 141-149.
    184 Dabke, R. B.; Singh, G. D.; Dhanabalan, A.; Lai, R.; ContractorA. Q. An Ion-Activated Molecular Electronic Device, Anal. Chem. 1997, 69, 724-727.
    185 Sun, X. X.; Aboul-Enien, H. Y. Anal. Lett. 1999, 32, 1143-1156.
    186 Lei Cao, Hongzheng Chen, Mang Wang, and Jingzhi Sun, Photoconductivity Study of Modified Carbon Nanotube/Oxotitanium Phthalocyanine Composites, J.Phys.Chem. B,2002, 106:8971-8975;
    187 S.Senthilarasu, S.Velumani, R.Sathyamoorthy, A.Subbarayan, J.A.Ascencio, G. Canizal, P. J. Sebastian, J.A.Chavez, R.Perez, Characterization of zinc phthalocyanine(ZnPc) for photovoltaic applications, Appl.Phys.A, 2003, 77:383-389;
    188 Zhenglong Yang, Hongzheng Chen, Lei Cao, Hanying Li, Mang Wang, Synthesis and photoconductivity study of carbon nantube bonded by tetrasubstituted amino manganese phthalocyanine, Materials Science and Engineering, 2004, B 106:73—78;
    189 B. Maennigl, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S.Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, J. Parisij, Organic p-i-n solar cells Appl. Phys, 2004, A 79,:1-14;
    190 M.I. Newtona, T.K.H. Starkea, G. McHalea, M.R. Willis, The effect of NO2 doping on the gas sensing properties of copper
     phthalocyanine thin AElm devices, Thin Solid Films, 2000, 360 :1-12;
    191 J.P.Germain, A.Pauly, C.Maleysson, J.P.Blanc, B.SchOllohorn, Influence of peripheral electron-withdrawing substitutes on the conductivity of zinc phthalocyanine in the presence of gases. Part 2:oxidizing gases, Thin Solid Films, 1998, 333:235-239;
    192 L.Cao, H-Z, Chen, H.-B.Zhou, L,Zhu, J.-Z. Sun, X.-B. Zhang, J.-M. Xu, M.Wang, Carbon-nanotube-Templated Assembly of Rare-Earth Phthalocyanine Nanowires, Advanced Materials, 2003,15(11):909-913;
    193 Andres de la Escosura, M.Victoria Martinez-Diaz, Pall Thordarson, Alan E. Rowan, Roeland J.M. Nolte and Tmas Torres, Donor-Acceptor Phthalocyanine Nanoaggregates, JACS, 2003,125:12300-12308;
    194 B.Kessler, Phthalocyanine-C60 composites as improved photoreceptor materials, Appl Phys, 1998, A67: 125-133;
    195 E.van Faassen, H.Kerp, Explanation of the low oxygen sensitivity of thin film phthalocyanine gas sensors, Sensors and Actuators, 2003,B88:329-333;
    196 A.de Haan, M.Debliquy, A. Decroly, Influence of atmospheric pollutants on the conductance of phthalocyanine films, Sensors and Actuators, 1999, B57:69-74;
    197 C.Maleysson, M.Passard, J.P.Blanc, V.Battut, J.P.Germain, A.Pauly, V.Demarne, A.Grisel, C.Tiret, R.Planade, Elaboration and tests of microelectronically designed gas sensors with phthalocyanine sensitive layers, Sensors and Actuators, 1995, B26-27: 144-149;
    198 Sakuntala Gupta, Tridibendra N.Misra, Manganeses phthalocyanine for the detection of fish freshness by its trimethylamine emission, Sensors and Actuators, 1997, B41: 199-202;
    199 M.E.Azim-Araghi, A.Krier, The influence of ammonia, chlorine and nitrogen dioxide on chloro-aluminium phthalocyanine thin films, Applied Surface Science, 1997, 119:260-266;
    200 B.SchOllohorn, J.P.Germain, A.Pauly, C.Maleysson, J.P.Blanc, Influence of peripheral electron-withdrawing substitutes on the conductivity of zinc phthalocyanine in the presence of gases. Part 1 :reducing gases, Thin Solid Films, 1998,326:245-250;
