用户名: 密码: 验证码:
β-磷酸钙与硫酸钙在颈前路椎间融合术的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1958年Smith和Robinson首创颈前路椎间盘切除植骨融合术以来,自体髂骨一直是颈前路植骨融合术中选材的金标准,然而取自体髂骨存在如下缺点:供区疼痛、出血、感染、撕脱骨折、神经损伤、取材有限、增加手术时间等。由于上述不利因素,学者们一直努力寻找理想的替代物。
     同种异体骨或异种骨因具有一定的骨传导作用和相对广泛取材来源已在动物实验和临床实践中成功应用,但存在传染疾病(艾滋病、乙型肝炎、丙型肝炎、等)和免疫排斥反应的风险。
     将前路减压切除的自体骨充填于钛网或钛笼应用于椎间融合虽可避免取髂骨,但切除的骨质通常较少。有研究表明钛网或钛笼移位率为17%,在上位椎体下沉率为42%,下位椎体下沉率为50%,其推广应用目前尚有争议。
     随着材料工艺学及生物力学的发展,人工合成的骨移植替代材料的研究不断深入。目前常用的人工骨主要有磷酸钙和硫酸钙两大类,其中磷酸钙主要由羟基磷灰石和β-磷酸钙组成,它们具有如下优点:良好的骨传导作用,材料来源广泛,生物相容性良好等;但也有一些不足之处:首先,人工合成材料一般不具有成骨性及骨诱导性,其次,人工材料生物降解时间各不相同,应根据实际需要进行选择。部分材料吸收较快,如:硫酸钙在植入后6-8周已吸收,此时新骨形成尚未完成,机械支撑性能较弱,易致钢板螺钉松动断裂等。而羟基磷灰石虽然支撑性能虽好,但新骨爬行替代缓慢,材料降解缓慢,甚至不降解。β-TCP生物降解时间在8-12周左右,较为适中。
     β-TCP和CS作为植骨材料应用于非负重区域骨缺损的修复已有较多报道,但应用于颈前路植骨融合术的报道在国内外较少见。本课题拟对β-TCP和CS在颈椎前路椎间融合的效果进行初步的探索,以期获得理想的自体髂骨的替代物。
     为了更好地模拟人类的颈椎手术,最好采用非人类的灵长类动物作为模型,然而此类动物价格昂贵,来源有限,饲养困难,故广大学者多采用山羊、绵羊、猪等动物作为模型进行研究,但很少有比较人与山羊颈椎的生物力学特征的研究报告。本课题从生物力学角度出发,对人与山羊体外三维生物力学运动特征进行比较,了解山羊能否成为颈椎前路手术的良好模型。因颈椎椎间融合术后植入物需要承受头部重力作用,需要对硫酸钙和β-磷酸钙在体外的生物力学稳定性进行研究,国内外相关报道也较少。
     本课题研究硫酸钙和β-磷酸钙的材料力学性能,比较山羊与人颈椎体外三维力学运动特征,建立颈前路融合术的动物模型,观察β-磷酸钙和硫酸钙在山羊颈前路植骨融合术的融合效果,主要研究工作由以下三部分组成:
     一、山羊与人颈椎生物力学特性的比较
     目的:比较山羊与人颈椎的生物力学特性
     方法:取新鲜成年人尸体与纯种崇明白山羊颈椎标本(C0-T1)各8具,在脊柱三维运动测试仪上检测两者屈曲、后伸、左右侧屈、左右轴向旋转等模式下的运动范围和中性区。
     结果:山羊与人颈椎在前屈运动方式下,C1-2节段的ROM分别为16.9±5.1度和14.3±3.2度,超过其它节段;但山羊在各个节段前屈运动的ROM和人相比均无统计学差异(P>0.05)。而且山羊在各个节段前屈运动的NZ和人相比亦无统计学差异(P>0.05)。在后伸运动方式下,山羊与人C1-2节段的ROM分别为20.6±4.8度和18.7±3.7度,C0-1节段的ROM分别为19.3±4.7和18.4±4.3度,明显超过其它节段;但山羊与人在各个节段后伸运动的ROM相比均无统计学差异(P>0.05)。而且人与山羊在各个节段后伸运动的NZ相比亦无统计学差异(P>0.05)。在轴向旋转运动模式下,人C1-2节段的ROM为56.3±8.9度,约占整个颈椎旋转活动范围的70%;山羊C1-2节段的ROM为48.6±8.6度,约占整个颈椎旋转活动范围的63%;人C1-2节段的NZ为29.6±6.5度,约占整个颈椎旋转运动NZ的75%;山羊C1-2节段的NZ为25.9±7.1度,约占整个颈椎旋转运动NZ的68%。然而山羊在各个节段旋转运动的ROM和NZ和人相比均无统计学差异(P>0.05)。在左右侧屈运动模式下,山羊在各个节段侧屈运动的ROM和人相比均无统计学差异(P>0.05),山羊C6-7节段的NZ和人相比有统计学差异(P<0.05),其它节段的NZ和人相比无统计学差异(P>0.05)。
     结论:纯种崇明白山羊与人的颈椎在前屈、后伸、左右侧屈和轴向旋转等6种生理运动模式下的ROM及NZ相近,两者的生物力学特征基本一致。从生物力学角度出发,纯种崇明白山羊可作为颈椎融合及生物力学研究的良好动物模型。
     二、β-TCP、硫酸钙与人冻干异体髂骨的生物力学性能比较
     目的:体外测定硫酸钙、β-TCP与人冻干髂骨最大抗压缩强度及弹性模量
     方法:取3cm×1.5cm×1.0cm条块状硫酸钙、β-TCP与人冻干髂骨各8块,固定在材料试验机上,做最大抗压缩试验,加载速度1mm/s,描记载荷-变形曲线,计算材料的最大抗压强度及弹性模量。
     结果: CS、β-TCP与人冻干髂骨最大抗压缩强度分别为3.26±0.86Mpa,3.16±0.75 Mpa,2.97±0.81 Mpa;三者的弹性模量分别为82.35±10.54 Mpa,76.98±11.78 Mpa,35.35±6.98 Mpa。硫酸钙、β-TCP最大轴向抗压强度与冻干异体髂骨无明显差异(P>0.05),两者的弹性模量均大于冻干异体髂骨(P<0.05)
     结论:硫酸钙、β-TCP具有良好的结构支撑作用。
     三、β-TCP、硫酸钙在山羊颈前路椎间融合术的融合评价
     目的:评价硫酸钙、β-TCP应用于山羊颈前路椎间植骨融合术的效果。
     方法:将24只纯种崇明山羊随机等分为3组,分别以条块状硫酸钙、β-TCP、自体髂骨为植骨材料,制备正常山羊的前路颈3/4椎间盘切除减压植骨钢板内固定术模型,术后1、6、12、24周拍X线片,术后12、24周行三维CT重建检查,术后24周处死动物,拆除钢板后行体外三维生物力学测试,检测融合节段C3-4的ROM和NZ,并进行脱钙与不脱钙组织切片的组织病理学检查及骨组织形态计量学检测。结果:术后6周平片提示:硫酸钙组开始吸收。术后12周平片和CT矢状位重建检查示CS组仅有1只动物达到完全融合,而β-TCP组及自体骨组分别有4只和5只达到完全融合;术后24周,CS组仅有1只动物达到完全融合,而β-TCP组及自体骨组分别有5只和6只达到完全融合。术后24周生物力学测试表明在颈椎前屈/后伸、左侧屈/右侧屈、左/右轴向旋转等生理运动模式下,β-TCP组和自体骨组C3-4节段的ROM分别比CS组的C3-4节段的ROM减少(P<0.05)。术后24周HE切片染色检查示CS组有少量骨组织从相邻的椎体长人,移植骨内部新骨形成少,有不规则的条索状纤维组织和少量软骨组织充填其中。β-TCP组新生骨分布均匀,形成的骨组织绝大多数是小梁状骨,还有少量的残余β-TCP材料在吸收改建之中,在移植块的中心区域有新生的骨髓组织生成。自体骨组显示出良好的骨性融合,骨组织绝大多数是成熟的小梁骨,新生骨髓组织在融合区域大量形成。骨组织计量学定量分析示CS组、β-TCP组和自体骨组新骨形成率分别为25.8±5.1%、45.5±6.7%、49.2±5.8%,β-TCP组和自体骨组相近(P>0.05),与CS相比有明显差异(P<0.05)。结论:β-TCP和自体髂骨在颈前路椎间融合术中具有相近的融合效果,优于CS,β-TCP可作为自体髂骨良好的替代物。
Iliac autografts has been the golden standard of bone grafting in anterior cervical fusion since Smith and Robinson first performed anterior cervical discectomy and fusion in 1958. However, harvesting autografts has some disadvantage such as pain and infection of harvested sites, tear fractures, nerve injuries, limited supply, increased surgical time, and so on. Because of above mentioned disadvantage many scholars have always strived to seek ideal bone substitutes.
