用户名: 密码: 验证码:
内蒙古地区地表光合有效辐射和植被净初级生产力估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古地区位于我国边疆,地域辽阔,跨28个经度和16个纬度,总土地面积约118万km~2,约占全国总面积的12.13%。内蒙古地区的草原具有中纬度半干旱温带草原的代表性,是全球变化较敏感的区域之一。此外,由于近年来的气候干旱和人为开垦破坏的增加,导致该地区生态环境更加脆弱,内蒙古中西部还是华北地区沙尘天气的重要的发源地(朱文泉等,2005)。所以,开展内蒙古植被NPP及其时空分布的研究,对于掌握该地区的生态系统质量状况和自然生产能力具有重要的意义。
     本文利用MODIS数据,采用改进PARCAL算法反演地表光合有效辐射(PAR),驱动GLO-PEM模型模拟内蒙古地区植被净初级生产力(NPP),并且利用大量野外工作的样方数据对模型模拟NPP进行验证,并将模型模拟的PAR和NPP做空间分析,得到结论如下:
     (1)在内蒙古地区,当海拔小于300m时,光合有效辐射为6.6MJ/d,当海拔大于2700m时,光合有效辐射为8.2MJ/d。海拔每增加300m,光合有效辐射约增加0.2MJ/d。内蒙古地区PAR具有明显的季节变化特征,夏季大,冬季小。PAR从1月份开始不断增加,到6月份达一年最大值,然后从7月份开始下降,到12月降到最低。
     (2)2003-2008年内蒙古地区植被净初级生产力年总平均值为0.25 PgC×a-1。比朱文泉等(2005)模拟的结果偏低(0.39 PgC×a-1),按照朴世龙等(2001)模拟全国植被净初级生产力总量为1.69 PgC×a-1,则内蒙古地区植被NPP总量约占全国的14.79%。
     (3)2003-2008年间内蒙古NPP由西南到东北逐渐增加分布的总体趋势是没有变化,只是局部地区有变化。近6年以来内蒙古地区NPP总量总体上呈现出逐渐减少的趋势,但减少幅度不大,属于短期波动。
     (4)内蒙古陆地生态系统不同植被类型的NPP呈现出不同的特征。其中,平均NPP值最高的为落叶阔叶林,达到了498.21gC/m~2/yr,其次是混交林、常绿针叶林、农田等,单位平均NPP都300 gC/m~2/yr以上。草地为260.44gC/m~2/yr,荒漠区域只有13.33gC/m~2/yr。
Inner Mongolia Autonomous Region in northern frontier of china, a vast territory, including the 28 cross-longitude, latitude16 north and south Vietnam, with a total area of about1.18 million km2, accounting for12.13% of total area, grassland is rich in resources, is the largest grasslands in pastoral areas of China. Inner Mongolia is the world's a typical mid-latitude semi-arid temperate grassland ecosystem types, in the temperate grasslands of representative and typical of global change research in IGBP land of Northeast China Transect Transect within the land, is the most sensitive area of global change. Meanwhile, due to reclamation of arid climate and human destruction, more vulnerable ecological environment, and the central and western Inner Mongolia in North China dust weather and dust storms of the primary origin (Zhu Wenquan, etc., 2005). Therefore, vegetation in Inner Mongolia to carry out its distribution of NPP for the control of the region's eco-system quality and natural production capacity is of great significance.
     By using MODIS data, using the improved inversion algorithm PARCAL to estimate PAR, drive GLO-PEM model to simulate net primary production in Inner Mongolia , a large amount of field work data plots to verify the model simulated NPP result . The thesis do spatial analysis with simulated PAR and NPP ,with the following conclusions:
     (1) in the Inner Mongolia region, when elevation less than 300 meters, the photosynthetic active radiation of 6.6 MJ / day, when elevation more than 2,700 meters, the photosynthetic active radiation of 8.2 MJ / day. Each additional 300 meters of elevation, photosynthetic active radiation increased by about 0.2 MJ / day. Inner Mongolia PAR obvious seasonal variation, summer largest, while in winter smallest. PAR began to increase from January to June for one year maximum, and then began to decline from July to December to a minimum.