    201 Yuh-Lang Lee, Wen-Ching Tsai, Chien-Hsiang Chang, Yu-Min Yang, Effects
     of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films, Applied Surface Science, 2001, 172:191-199;
    202 Yuh-Lang Lee, Wen-Ching Ysai, Jer-Ru Maa, Effects of substrate temperature on the film characteristics and gas sensing properties of copper phthalocyanine films, Applied Surface Science, 2001, 173:352-361;
    203 A.Mrwa, M.Friedrich, A.Hofmann, D.R.T.Zahn, Response of lead phthalocyanine to high NO2 concentration, Sensors and Actuators, 1995, B24-25: 596-599;
    204 J.Spadavecchia, G.Ciccarella, T.Stomeo, R.Rella, S.Capone and P.Siciliano, Variation in the Optical Sensing Responses toward Vapors of a Porphyrin/phthalocyanine Hybrid Thin Film, Chem Mater. 2004, 16:2083-2090;
    205 黄冀,孙景志,汪芒,浙江大学硕士学位论文,2004
    206 S.chopra and A.Pham, Carbon-nanotube-based resonant-circuit sensor for ammonia, Applied Physics Letters, 2002,80(24): 4632~4634;
    207 Judian W. Gardrer, Hyum Woo Shim, Evor L.Hines, An electronic nose system to diagnose illness, Sensors and Actuators, 2000, B70: 19~24;
    208 M.A. Aronova, K.S.Chang, and I.Takeuchi, Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Applied Physics Letters, 2003,83(6): 1255~1257;
    209 E.Comini, G.Faglia, and G.Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters, 2002,81(10): 1869~1871;
    210 Atul Khanna, Rajesh Kumar, and S.S.Bhatti, Cuo-doped SnO2 thin films as hydrogen sulfide gas sensor, Applied Physics Letters, 2003,82(24): 4388~4390;
    211 Dae-Sik Lee, Youn Tae Kim, Jeung-Soo Huh, Duk-Dong Lee, Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition, Thin Solid Film, 2002,416:271~278;
    212 V.Guidi, M. A. Butturi, M. C. Carotta, B. Cavicchi, M. Ferroni, C. Malagǜ, G. Martinelli, D. Vincenzi, M. Sacerdoti, M. Zen, Gas sensing through thick film technology, Sensors and Actuators, 2002,B84: 72~77;
    213 Ashish Modi, Nikhil Koratkar, Erie Lass, Bingqing Wei and Pulickel M.Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature, 2003,424:171-173;
    214 Jing Kong, Nathan R.Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai, Nanotube Molecular Wires as Chemical Sensors, Science, 2000,287:622-625;
    215 L.Valentini, I. Armentano, and J. M. Kenny, Sensors for sub-ppm NO2 gas detection based on carbon nanotube, Applied Physics Letters, 2003,82(6): 961-963;
    216 S.Chopra, K. McGuire, N. Gothard, and A. M. Rao, A. Pham, Selective gas detection using a carbon nanotube sensor, Applied Physics Letters, 2003,83(11): 2280-2282;
    217 M. M.Ayad, N. Salahuddin, M. A. Sheneshin, Optimum reaction conditions for in situ polyaniline film, Sythetic Metals, 2003,(132): 185-190;
    218 Ay.segul Goka, Bekir Sary b, Muzaffer Talu, Synthesis and characterization of conducting substituted polyanilines, Synthetic Metals 142 (2004) 41-48