     Allograft or xenograft bone has been successfully applied in experimental studies and clinical trials because of its osteoconductivity and relative widely resources. But it is still a main concern that the risk of immunological rejection and potential transmitted virus such as type B or C hepatitis virus, human immunodeficiency virus.
     Although it can avoid harvesting iliac bone grafts by the means of using the local bone obtained from decompression combined with the titanium mesh or cage, sometimes there is less local bone available for use. There are some studies reported that the dislocation rate of titanium mesh or cage was about 17 percents and the subsidence rate in upper and caudal vertebrae were 42 percents and 50 percents respectively. So this method has limited use.
     With the development of materials technology and biomechanics, the research related to synthetic bone substitutes has been more extensive. Now the most used bone substitutes are calcium sulphate (CS) and calcium phosphate. The latter is mainly composed of hydroxyapatite (HA) andβ-tricalcium phosphate (β-TCP). All These synthetic materials enjoy several advantages over other bone graft materials in that they are osteoconductive, nontoxic, biocompatible, easy to sterilize and available in a virtually unlimited supply. However, they have some disadvantages. Firstly, they are not osteoinductive and osteogenic. Secondly, they have different duration of degradation. The resorption of some materials are rapid, such as calcium sulphate which was absorbed four to six weeks after implantation. At that time the new bone formation is incomplete and the fusion mass is weak, this may lead to breakage of plate system. HA is a relatively inert substance that is retained in vivo for prolonged periods of time, and it can provide structural stability.β-TCP typically undergoes biodegradation within 8-12 weeks of its introduction into the area of bone formation.
     There are many reports about CS andβ-TCP as bone expander for repairing non weight-bearing bone defects, whereas rare are applied in anterior cervical fusion. In order to obtain ideal substitutes for anterior cervical fusion, we planed to investigate the effect of CS andβ-TCP applied in anterior cervical fusion.
     To mimic human cervical spine surgery more accurately, it has best to use non human primate as models. However these animals are expensive, limited supplying and difficult to handle, many scholars most use goat, sheep and swine as animal models. By far, the comparison of three-dimensional biomechanics between goat and human are rare reported. It still remains concern about whether goat is a optimal model for anterior cervical spine surgery. To solve this problem, it needs to compare the three-dimensional biomechanics of goat and human.
     In addition, the bone grafts used in anterior cervical interbody fusion require supporting gravity of head, so it should be to investigate biomechanical stability of CS andβ-TCP in vitro. And rare reports have addressed this issue up to now.
     In general, we planed to investigate biomechanical stability of CS andβ-TCP, compare the three-dimensional biomechanics between goat and human cervical spine, establish optimal model for anterior cervical fusion and observe the fusion effects of CS andβ-TCP as bone substitutes. Our study made up of three parts as follow.
     Part one: Comparison of Three-dimensional Biomechanical Characteristics Between Goat and Human Cervical Spine
     Objective. To compare three-dimensional biomechanical characteristics between goat and human cervical spine.
     Methods. Eight fresh cervical spines were harvested respectively from adult human cadaver and pure breed ChongMing white goat. And the range of motions(ROM) and neutral zone(NZ) of the specimens were tested respectively in three-dimentional testing apparatus under flexion, extension, right or left bending and axial rotational loads.
     Results. Under flexion loads, ROM of C1-2 of goat and human are 16.9±5.1 and 14.3±3.2 degrees respectively, lager than other levels. But the ROM and NZ of each level of cervical spine of goat has no statistical significance respectively when comparing with human (P>0.05). Under extension loads, ROM of C1-2 of goat and human are 20.6±4.8 and 18.7±3.7 degrees respectively, and ROM of C0-1 of goat and human are 19.3±4.7 and 18.4±4.3 degrees respectively, more superior than other levels. But the ROM and NZ of each level of cervical spine of goat has no statistical significance respectively when comparing with human (P>0.05). Under axial torques, ROM of C1-2 of human is 56.3±8.9 degrees, made up of 70 percents of ROM of the whole cervical spine. And ROM of C1-2 of goat is 56.3±8.9 degrees, made up of 68 percents of ROM of the whole cervical spine. NZ of C1-2 of goat and human are 25.9±7.1 and 29.6±6.5 degrees respectively, made up of most of whole cervical spine. However, the ROM and NZ of each level of cervical spine of goat has no statistical significance respectively when comparing with human (P>0.05). Under right or left bending loads, the ROM of each level of cervical spine of goat has no statistical significance respectively when comparing with human (P>0.05). Except C6-7 level, the NZ of other levels of cervical spine of goat have no statistical significance when comparing with human (P>0.05).
     Conclusions. Pure breed ChongMing white goat had similar biomechanical characteristics with human under flexion, extension, right or left bending and axial rotational loads. It served as an optimal model for anterior cervical fusion and biomechanical research.
     Part two: Biomechanics of CS andβ-TCP in Vitro Compare with Human Freeze-drying Iliac Allografts
     Objective. To investigate the axial compression strength and elastic modulus of CS,β-TCP and human freeze-drying iliac allografts.
     Methods. Respective eight pieces of CS,β-TCP and human freeze-drying iliac allografts in same size (3cm×1.5cm×1.0cm) were obtained for mechanical testing. Each specimen was mounted in testing apparatus, loaded axial compression with a velocity of 1mm per second and the load–displacement curves were plotted. Thus the axial compression strength and elastic modulus were calculated.