     (2) NPP in Inner Mongolia's total annual average of 0.25PgC×a-1from 2003 to2008. The result slightly lower than Zhu Wenquan (2005) simulation results (0.39 PgC×a-1), according to Pu Shilong et al (2001) Simulation of the national net primary production was 1.69 PgC× a~(-1), the total NPP of vegetation in Inner Mongolia account for about 14.79% of national.wide.
     (3) NPP increased from the southwest to northeast in Inner Mongolia between 2003 and 2008, the distribution of the overall trend is not changed, but some areas have changed. Nearly 6 years, the total NPP in Inner Mongolia in general showed a decreased tendency, with litter extent and short-term fluctuations.
     (4) Inner Mongolia terrestrial ecosystem NPP of different vegetation types show different characteristics. Among them, the highest average NPP values for deciduous broad-leaved forest, reaching 498.21gC/m~2/yr, followed by the evergreen broad-leaved forest, as 434.2gC/m~2/yr, followed by mixed forest, evergreen coniferous forest, farmland etc. The average NPP are more than 300 gC/m~2/yr. Grass for the 260.44gC/m~2/yr, desert region only 13.33gC/m~2yr.
引文
白建辉,王庚辰. 2005.内蒙古草原光合有效辐射的计算方法.环境科学研究. 17(6): 15-20.
    包刚.2009.基于MODIS数据的内蒙古陆地植被净第一性生产力遥感估算研究[硕士学位论文].内蒙古:内蒙古师范大学
    陈渭民等. 2000.由卫星资料估算晴空大气太阳直接辐射和散射辐射.气象学报. 58(4): 457-469.
    陈卓奇.2009.青藏高原草地生态系统生产力与承载力研究[博士学位论文].北京:中国科学院地理科学与资源研究所
    崔林丽,史军,2005,中国陆地经初级生产力的季节变化研究.地理科学进展,24(3):8-16
    冯险峰. 2004.基于过程的中国陆地生态系统生产力和蒸散遥感研究.[博士学位论文].北京:中国科学院地理科学与资源研究所
    郝永萍,陈育峰,张兴有.1998,植被净初级生产力模型估算及其对气候变化的响应研究进展.地球科学进展, 13(6):564-570.
    李刚,辛晓平,王道龙等. 2007.改进CASA模型在内蒙古草地生产力估算中的应用.生态学杂志. 26(12):2100-2106.
    李高飞,任海,李岩,柳江,2003.植被净第一性生产力研究回顾与发展趋势.生态科学,22(4):360-365
    李贵才. 2004.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究.[博士学位论文].北京:中国科学院研究生院
    刘荣高,刘纪远,庄大方.2004.基于MODIS数据估算晴空陆地光合有效辐射.地理学报, 59(1):64-74.
    毛克彪,覃志豪,李满春等. 2005. AMSR被动微波数据介绍及主要应用研究领域分析.遥感信息. 3:63-66.
    缪启龙,翁笃鸣,黄飞君. 1993.中国坡地光合有效辐射的特征分析.南京气象学院学报. 16(2):148-156.
    内蒙古人民政府网http://www.nmg.gov.cn/intonmg/zrdl/index.htm[2009-05-06]
    朴世龙,方精云,郭庆华. 2001. 1982-1999年我国植被净第一性生产力及其时空变化.北京大学学报. 37(4):563-570.
    宋婷. 2007.基于GIS和RS的青藏高原海北高寒草甸CO2通量的空间格局研究.[硕士学位论文].南京:南京师范大学
    孙睿,朱启疆.1998,植被净第一性生产力的模型及中国净第一性生产力的分析.北京师范大学报:自然科学版, 34(增刊):132-137.
    王旭,尹光彩,周国逸等. 2007.鼎湖山针阔混交林光合有效辐射的时空格局.北京林业大学学报. 29(2): 90-96.
    杨磊. 2005.应用MODIS数据估算晴空陆地光合有效辐射(PAR).[硕士学位论文].吉林:吉林大学
    张文建等. 1997.利用NOAA卫星HIRS探测器检测东亚地区辐射收支的研究,气象学报. 55(6):681-691.
    张宪州.我国自然植被净第一性生产力的估算与分布.自然资源,1993,14(1):15-21.
    张运林,秦伯强,陈伟民,等. 2005.不同风浪条件下太湖梅梁湾光合有效辐射的衰减.应用生态学报. 16(6): 1133-1137.