    219 Oleg A. Raitman, Eugenii Katz, Andreas F. Bu"ckmann,§ and Itamar Willner, Integration of Polyaniline/Poly(acrylic acid) Films and Redox Enzymes on Electrode Supports: An in Situ Electrochemical/ Surface Plasmon Resonance Study of the Bioelectrocatalyzed Oxidation of Glucose or Lactate in the Integrated Bioelectrocatalytic Systems, J. AM. CHEM. SOC. 2002, 124, 6487-6496
    220 Jamshid K. Avlyanov, Jack Y. Josefowicz, Alan G. MaceDiarmid, Atomic force microscopy surface morphology studies of "in situ" deposited polyaniline thin films, Synthetic Metals, 1995(73): 205-208;
    221 Irina Sapurina, Andrea Riede, Jaroslav Stejskal, In-situ polymerized polyaniline films 3.Film formation, Sythetic Metals, 2001(123): 503-507;
    222 M.Matsuguchi, J. Io, G. Sugiyama, Y. Sakai, Effects of NH3 gas on the electrical conductivity of polyaniline blend films, Synthetic Metals, 2002, 128: 15-19;
    223 A.Riul Jr., A. M. Gallardo Soto, S. V. Mello, S. Bone, D. M. Taylor, L. H. C. Mattoso, An electronic tongue using polypyrrole and polyaniline, Synthetic Metals, 2003, 132: 109-116;
    224 V.V.Chabukswar, Sushama Pethkar, Anjali A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators, 2001,B77: 657-663;
    225 V.Rossi Albertini, A. Generosi, B. Paci, and P. Perfetti, G. Rossi, A. Capobianchi, and A. M. Paoletti, R. Caminiti, Time-resolved energy dispersive X-ray reflectometry measurements on ruthenium phthalocyanine gas sensing films, Applied Physics Letters, 2003, 82 (22): 3868-3870;
    226 Toshihiro Miyata, Seiji Kawaguchi, Makoto Ishii, Tadastugu Minami, High sensitivity chlorine gas sensors using Cu-phthalocyanine thin films, Thin Solid Films, 2003, 425:255-259;
    227 E.van Faassen, H. Kerp, Explanation of the low oxygen sensitivity of thin film phthalocyanine gas sensors, Sensors and Actuators, 2003,B88: 329-333;
    228 Neal A.Rakow and Kenneth S. Suslick, A colorimetric sensor array for odour visualization, Nature, 2000, 406: 710-713;
    229 Yufeng Ma, Jianming Zhang, Guojin Zhang, and Huixin He, Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates, J. AM. CHEM. SOC. 2004, 126, 7097-7101
    230 Jiaxing Huang and Richard B. Kaner, A General Chemical Route to Polyaniline Nanofibers J. AM. CHEM. SOC. 2004, 126, 851-855
    231 Xinyu Zhang, Warren J. Goux, and Sanjeev K. Manohar, Synthesis of Polyaniline Nanofibers by "Nanofiber Seeding", J. AM. CHEM. SOC. 2004, 126, 4502-4503
    232 Shubo Han, Alejandro L. Briseno, Xiangyang Shi, Daisy A. Mah, and Feimeng Zhou, Polyelectrolyte-Coated Nanosphere Lithographic Patterning of Surfaces: Fabrication and Characterization of Electropolymerized Thin Polyaniline Honeycomb Films, J. Phys. Chem. B 2002, 106, 6465-6472
    232 Andrew D. W. Carswell, Edgar A. O'Rear, and Brian P. Grady, Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films, J. AM. CHEM. SOC. 2003, 125, 14793-14800
    233 Jiaxing Huang, and Richard B. Kaner, Nanofiber Formation in the Chemical Polymerization of Aniline: A mechanistic Study, Angew.Chem.Int. Ed. 2004(43): 5817-5821.
    234 Shabnam Virji, Jiaxing Huang, Richard B. Kaner, and Bruce H. Weiller, Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms, Nano Lett. 2004, 4(3): 491-496;
    235 H. Guo, C. M. Knobler, R. B. Kaner, A chiral recognition polymer based on polyaniline, Synth. Met. 1999, 101: 44 -47.