     Results. The axial compression strength of CS,β-TCP and human freeze-drying iliac allografts were 3.26±0.86Mpa, 3.16±0.75 Mpa, 2.97±0.81 Mpa respectively, and elastic modulus were 82.35±10.54 Mpa, 76.98±11.78 Mpa, 35.35±6.98 Mpa. The axial compression strength of CS andβ-TCP have no statistical significance when compared with human freeze-drying iliac allografts. However, the elastic modulus of both were lager than human freeze-drying iliac allografts (p<0.05).
     Conclusions. CS andβ-TCP had optimal structural supporting stability.
     Part three: Evaluation of Efficacy ofβ-TCP and CS as Bone Substitutes for Goat Anterior Cervical Fusion.
     Objective. To evaluate efficacy ofβ-TCP and CS as bone substitutes for goat anterior cervical fusion.
     Methods. twenty four pure breed adult ChongMing white goats were divided into three groups(group CS, groupβ-TCP and group auto) equally and randomly. And the animals were performed with anterior C3-4 discectomy and fusion with different grafts according to preoperative plan. all animals were tested by means of X-ray in 1th, 6th , 12th and 24th week after operation. And the three-dimensinal CT reconstruction were performed in 12th and 24th week. After all animal were euthanized in 24th week, Cervical plate systems were removed and biomechanical testing was performed in non destructively. And then histomorphological and histomorphometrical analysis of decalcified and non decalcified slices were carried out.
     Results. Radiograph of six weeks postoperative revealed CS began to absorbed. Radiograph and CT reconstruction in 12th week postoperative suggested that there was only one animal obtaining complete fusion in group CS whereas 4 and 5 respective in groupβ-TCP and Auto. In 24th week the number of complete fusion still remained one in group CS, but 5 and 6 respective in groupβ-TCP and Auto. The biomechanical testing revealed that ROM of C3-4 of groupβ-TCP and Auto decreased compared with group CS. It was observed in HE stained slices that less new bone formation, Cartilaginous tissue and massive fibrous tissue in group CS while massive mature trabecular bone and mallow in groupβ-TCP and Auto. There was a small quantity of ceramic Remnants in groupβ-TCP. The new bone formation rate was 25.8±5.1%, 45.5±6.7%, 49.2±5.8% respectively in group CS,β-TCP and Auto. There was no statistical significance between groupβ-TCP and Auto (P>0.05), while statistical significance was seen in group CS when comparing with groupβ-TCP or Auto (P<0.05).
     Conclusions.β-TCP had similar efficacy with autografts in anterior cervical fusion and was superior to CS.β-TCP is an optimal substitute for iliac autografts.
引文
1. Smith GW, Robinson. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958 Jun;40-A(3):607-24.
    2. Kanayama M, Hashimoto T, Shigenobu K, et al. Pitfalls of anterior cervical fusion using titanium mesh and local autograft. J Spinal Disord Tech. 2003 Dec;16(6):513-8.
    3. Jamali A, Hilpert A, Debes J, et al. Hydroxyapatite/calcium carbonate (HA/CC) vs. plaster of Paris: a histomorphometric and radiographic study in a rabbit tibial defect model. Calcif Tissue Int. 2002 ;71(2):172-8.
    4. Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003; 406:228-36.
    5. Turner TM, Urban RM, Gitelis S, et al. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics. 2003;26(5 Suppl):s577-9.
    6. Koepp HE, Schorlemmer S, Kessler S, et al. Biocompatibility and osseointegration of beta-TCP: histomorphological and biomechanical studies in a weight-bearing sheep model. J Biomed Mater Res B Appl Biomater. 2004; 70(2):209-17.
    7. Ogose A, Hotta T, Kawashima H, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):94-101.
    8. Gaasbeek RD, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005 ;26(33):6713-9.
    9. TuFiler TM.Urban RM.Gitelis S,et a1.Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone graft substitute,a bone graft expander and a method for local antibiotic delivery. One institution’s experience.J Bone Joira Surg Am 2001; 83( Suppl 2):8-18
    10. Alexander DI, Manson NA, Mitchell MJ.Efficacy of calcium sulfate plus decompression bone in lumbar and lumbar sacral spinal fusion: preliminary results in 40 patients.Can J Surg 2001;44(4):262—6.
    11. Schimandle JH, Boden SD. The use of animal models to study spinal fusion. Spine 1994;19:1998–2006.
    12. Sucato DJ, Hedequist D, Zhang H, et al. Recombinant human bone morphogenetic protein-2 enhances anterior spinal fusion in a thoracoscopically instrumented animal model. J Bone Joint Surg Am 2004;86-A:752–62.
    13. Newton PO, Lee SS, Mahar AT, et al. Thoracoscopic multilevel anterior instrumented fusion in a goat model. Spine 2003;28: 1614–20.
    1. Drespe IH, Polzhofer GK, Turner AS, et al. Animal models for spinal fusion. Spine J. 2005 ;5(6 Suppl):209S-216S.
    2. Asazuma T, Stokes IAF, Moreland MS, et al. Intersegmental spinal flexibility with lumbosacral instrumentation: An in vitro biomechanical investigation. Spine 1990;15:1153-8.
    3. Hu N, Cunningham BW, McAfee PC, et al. Porous coated motion cervical disc replacement: a biomechanical, histomorphometric, and biologic wear analysis in a caprine model. Spine. 2006 ;31(15):1666-73.
    4. Sidhu KS, Prochnow TD, Schmitt P, et al. Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J. 2001 ;1(5):331-40.
    5. Nasca RJ, Hollis JM, Lemons JE, et al. Cyclic axial loading of spinal implants. Spine 1985;10:792-8.
    6. McAfee PC, Cunningham B, Dmitriev A, et al. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. Spine. 2003 ;28(20):S176-85.
    7. Zdeblick TA, Cooke ME, Wilson D, et al. Anterior cervical discectomy, fusion and plating: A comparative animal study. Spine 1993;18:1974-83.
    8. Ahlgren BD, Vasavada MS, Brower RS, Lydon C, Herkowitz MD, Panjabi MM. Anular incision technique on the strength and multidirectional flexibility of the healing intervertebral disc. Spine 1994;19:948-54.
    9. Gunzburg R, Fraser RD, Moore R, Vernon-Roberts B. An experimental study comparing percutaneous discectomy with chemonucleolysis. Spine 1993;18:218-26.
    10. Melrose J, Ghosh P, Taylor TKF, et al. A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 1992;10:665-76.
    11. Moore RJ, Osti OL, Vernon-Roberts B, Fraser RD. Changes in endplate vascularity after an outer anulus tear in the sheep. Spine 1992;17:874-8.
    12. Osti OL, Vernon-Roberts B, Fraser RD. Anulus tears and intervertebral discdegeneration: An experimental study using an animal model. Spine 1990;15:431-5.
    13. Kotani Y, Cunningham BW, Cappuccino A, Kaneda K, McAfee PC. The role of spinal instrumentation on augmenting posterolateral fusion. Spine 1996;21:278-87.