    周广胜,王玉辉,2003.全球生态学.北京:气象出版社:12
    周广胜.张新时. 1996,全球气候变化的中国自然植被的净第一性生产力研究,植物生态学报20(1):11-19.
    朱文泉,陈云浩,徐丹等,2005,陆地植被净初级生产力计算模型研究进展,生态学杂志24(3):296~300
    Alado S I, Foyo-Morenoi, Olmof J.et al.2003.Relationship between net radiation and solar radiation for semi-arid shrub-land.Agricultural and Forest Meterology,116:221-227.
    Cao M,Woodward F.I. 1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystem and their response to climate change. Global Change Biol, 4:185-198.
    CAO MK, S.D. Prince, J. Small, et al. 2004. Satellite remotely sensed interannual variability in terrestrial net primary productivity from 1980 to 2000.Ecosystems,7:233-242.
    Carder K.et al. 1999.Instantaneous photosynthtically available radiation and absorbed radiation by phytoplankton.ATBD-MOD-20. V5.
    Chen J, Jonsson P, et al, 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter.Remote Sensing of Environment,91:332-344.
    Chen L, Gao Y, Yang L.et al.2008.MODIS-derived daily PAR simulation from cloud-free images and its validation.Solar Energy,82: 528-534.
    Collatz G.J., J.T., Ball, C. Grivet,et al.1991.Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agriculture For Metrology. 54:107-136.
    Cramer W, Kicklighter D W, Bondeau A, et al. 1999.Comparing global models of terrestrial net primary productivity(NPP): overview and key results. Global Change Biolgoy,5:1-15.
    Dye D G. and Shibasaki R.1991 Intercomparison of global PAR data sets. Geohysical Research Letter,22: 20113-2016.
    Eck T F, Dye D G.1991.Satellite estimates of incident photosynthetically active radiation using ultraviolet reflectance.Remote Sensing Environment,38(2):135-146.
    Field CB, Behrenfeld J, Randerson JT.et al.1998. Primary production of the biosphere: intergrating terrestrial and oceanic components.Science,281:237-240.
    Field CB, Behrenfeld MJ,Randerson J T,et al.1998.Primary production of the biosphere:Integrating terrestrialand oceanic components.Science,281:237-240.
    Foley J A.1994.Net primary productivity in the terrestrial biosphere:the application of a global model.J.Geophys.Res, 99(D 10):20773-20783.
    Frouin R. et al. 2000.Algorithm to estimate PAR from SeaWiFS data.V1.0-Document-tation. Gill R A., Keily R H, Parton WJ, et al. 2002. Using simple environmental variables to estimate below ground productivity in grasslands.Global Ecoloy & Biogeography,11:79-86.
    Goetz SJ, Prince SD,Goward SN,et al.1999.Satellite remote sensing of primary production:An improved production efficiency modeling approach.Ecol.Mod,122:239-255.
    Goetz SJ, S D Prince, S N Goward, et al. 1999. Satellite remote sensing of primary production:an improved production efficiency modeling approach. Ecological Modelling. 122:239-255.
    Goldberg B, and Klein W H.1980.A model for determing the spectral quality of daylight on a horizontal surface at any geographical location.Solar Energy,24:351-357.
    Grant R H, Heisler G M, Gao W. 1996. Photosynthetically active radiation: Sky radiance distributions under clear and overcast conditions. Agricultural and Forest Meteorology. 82:267-292
    Gu J, Smith E.A. 1997. High-resolution estimates of total solar and PAR surface fluxes over large-scale BOREAS study area from GOES measurements. J. Geophys. Res,102 (24): 29685 - 29706.
    Hutchinson M.F., ANUSPLIN version 4.2 user guide.2001. http://cres.anu.edu.au[2008-12-20] Iqbal M. 1983.Correlation of average diffuse and beam radiation with hours of bright sunshine. Solar Energy,23:169-174.
    Knorr W, Heimann M.1995.Impact of drought stress and ot her factors on seasonal land biosphere CO2 exchange studied t hrough an at mospheric tracer transport model.Tell us,47 B:471-789.