    236 Gordon G.W. and Leon A. P. Kane-Maguire, Manipulating and Monitoring Biomolecular Interactions with Conducting Electroactive Polymers, Advanced Materials, 2002,14(13-14): 953-960;
    237 Kazuo Takimiya, Yoshihito Kunugi, Yuta Toyoshima, and Tetsuo Otsubo, 2,6-Diarylnaphtho [1,8- bc: 5, 4- b1c1] dithiophenes as New High-Performance Semiconductors for Organic Field-Effect Transistors, JACS, 2005, 127:3605-3612;
    238 Yiliang Wu, Ping Liu, Sandra Gardner, andBeng S. Ong, Poly(3,31 -dialkylterthiophene)s: Room-Temperature, Solution-Processed, High-Mobility Semiconductors for OrganicThin-Film Transistors, Chem. Mater. 2005, 17:221-223;
    239 Beng S. Ong, Yiliang Wu, Ping Liu, and Sandra Gardner, High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors, JACS, 2004, 126:3378-3379;
    240 Luisa Paganin, massimiliano Lanzi, Paolo Costa-Bizzarri, Franco Bertinelli, Corrado Masi, Synthesis and Characterization of a Highly Soluble Poly [3-(10-hydroxydecyl)thiophene], Macromol. Symp. 2004, 218:11-20;
    241 B. Rajesh, K. Ravindranathan Thampi, J. M. Bonard, N. Xanthopoulos, H. J. Mathieu, and B. Viswanathan, Template Synthesis of Conducting Polymeric Nanocones of Poly (3-methylthiophene), J. Phys. Chem. B 2004, 108: 10640-10644;
    242 Sanja Tepavcevic, Yongsoo Choi, and Luke Hanley, Surface Polymerization by Ion-Assisted Deposition for Polythiophene Film Growth, JACS, 2003,125:2396-2397;
    243 Alexis laforgue, Patrice Simon, Jean-Francois Fauvarque, Chemical synthesis and characterization of fluorinated polyphenylthiophene: application to energy storge, Synthetic Metals, 2001,123:311-319;
    244 Roula Hanna and Mario Leclerc, Synthesis and Characterization of New Processible Conducting Copolymers Derived from Thiophenes, Chem. Mater. 1996,8: 1512-1518;
    245 Fatma Vatansever, Jale Hacaloglu, Ural Akbulut & Levent Toppare, A
    ??Conducting Composite of Polythiophene: Synthesis and Characterization, Polymer International, 1996,41:237-244;
    246 Jinsong Liu, Ekaterina N. Kadnikova, Yuxiang Liu, Michael D. McGehee, and Jean M. J. Fre'chet, Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymer-Titania Hybrid Solar Cells, JACS, 2004, 126:9486-9487;
    247 Maciej Mazur, Preparation of poly(3-methylthiophene) thin films by in situ polymerization, Thin Solid Films, 2005, 472:1-4;
    248 Bryan C. Sih, Antje Teichert, and Michael O. Wolf, Electrodeposition of Oligothiophene-Linked Gold Nanoparticle Films, Chem. Mater. 2004, 16: 2712-2718;
    249 S. Hossein Hosseini and Ali A. Entezami, Chemical and Electrochemical Synthesis of Homopolymer and Copolymers of 3-methoxyethoxythiophene with Aniline, Thiophene and Pyrrole for Studies of Their Gas and Vapour Sensing, Polymers For Advanced Technologies, 2001, 12: 523-534;
    250 Danielle C. Schnitzler, Michelle S. Meruvia, Ivo A. Hummelgen, and Aldo J. G. zarbin, Preparation and Characterization of Novel Hybrid Materials Formed from (Ti, Sn)O_2 Nanoparticles and Polyaniline, Chem. Mater. 2003, 15:4658-4665;
    251 George Z. Chen, Milo S. P. Shaffer, Dan Coleby, Gemma Dixon, Wuzong Zhou, Derek J. Fray, and Alan H. Windle, Carbon Nanotube and Polypyrrole Composites: Coating and Doping, Adv.Mater.2000, 12(7): 522-526.