    14. Nagel DA, Kramers PC, Rahn BA, Cordey J, Perren SM. A paradigm of delayed union and nonunion in the lumbosacral joint: A study of motion and bone grafting of the lumbosacral spine in sheep. Spine 1991;16:553-9.
    15. Krijnen MR, Mensch D, van Dieen JH, et al. Primary spinal segment stability with a stand-alone cage: in vitro evaluation of a successful goat model. Acta Orthop. 2006 ;77(3):454-61.
    16. Krijnen MR, Mullender MG, Smit TH, et al. Radiographic, histologic, and chemical evaluation of bioresorbable 70/30 poly-L-lactide-CO-D, L-lactide interbody fusion cages in a goat model. Spine. 2006 Jun 15;31(14):1559-67.
    17. Becker S, Maissen O, Ponomarev I, et al. Osteopromotion by a beta-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery. Spine. 2006 ;31(1):11-7.
    18. Wuisman PI, van Dijk M, Smit TH. Resorbable cages for spinal fusion: an experimental goat model. J Neurosurg. 2002 ;97(4 Suppl):433-9.
    19. van Dijk M, Tunc DC, Smit TH, et al. In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J Biomed Mater Res. 2002;63(6):752-9.
    20. Kandziora F, Pflugmacher R, Schafer J, et al. Biomechanical comparison of cervical spine interbody fusion cages. Spine. 2001 ;26(17):1850-7.
    21. DvorakJ, Panjabi MM, Grob D, et al. Clinical validation of functional flexion /extension radiographs of the cervical spine. Spine, 1993, 18(1):120-7.
    22. 黄文华,朱青安,钟世镇,等. 脊柱三维运动定位的计算机视觉方法. 计算机应用. 2000, 2 0(Suppl): 215-217.
    23. Panjabi MM, Miura T, Cripton PA, et a l. Developmento fa system for in v it ro neck muscle force replication in whole cervical spine exp er im ents. Spine, 2 001,26(20):2214-2219.
    24. Bogduk N, Yoganandan N. Biomechanics of the cervical spine Part 3: minor injuries. Clinical Biomechanics, 2001,16(4):267-275.
    25. Panjabi MM, Krag MH, Goel VK. A technique for measurement and de scr iption oft hree-dimensional six degree-of-freedomm otiono fabo dy j oint with an application to the human spine. J Biomech.198 1 :14 (7):447-60.
    26. 齐强,党耕町,陈仲强,等. 正常国人颈椎屈伸运动范围 X 线图像的计算机测量分析. 中华外科杂志, 2000,38(2):134-136.
    27. 陈语. Hangman 骨折的生物力学及临床研究. 2004,第二军医大学博士论文.
    28. 蔡斌. 枕寰枢后路不同内固定的生物力学评价. 2004,第二军医大学博士论文.
    29. Panjabi MM, Crisco JD, Vasavada A, et al. Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load–Displacement Curves. spine, 2001, 26(24),2692-2700.
    30. De Seze C, Dijian A, Abdelmoula M. Etude radiologique de la dynamique cervical dans le plain sagittal. (Une contribution radiophysiologique a l’etude pathogenique des artheoses cervicales). Rev Rhum 1951;18:37–46.
    31. Bakke S. Rontgenologische beobachtungen uber die bewegungen der halswirbelsaule. Acta Radiol Suppl (Stockh) 1931;13:76.
    32. Buetti-Ba¨uml C. Funktionelle roentgendiagnostik der halswirbelsaule. Arch Atlas 1954;70:19–23.
    33. Penning L. Normal movements of the cervical spine. Am J Roentgenol 1978;30:317–26.
    34. Dvorak J, Panjabi MM, Novotny JE, et al. In vivo flexion/extension of the normal cervical spine. J Orthop Res 1991;9:828–34.
    35. Dvorak J, Hayek J, Zehnder R. CT—functional diagnostics of the rotatory instability of the upper cervical spine. Part 2. An evaluation on healthy adults and patients with suspected instability. Spine 1987;12:726–31.
    36. Iai H, Moriya H, Goto S, et al. Three-dimensional motion analysis of the upper cervical spine during axial rotation. Spine 1993;18:2388–92.
    37. Lysell E. Motion in the cervical spine. Acta Orthop Scand Suppl 1969;123:1–61.
    38. McClure P, Siegler S, Nobilini R. Three-dimensional flexibility characteristics of the human cervical spine in vivo. Spine 1998;23:216–23.
    39. Meyer GH. Die statik und mechanik der menschlichen knochengeru¨ stes. Leipzig: Engelmann, 1873.
    40. Sedlin ED, Hirsch C. Factors affecting the determining of the physical properties of femoral cortical bone. Acta Orthop Scand 1966;37:29–48.
    41. Johnsson R, Selvik G, Stromqvist B, et al. Mobility of the lower lumbar spine after posterolateral fusion determined by roentgen stereophotogrammetric analysis. Spine 1990;15:347–50.
    42. Johnsson R, Axelsson P, Gunnarsson G, et al. Stability of lumbar fusion with transpedicular fixation determined by roentgen stereophotogrammetric analysis. Spine 1999;24:687–90.
    43. Selvik G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Acta Orthop Scand (suppl 232) 1989.
    44. Fineman S, Borrelli FJ, Rubinstein BM, et al. The cervical spine: transformation of the normal lordotic pattern into a linear pattern in neutral posture. J Bone Joint Surg Am 1963;45:1179.
    45. Panjabi MM, Yamamoto I, Oxland TM, et al. How does posture affect coupling in the lumbar spine? Spine 1989;14:1002–11.
    46. Hughes AW. Die drehbewegungen der menschlichen wirbelsa¨ ule und die sogenannten musculi rotatores (Theile). Arch Anat Entwickl-Gesch. 265, 1892.
    47. Lovett RW. The mechanism of the normal spine and its relation to scoliosis. Boston Med Surg J 1905;153:349–58.
    48. Volkmann AW. Von der drehbewegung des ko¨ rpers. Virchows Arch Path Anat 1872;56:467.
    49. Weber EH. Anatomisch-physiologische untersuchung u¨ ber einige einrichtungen im mechanismus der menschlichen wirbelsa¨ ule. Arch Anat Physiol 1827;240
    50. Sedlin ED, Hirsch C. Factors affecting the determining of the physical properties of femoral cortical bone. Acta Orthop Scand 1966;37:29–48.
    51. Werne S. Studies in spontaneous atlas dislocation. Acta Orthop Scand (suppl23), 1957.
    52. Wilke HJ, Kettler A, Claes LE. Are Sheep Spines a Valid Biomechanical Model for Human Spines? Spine. 1997 ;22(20):2365-74.
    53. Moroney SP, Schultz AB, Miller JAA, et al. Load-displacement properties of lower cervical spine motion segments. J Biomech 1988;21:769–79.
    54. Panjabi MM, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine. Spine 1988;13:726–30.
    55. Panjabi MM, Summers DJ, Pelker RR, et al. Three-dimensional loaddisplacement curves due to forces on the cervical spine. J Orthop Res 1986;4:152–61.
    56. Wen N, Lavaste F, Santin JJ, et al. Three-dimensional biomechanical properties ofthe human cervical spine in vitro. Eur Spine J 1993;2:2-47.