    Laake P E, Azofeifa G A. 2004. Simplified atmospheric radiative transfer modeling for estimation incident PAR using MODIS atmosphere products.Remote Sensing of Environment., 91:98-113.
    Laake P E, Sanchez-Azofeifa G.A.2005. Mapping PAR using MODIS atmosphere products. Remote Sensing Environment,94: 554-563.
    Leckner B. 1978.The spectral distribution of solar radiation at the earth’s surface elements of a model.Solar Energy, 20:143-150
    Leith H,W h ittaker R H ,1975.Modeling the primary productivity of the world[A].Primary Productivity of the Biosphere.New York:Spinger-V erlag 98-99.
    Liang S, Zheng T,Wang D. et al. 2007. Mapping High-Resolution Incident Photosynthetically Active Radiation over Land from Polar-Orbiting and Geostationary Satellite data. Photogrammetric Engineering and Remote Sensing,1085-1089
    Liang S,Zheng T, Liu R,et al 2006. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data.Journal of Geophysical Research.111, D15208.
    Liu J,Chen J M,Cihlar J et al. 1997,A process-based boreal ecosystem productivity simulator using remote sensing inputs.Remote Sensing of Environment, 62(2):158-175
    Monteith JL.1972.Solar radiation and productivity in tropical e-cosystems.J.Appl.Ecol,9:747-766.
    Odum E P. 1983.Basic ecology 3th.Holt,Rinehart and Winston.CBS College Publishing. 98-99.
    Piao S,Fang J, He J.2006. Variations in vegetation net primary production in the Qinghai1-Xizang Plateau, China, from 1982 to 1999.Cliamtic. Change,74:253-267.
    Pinker R T, Ewing J A.1985. Modeling Surface Solar Radiation: Model Formulation and Validation. Journal of Climate and Applied Meteorology,24(5): 389-401.
    Pinker R T, Laszlo I. 1992a. Global distribution of photosynthetically active radiation as observed from satellites.Journal of Climate,5(1): 56-65.
    Pinker R T,Laszlo I. 1992b.Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale.Journal of Applied Meteorolog,31: 194-211.
    Potter CS, Randerson J T,Field CB,et al.1993.Terrestrial ecosystem production:A process model based on global satellite and surface data.Global Biogeochem.Cyc,7:811-841.
    Prentice IC, W.Cramer, S.P. Harrison,et al. 1992. A global biome model based on plant physiology and dominance, soil properties,and climate.Journal Biogeography,19: 117-134
    Prince SD, Goward SN.1995.Global primary production:A remote sensing approach.J.Biogeogr,22:815-835
    Ruimy A B,Sougier.1994Methodology for the estimation of terrestrial net primary productivity from remotely sensed data.Journal of Geophysical Resea rch,,99:5263-5283.
    Ruimy A, Saugier B, Dedieu G. 1994.Methodology for the estimation of terrestrial net primary productionfrom remotely sensed data.Journal of Geophysics Research,99(D3): 5263-5383.
    Running S W,Coughlan J C.1988,A general model of ecosystem processes for regional applications:hydrologic balance,canopy gas exchange and primary production processes.Ecological Modelling, 42:125-154
    Running SW, Coughian J C.1988.A general model of forest ecosystem processes for regional application I. Hydrologic Balance, Canopy Gas Exchange and Primary Production Processes. Ecological Modeling,42:125-154.
    Seaquist J W, Olsson L. 1999.Rapid estimation of photosynthetically active radiation over the West African Sahel using the Pathfinder Land Data Set.International Journal of Applied Earth Observation and Geoinformation,1: 205-213.
    Seaquist JW, Olsson L, Ardo J. 2003. A remote sensing-based primary production model for grassland biomes. Ecological Modeling,169: 131-155.
    Uchijima Z,Seino H.1985.Agroclimatic evaluation of net prima-ry productivity of natural vegetationⅠ.Chikugo model for eval-uating productivity.J.A gric.Meteor.,40:343-353.
    Uchijima Z,Seino H.1985.Agroclimatic evaluation of net prima-ry productivity of natural vegetationⅠ.Chikugo model for eval-uating productivity.J.A gric.Meteor,40:343-353.
    Whiitter R H, Marks P L. 1975.Primary productivity of the biosphere. Method of assessing terrestrial productivity. New York: Springer Verlag,55-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700