    252 Kay Hyeok An, Seung Yol Jeong, Ha Ryong Hwang, and Young Hee Lee, Enhanced Sensitivity of a Gas Sensor Incorporing Single-Walled Carbon Nanotube-Polypyrrole Nanocomposites, Advanced Materials, 2004,16(12): 1005-1009;
    253 Huseyin Zengin, Wensheng Zhou, Jiangyong Jin, Richard Czerw, Dennis W.Smith, Luis Echegoyen, David L. carroll, Stephen H. Foulger, and John Ballato, Carbon Nanotube Doped Polyaniline, Advanced Materials, 2002, 14(20): 1480-1483;
    254 Jiaxing Huang and Richard B. Kaner, A General Chemical Route to Polyaniline Nanofibers J. AM. CHEM. SOC. 2004, 126, 851-855
    255 Xinyu Zhang, Warren J. Goux, and Sanjeev K. Manohar, Synthesis of
     Polyaniline Nanofibers by "Nanofiber Seeding", J. AM. CHEM. SOC. 2004, 126, 4502-4503
    256 M.Matsuguchi, J. Io, G. Sugiyama, Y. Sakai, Effects of NH3 gas on the electrical conductivity of polyaniline blend films, Synthetic Metals, 2002,128: 15-19;
    257 A.Riul Jr., A. M. Gallardo Soto, S. V. Mello, S. Bone, D. M. Taylor, L. H. C. Mattoso, An electronic tongue using polypyrrole and polyaniline, Synthetic Metals, 2003, 132: 109-116;
    258 V.V.Chabukswar, Sushama Pethkar, Anjali A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sensors and Actuators, 2001,B77: 657-663;
    259 M. Baibarac, I. Baltog, S. Lefrant, J. Y. Mevellec, and O. Chauvet, Polyaniline and Carbon Nanotube Based Composites Containting Whole Units and Fragments of Nanotubes, Chem. Mater. 2003, 15:4149-4155;
    260 Jiaxing Huang and Richard B. Kaner, A General Chemical Route to Polyaniline Nanofibers, J. AM. CHEM. SOC. 2004, 126, 851-855;
    261 Xinyu Zhang, Warren J. Goux, and Sanjeev K. Manohar, Synthesis of Polyaniline Nanofibers by "Nanofiber Seeding", J. AM. CHEM. SOC. 2004, 126,4502-4503;
    262 Jiaxing Huang, and Richard B. Kaner, Nanofiber Formation in the Chemical Polymerization of Aniline: A mechanistic Study, Angew. Chem. Int. Ed. 2004(43): 5817-5821;
    263 Yufeng Ma, Jianming Zhang, Guojin Zhang, and Huixin He, Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates, J. AM. CHEM. SOC. 2004, 126,7097-7101;
    264 Lijuan Zhang, Yunze Long, Zhaojia Chen and Meixiang Wan, The effect of hydrogen bonding on self-assemble polyaniline nanostructure, Advanced Functional Materials, 2004, 14(7): 693-698;
    265 Andrew D. W. Carswell, Edgar A. O'Rear, and Brian P. Grady, Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films, J. AM. CHEM. SOC. 2003, 125, 14793-14800;
    266 Jamshid K. Avlyanov, Jack Y. Josefowicz, Alan G. MaceDiarmid, Atomic force microscopy surface morphology studies of "in situ" deposited polyaniline
     thin films, Synthetic Metals, 1995(73): 205-208;
    267 Irina Sapurina, Andrea Riede, Jaroslav Stejskal, In-situ polymerized polyaniline films 3.Film formation, Synthetic Metals, 2001(123): 503-507;
    268 Jiaxing Huang, Shabnam Virji, Bruce H. Weiller, and Richard B. Kaner, Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors, J. AM. CHEM. SOC. 2003, 125:314-315;
    269 Jiaxing Huang, Shabnam Virji, Bruce H. Weiller, and Richard B. Kaner, Nanostructure Polyaniline Sensors. Chem. Eur. J. 2004, 10: 1314-1319.
    270 Milind V. K., Annamraju K. V., R. Marimuthu, Tanay S., Synthesis and Characterization of Polyaniline Doped with Organic Acids, Journal of Polymer Science Part A: Polymer Chemistry, 2004,42:2043-2049.
    271 Y. Sun, S. R. Wilson, D. I. Schuster, High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents, J. Am. Chem. Soc. 2001,123,5348-5349.
    272 Huseyin Zengin, Wensheng Zhou, Jiangyong Jin, Richard Czerw, Dennis W. Smith, Luis Echegoyen, David L. carroll, Stephen H. Foulger, and John Ballato, Carbon Nanotube Doped Polyaniline, Advanced Materials, 2002, 14(20): 1480-1483.
    273 Sakuntala Gupta, Tridibendra N. Misra, Manganese phthalocyanine for the detection of fish freshness by its trimethylamine emission, Sensors and Actuators, B41 (1997): 199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700