    57. Penning L, Wilmink JT. Rotation of the cervical spine. Spine 1987;12:732–8.
    58. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis. Spine. 2006 ;31(2):155-60.
    59. Nolan JP, Sherk HH. Biomechanical evaluation of the extensor musculature of the cervical spine. Spine 1988;13:9–11.
    60. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis. Spine. 2004 ;29(24):2826-31.
    61. Ishii T, Mukai Y, Hosono N, et al. Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine. 2004 ;29(7):E139-44.
    62. Muhle C, Resnick D, Ahn JM, et al. In vivo changes in the neuroforaminal size at flexion-extension and axial rotation of the cervical spine in healthy persons examined using kinematic magnetic resonance imaging. Spine. 2001 ;26(13):E287-93.
    63. Kandziora F, Pflugmacher R, Scholz M, et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine. 2001;26(9):1028-37.
    1. Chen WJ, Tsai TT, Chen LH, et al. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine. 2005;30(20):2293-7.
    2. Turner TM, Urban RM, Gitelis S, et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution's experience. J Bone Joint Surg Am. 2001;83(Suppl 2):8-18.
    3. Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion: preliminary results in 40 patients.Can J Surg. 2001 Aug;44(4):262-6.
    4. Bucholz RW, Carlton A, Holmes RE: Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987, 18:323–334。
    5. Holmes RE: Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 1979, 63:626–633.
    6. Metsger DS, Driskell TD, Paulsrud JR: Tricalcium phosphate ceramic—a resorbable bone implant: review and current status. J Am Dent Assoc 1982, 105:1035–1038.
    7. Wolfinbarger L Jr, Zhang Y, Adam BL, et al. A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. II. Mechanical properties and correlation with physical parameters.Spine. 1994 Feb 1;19(3):284-95.
    8. Zhang Y, Homsi D, Gates K, et al. A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Effect of gamma irradiation on mechanical and material properties. Spine. 1994 Feb 1;19(3):304-8.
    9. Kang JS, Kim NH. The biomechanical properties of deep freezing and freeze drying bones and their biomechanical changes after in-vivo allograft. Yonsei Med J. 1995 ;36(4):332-5.
    10. Cornu O, Bavadekar A, Godts B, et al. Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselized grafts: experiments in cadavers. Acta Orthop Scand. 2003 Oct;74(5):553-8.
    11. Brantigan JW, Cunningham BW, Warden K, et al.Compression strength of donor bone for posterior lumbar interbody fusion. Spine. 1993;18(9):1213-21.
    12. Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone allografts. Clin Orthop Relat Res. 1983;174(4):54-7.
    13. Resnick DK. Vitoss Bone Substitute. Neurosurgery. 2002; 50(5):1162-1164.
    14. Lei D, Wardlaw D, Hukins DW. Mechanical properties of calcium sulphate/hydroxyapatite cement.Biomed Mater Eng. 2006;16(6):423-8.
    1. Smith GW, Robinson. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958 Jun;40-A(3):607-24.
    2. Kanayama M, Hashimoto T, Shigenobu K, et al. Pitfalls of anterior cervical fusion using titanium mesh and local autograft. J Spinal Disord Tech. 2003 Dec;16(6):513-8.
    3. Jamali A, Hilpert A, Debes J, et al. Hydroxyapatite/calcium carbonate (HA/CC) vs. plaster of Paris: a histomorphometric and radiographic study in a rabbit tibial defect model. Calcif Tissue Int. 2002 ;71(2):172-8.
    4. Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003; 406:228-36.
    5. Turner TM, Urban RM, Gitelis S, et al. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics. 2003;26(5 Suppl):s577-9.
    6. Koepp HE, Schorlemmer S, Kessler S, et al. Biocompatibility and osseointegration of beta-TCP: histomorphological and biomechanical studies in a weight-bearing sheep model. J Biomed Mater Res B Appl Biomater. 2004; 70(2):209-17.
    7. Shors EC, White EW, Kopchok G: Biocompatibility, osteoconduction andbiodegradation of porous hydroxyapatite and calcium carbonate in rabbit bone defects. Mat Res Soc Symp Proc 110:211–218, 1989
    8. F Kandziora, R Pflugmacher, M Scholz, et al. Comparison of BMP-2 and combined IGF-I/ TGF-?1 application in a sheep cervical spine fusion model. Eur Spine J, 2002 , 11 :482–493.
    9. Panjabi MM, Crisco DJ, Vasavada A, et al. Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load–Displacement Curves. Spine 2001, 26(24):2692-2700.
    10. Tang K,Guo SQ,Dang GT, et al.In vivo evaluation of bone mallow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute fur lumbar intervertebral spinal fusion.Spine, 2003,28:1653—1658.
    11. 汪韬,党耕町,郭昭庆,等.自体骨髓基质干细胞与钙磷陶瓷复合体在恒河猴腰椎前路融合中的实验研究. 中华外科杂志,2006,44(l2):843-847.
    12. Thorell W, Cooper J, Hellbusch L, et al: The long-term clinical outcome of patients undergoing anterior cervical discectomy with and without intervertebral bone graft placement. Neurosurgery 1998, 43:268–274.
    13. Watters WC III, Levinthal R: Anterior cervical discectomy with and without fusion. Results, complications, and long-term follow-up. Spine 1994, 19:2343–2347.
    14. Aronson N, Filtzer DL, Bagan M: Anterior cervical fusion by the smith-robinson approach. 1968, J Neurosurg 29:396–404.
    15. Tew JM Jr, Mayfield FH: Complications of surgery of the anterior cervical spine. Clin Neurosurg 1976, 23:424–434.
    16. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg [Br] 2001;83-B:3-8.
    17. Young WF, Rosenwasser RH: An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine 1993, 18:1123–1124.
    18. Bucholz RW, Carlton A, Holmes RE: Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987, 18:323–334。
    19. Holmes RE: Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 1979, 63:626–633.
    20. Metsger DS, Driskell TD, Paulsrud JR: Tricalcium phosphate ceramic—a resorbable bone implant: review and current status. J Am Dent Assoc 1982, 105:1035–1038.
    21. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998,80:985
    22. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accerlerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 1999;49:328.
    23. Gaasbeek RD, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005 ;26(33):6713-9.
    24. Toth J, An H, Lim T, Ran Y, etal. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Spine1995 ; 20:2203–2210.
    25. Ogose A, Hotta T, Kawashima H, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):94-101.
    26. F Kandziora, R Pflugmacher, M Scholz, et al. Comparison of BMP-2 and combined IGF-I/ TGF-?1 application in a sheep cervical spine fusion model. Eur Spine J. 2002 ; 11 :482–493.
    27. Erbe E, Clineff T, Lavagnino M, et al. Comparison of Vitoss and ProOsteon 500R in a canine model at one year. Forty-seventh Annual Meeting of the Orthopaedic Research Society.San Francisco, 2001. Abstract 975.
    28. Glazer PA, Spencer UM, Alkalay RN, et al. In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J. 2001 ;1(6):395-401.
    29. Eggli PS, Muller W, Shenk RK: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop 1988, 232:127–138.
    30. Gatti AM, Zaffe D, Poli GP: Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials 1990, 11:513–517.
    31. Hossain MZ, Kyomen S, Tanne K: Biologic responses of autogenous bone and beta-tricalcium phosphate ceramics transplanted into bone defects to orthodonticforces. Cleft Palate Craniofac J 1996, 33:277–283.
    32. Niedhart C, Maus U, Redmann E, et al: In vivo testing of a new in situ setting beta-tricalcium phosphate cement for osseous reconstruction. J Biomed Mater Res 2001, 55:530–537.
    33. Ohgushi H, Okumura M, Tamai S, et al: Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990, 24:1563–1570.
    34. Kelly CM. Wilkins RM. Gitelis S et al.The use of a surgical grade calcium sulfate as a bone graft substitute:results of a muticenter trial . Clin Orthop Relat Res 2001;382:42-50
    35. Pehier LF.The use of plaster of paris to fill defects in bone.Clin orthop Relat Res l96l;2l:l-3l
    36. TuFiler TM.Urban RM.Gitelis S,et a1.Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone graft substitute,a bone graft expander and a method for local antibiotic delivery. One institution’s experience.J Bone Joira Surg Am 2001; 83( Suppl 2):8-18
    37. Turner TM,Urban RM.Gitelis S,et a1.Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect.Orthopedics 2003;26(5 Supp1):s577 -9
    38. urban RM,Turner TM,Hall DJ,et a1.An injectable calcium sulfate—bused bone graft putty using hydroxypropylmethylcellulose as the plasticizer.Orthopedics 2004;27(Supp1):s155-9
    39. Alexander DI, Manson NA, Mitchell MJ.Efficacy of calcium sulfate plus decompression bone in lumbar and lumbar sacral spinal fusion: preliminary results in 40 patients.Can J Surg 2001;44(4):262-6.
    1. Hibbs RA: An operation for progressive spinal deformities. NY Med J 1911; 93:1013.
    2. Albee FH: A report of bone transplantation and osteoplasty in the treatment of Pott's disease of spine. NY Med J. 1912;95:469.
    3. Sandhu HS. Anterior lumbar interbody fusion with osteoinductive growth factors. Clin Orthop 2000;371:56–60.
    4. Boden S. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 2002; 27:S26–31.
    5. Boden SD, Schimandle JH. Fusion. Biology of lumbar spine fusion and bone graft materials. In: International Society for Study of the Lumbar Spine Editorial Committee, editors. The lumbar spine, 2nd ed. Philadelphia: WB Saunders, 1996:1284–306.
    6. Simon SR, editor. Orthopaedic basic science, 2nd ed. Rosemont, IL:AAOS, 1994:284–93.
    7. Ilizarov GA. The tension-stress effect on the genesis and growth of issues. Part 2. The influence of the rate and frequency of distraction. Clin Orth Rel Res 1989;239:263–85.
    8. Enneking WF, Burchardt H, Puhl JJ, et al. Physical and biological aspects of repair in dog cortical-bone transplants. J Bone Joint Surg 1975;57:237–52.
    9. Enneking WF, Early JL, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am 1980;62:1039–58.
    10. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br. 2001;83-B:3-8.
    11. Brown KLB, et al. Bone and cartilage transplantation in orthopaedic surgery. J Bone Joint Surg Am. 1982;64:270.
    12. Goldberg VM, et al. Natural history of autografts and allografts. Clin Orthop 1987;225:7.
    13. 黄长明,王臻,童星杰等. 大段同种异体骨移植愈合的实验研究. 骨与关节损伤杂志 2000;15(5):355-358.
    14. Muscolo DL. Tissue-typing in human massive allografts of frozen bone. J Bone Joint Surg Am. 1987;69:538.
    15. Burchardt H, et al. Freeze-dried allogenic segmental cortical-bone grafts in dogs. J Bone Joint Surg Am. 1978;80:1082.
    16. 杨克强,王臻,桑宏勋等. 深低温冷冻异体骨生物力学特性与储存的时间关系. 医用生物力学 2000;15(3):183-186.
    17. 李孜壮,卢世壁,王继芳. 冷冻干燥骨库的临床应用. 制冷 1995;51(2):67-69.
    18. 张光钧,李子荣,刘成刚. 酒精储骨移植在脊柱外科的应用. 临床医学杂志 1989;5(6):236-239.
    19. Akkus O, Rimnac CM. Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res 2001;19:927-924.
    20. 桑宏勋,胡蕴玉,孙怡群等. 环氧乙烷和电离辐射对骨移植材料灭菌效果的对比分析. 中华外科杂志 1996;34(8):457-459.
    21. 屠重棋,龚全,裴福兴等. 大块冷冻同种异体骨移植后免疫学改变. 中华骨科杂志 2000;20(7): 421-423.
    22. Horowitz MC, Friedlaender GE. Immunologic aspects of bone transplantation: A rationale for future studies. J Orthop Clin North Am, 1987;18(2):227.
    23. Marks SCJ, Popoff SN. Bone cell biology: the regulation of development, structure, and function in the skeleton. J Am Anat, 1988;183(1):1.
    24. Horton JE, Raisz LG, Simmons HA, et al. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. J Science, 1972;(51):793.
    25. Tsuang YH, Yang RS, Chen PQ, et al. Experimental allograft in spinal fusion in dogs. Taiwan I Hsueh Hui Tsa Chih 1989;88:989–94.
    26. Burchardt H, Jones H, Glowczewskie F, et al. Freeze-dried allogeneic segmental cortical-bone grafts in dogs. J Bone Joint Surg Am 1978;60:1082–90.
    27. Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg Am 1992;74:939–50.
    28. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop 2000;371:10–27.
    29. Cloward RB. The anterior approach for removal of ruptured cervical discs. J Neurosurg 1958;15:602.
    30. Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin Orthop 1976;119:231–6.
    31. Young WF, Rossenwasser RH. An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine 1993;18: 1123–4.
    32. Zdeblick TA, Ducker TB. The use of freeze-dried allograft bone for anterior cervical fusions. Spine 1991;16:726–9.
    33. Zhang ZH, Yin H, Yang K, et al. Anterior intervertebral disc excision and bone grafting in cervical spondylitic myelopathy. Spine 1983;8:16–9.
    34. Jorgenson SS, Lowe TG, France J, et al. A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 1994;19:2048–53.
    35. An HS, Simpson JM, Glover JM, et al. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multi-center study. Spine 1995;20:2211–6.
    36. Dodd CA, Ferguson CM, Freedman L. Allograft versus autograft in scoliosis surgery. J Bone Joint Surg Br 1988;70:431–4.
    37. Kozak JA, Heilman AE, O’Brian JP. Anterior lumbar fusion options: techniques and graft materials. Clin Orthop 1994;300:45–51.
    38. Silcox DH. Laparoscopic bone dowel fusions of the lumbar spine. Orthop Clin North Am 1998;29:655–63.
    39. Butterman GR, Glazer PA, Hu SS, et al. Revision of failed lumbar fusions. A comparison of anterior autograft and allograft. Spine 1997;22:2748–55.
    40. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am 1995;77:1742–54.
    41. Asselmeier MA, Casperi RB, Bottenfeld S. A review of allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med 1993;21: 170–5.
    42. Bucholz R, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop 1989;240:53–62.
    43. Wolfe S, Pike L, Slade J, et al. Augmentation of distal radius fracture fixationwith coralline hydroxyapatite bone graft substitute. J Hand Surg Am. 1999;24:816–827.
    44. Zdeblick T, Cooke M, Kunz D, et al. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine 1994;19:2348–2357.
    45. Ogose A, Hotta T, Kawashima H, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):94-101.
    46. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998,80:985
    47. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accerlerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 1999;49:328.
    48. Gaasbeek RD, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005 ;26(33):6713-9.
    49. Toth J, An H, Lim T, Ran Y, etal. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Spine1995 ; 20:2203–2210.
    50. F Kandziora, R Pflugmacher, M Scholz, et al. Comparison of BMP-2 and combined IGF-I/ TGF-?1 application in a sheep cervical spine fusion model. Eur Spine J. 2002 ; 11 :482–493.
    51. Erbe E, Clineff T, Lavagnino M, et al. Comparison of Vitoss and ProOsteon 500R in a canine model at one year. Forty-seventh Annual Meeting of the Orthopaedic Research Society.San Francisco, 2001. Abstract 975.
    52. Kelly CM. Wilkins RM. Gitelis S et al.The use of a surgical grade calcium sulfate as a bone graft substitute:results of a muticenter trial . Clin Orthop Relat Res 2001;382:42-50
    53. Pehier LF.The use of plaster of paris to fill defects in bone.Clin orthop Relat Res l96l;2l:l-3l
    54. TuFiler TM.Urban RM.Gitelis S,et a1.Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone graft substitute,a bone graft expander and a method for local antibioticdelivery. One institution’s experience.J Bone Joira Surg Am 2001; 83( Suppl 2):8-18
    55. Turner TM,Urban RM.Gitelis S,et a1.Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect.Orthopedics 2003;26(5 Supp1):s577 -9
    56. urban RM,Turner TM,Hall DJ,et a1.An injectable calcium sulfate—bused bone graft putty using hydroxypropylmethylcellulose as the plasticizer.Orthopedics 2004;27(Supp1):s155-9
    57. Alexander DI, Manson NA, Mitchell MJ.Efficacy of calcium sulfate plus decompression bone in lumbar and lumbar sacral spinal fusion: preliminary results in 40 patients.Can J Surg 2001;44(4):262—6
    58. Urist M.R. Bone: formation by autoinduction. Science 1965;150:893–899.
    59. Wang E.A, Rosen V, Cordes P,et al. Purification and characterization of other distinct bone-inducing factors, Proc.Nat. Acad. Sci. USA 1988;85: 9484–9488.
    60. Sampath M, Imamura KE, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9:49-61.
    61. Kirker-head CA. Potential application and delivery strategies of bone morphogenetic proteins. Advanced Drug Delivery Reviews 2000;43:65-92.
    62. Cook SD, Dalton JE, Tan EH, et al. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implant as a bone graft substitute for spinal fusions. Spine 1994;19:1655–63.
    63. Boden SD, Martin GJ, Morone M, et al. The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spinal fusion. Spine 1999;24:320–7.
    64. Boden SD, Martin GJ, Morone M, et al. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phonsphate after laminectomy in the nonhuman primate. Spine 1999;24:1179–85.
    65. Holliger EH, Trawick RH, Boden SD, et al. Morphology of the lumbar intertransverse process fusion mass in the rabbit model: a comparison between two bone graft materials—rhBMP-2 and autograft. J Spinal Disord 1996;9:125–8.
    66. Grauer JN, Patel TC, Erulkar JS, et al. Evaluation of OP-1 as a graft substitute forintertransverse process lumbar fusion. Spine 2001;26:127–33.
    67. Sandu HS, Kanim LE, Kabo JM, et al. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine 1995;20:2669–82.
    68. Silcox DH, Boden SD, Schimandle JH, et al. Reversing the inhibitory effect of nicotine on spinal fusion using an osteoinductive protein extract. Spine 1998;23:291–6.
    69. Martin GJ, Boden SD, Titus L. Recombinant human bone morphogenetic protein-2 overcomes the inhibitory effect of ketorolac, a nonsteroidal anti-inflammatory drug (NSAID), on posterolateral lumbar intertransverse process spine fusion. Spine 1999;24:2188–93.
    70. Patel TC, Erulkar JS, Grauer JN, et al. Osteogenic protein-1 overcomes the inhibitory effect of nicotine on posterolateral lumbar fusion. Spine 2001;1656–61.
    71. Zdeblick TA, Ghanayem AJ, Rapoff AJ, et al. Cervical interbody fusion cages. An animal model with and without bone morphogenetic protein. Spine 1998;23:758–65.
    72. Cunningham BW, Kanayama M, Parker LM, et al. Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 1999;24:509–18.
    73. Boden SD, Nartin GJ, Horton WC, et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998;11:95–101.
    74. Hecht BP, Fischgrund JS, Herkowitz HN, et al. The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 1999;24:629–36.
    75. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002;27:567–75.
    76. Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000;25:376–81.
    77. Paramore CG, Lauryssen C, Rauzzino MJ, et al. The safety of OP-1 for lumbar fusion with decompression—a canine study. Neurosurgery 1999;44:1151–5.
    78. Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone 1992;13:818–8.
    79. Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295–312.
    80. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278–94.
    81. Dennis JE, Haynesworth SE, Young RG, et al. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1992;1:23–32.
    82. Cassiede P, Dennis JE, Ma F, et al. Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 1996;11:1264–73.
    83. Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 1997;6:125–34.
    84. Grigoriadis A, Heersche JN, Aubin J. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 1988;106:2139–51.
    85. Muschler GF, Boehm C, Easley KA. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 1997;79:1699–709.
    86. Muschler GF, Nitto H, Boehm C, et al. Age- and genderrelated changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001;19:117–25.
    87. Inoue K, Ohgushi H, Yoshikawa T, et al. The effects of aging on bone formation in porous hydroxyapatite: biochemical and histologic analysis. J Bone Miner Res 1997;12:989–94.
    88. Kahn A, Gibbons R, Perkins S, et al. Age-related bone loss: a hypothesis and initial assessment in mice. Clin Orthop 1995;313: 69–75.
    89. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded bone marrowderived mesenchymal stem cells can regenerate a critical-sized segmental bone defect.Tissue Eng 1997;3:173–85.
    90. Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 1999;90:109–14.
    91. Wang JC, Yoo S, Kanim LEA, et al. Gene therapy for spinal fusion: transformation of marrow cells with adenoviral vector to produce bone morphogenetic protein. Presented at the 34th Annual Meeting of the Scoliosis Research Society, September 24, 1999; San Diego, CA.
    92. Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998;23:2486–92.
    93. Viggeswarapu M, Boden SD, Liu Y, et al. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 2001;83:364–76.
    1. Younger EM, Chapman MW. Morbidity at bone graft donor sites.J Orthop Trauma 1989;3:192–5.
    2. Malloy KM, Hilibrand AS. Autograft versus allograft in degenerative cervical disease. Clin Orthop 2002;394:27–38.
    3. Albee F. An experimental study of bone growth and the spinal bone transplant. JAMA 1913;60:1044.
    4. Schimandle JH, Boden SD. Spine update. The use of animal models to study spinal fusion. Spine 1994;19:1998–2006.
    5. Sucato DJ, Hedequist D, Zhang H, et al. Recombinant human bone morphogenetic protein-2 enhances anterior spinal fusion in a thoracoscopically instrumented animal model. J Bone Joint Surg Am 2004;86-A:752–62.
    6. Newton PO, Lee SS, Mahar AT, et al. Thoracoscopic multilevel anterior instrumented fusion in a goat model. Spine 2003;28: 1614–20.
    7. Jahng TA, Fu TS, Cunningham BW, et al. Endoscopic instrumented posterolateral lumbar fusion with Healos and recombinant human growth/differentiation factor-5. Neurosurgery 2004;54:171–80; discussion 80–1.
    8. Feiertag MA, Boden SD, Schimandle JH, et al. A rabbit model for nonunion of lumbar intertransverse process spine arthrodesis. Spine 1996;21:27–31.
    9. Patel TC, Erulkar JS, Grauer JN, et al. Osteogenic protein-1 overcomes the inhibitory effect of nicotine on posterolateral lumbar fusion. Spine 2001;26:1656–61.
    10. Silcox DH 3rd, Boden SD, Schimandle JH, et al. Reversing the inhibitory effect of nicotine on spinal fusion using an osteoinductive protein extract. Spine 1998;23:291–6; discussion 7.
    11. Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998;23:2486–92.
    12. Cui Q, Ming Xiao Z, Balian G, et al. Comparison of lumbar spine fusion using mixed and cloned marrow cells. Spine 2001;26:2305–10.
    13. Dumont RJ, Dayoub H, Li JZ, et al. Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 2002;51:1239–44; discussion 44–5.
    14. Kim HS,Viggeswarapu M, Boden SD, et al. Overcoming the immune response to permit ex vivo gene therapy for spine fusion with human type 5 adenoviral delivery of the LIM mineralization protein-1 cDNA. Spine 2003;28:219–26.
    15. Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biomechanical healing characteristics. Spine 1995;20:412–20.
    16. Schimandle JH, Boden SD, Hutton WC. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 1995;20:1326–37.
    17. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 1998;23:159–67.
    18. Grauer JN, Patel TC, Erulkar JS, et al. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 2001;26:127–33.
    19. Kanayama M, Cunningham BW, Sefter JC, et al. Does spinal instrumentation influence the healing process of posterolateral spinal fusion? An in vivo animal model. Spine 1999;24:1058–65.
    20. Boden SD, Martin GJ Jr, Horton WC, et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 1998;11:95–101.
    21. Baramki HG, Steffen T, Lander P, et al. The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 2000;25:1053–60.
    22. Fischgrund JS, James SB, Chabot MC, et al. Augmentation of autograft usingrhBMP-2 and different carrier media in the canine spinal fusion model. J Spinal Disord 1997;10:467–72.
    23. Holliger EH, Trawick RH, Boden SD, et al. Morphology of the lumbar intertransverse process fusion mass in the rabbit model: a comparison between two bone graft materials—rhBMP-2 and autograft. J Spinal Disord 1996;9:125–8.
    24. Yee JMA, BaeHW, Friess D, et al. Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine 2003;28:2435–40.
    25. Minamide A, Tamaki T, Yoshida M, et al. The use of sintered bone in spinal surgery. Eur Spine J 2001;10(Suppl. 2):S185–8.
    26. Erulkar JS, Grauer JN, Patel TC, et al. Flexibility analysis of posterolateral fusions in a New Zealand white rabbit model. Spine 2001;26: 1125–30.
    27. Sandhu HS, Kanim LE, Kabo JM, et al. Evaluation of rhBMP-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine 1995;20:2669–82.
    28. Cheng JC, Guo X, Law LP, et al. How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion? Spine 2002;27:467–74.
    29. Morone MA, Boden SD, Hair G, et al. The Marshall R. Urist Young Investigator Award. Gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin Orthop 1998;12:252–65.
    30. Suzuki H, Takahashi K, Yamagata M, et al. Spatial and temporal collagen gene expression in lumbar intertransverse fusion in the rabbit. J Bone Joint Surg Br 2001;83:760–6.
    31. Sandhu HS, Khan SN. Animal models for preclinical assessment of bone morphogenetic proteins in the spine. Spine 2002;27:S32–8.
    32. Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine 2001;26:933–9.
    33. Sandhu HS, Khan SN, Suh DY, et al. Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: an overview. Eur Spine J 2001;10(Suppl. 2):S122–31.
    34. Khan SN, Sandhu HS, Lane JM, et al. Bone morphogenetic proteins: relevance in spine surgery. Orthop Clin North Am 2002;33:447– 63, ix.
    35. Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinalfusion model. Calcif Tissue Int 1998;63: 357–60.
    36. Wang JC, Kanim LE, Yoo S, et al. Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 2003;85-A:905–11.
    37. Yang S, Wang LW. Biomechanical comparison of the stable efficacy of two anterior plating systems. Clin Biomech (Bristol, Avon) 2003;18:S59–66.
    38. Takahata M, Kotani Y, Abumi K, et al. Bone ingrowth fixation of artificial intervertebral disc consisting of bioceramic-coated threedimensional fabric. Spine 2003;28:637–44; discussion 44.
    39. Dimar JR 2nd, AnteWA, Zhang YP, et al. The effects of nonsteroidal anti-inflammatory drugs on posterior spinal fusions in the rat. Spine 1996;21:1870–6.
    40. Riew KD, Long J, Rhee J, et al. Time-dependent inhibitory effects of indomethacin on spinal fusion. J Bone Joint Surg Am 2003;85-A:632–4.
    41. Wing KJ, Fisher CG, O’Connell JX, et al. Stopping nicotine exposure before surgery: the effect on spinal fusion in a rabbit model. Spine2000;25:30–4.
    42. Grauer JN,Bomback DA, Lugo R, et al. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J 2004;4:281–6.
    43. Salamon ML, Althausen PL, Gupta MC, et al. The effects of BMP-7 in a rat posterolateral intertransverse process fusion model. J Spinal Disord Tech 2003;16:90–5.
    44. Taguchi T. [Experimental anterior interbody fusion of the cervical spine. Comparative study between autograft and Al2O3 ceramic implantation].Nippon Seikeigeka Gakkai Zasshi 1984;58:205–17.
    45. Lindholm TS, Ragni P, Lindholm TC. Response of bone marrow stroma cells to demineralized cortical bone matrix in experimental spinal fusion in rabbits. Clin Orthop 1988;230:296–302.
    46. Karaismailoglu TN, Tomak Y, Andac A, et al. [Comparison of autograft, coralline graft, and xenograft in promoting posterior spinal fusion]. Acta Orthop Traumatol Turc 2002;36:147–54.
    47. Tho KS, Krishnamoorthy S. Use of coral grafts in anterior interbody fusion of the rabbit spine. Ann Acad Med Singapore 1996;25:824–7.
    48. Silcox DH 3rd, Daftari T, Boden SD, et al. The effect of nicotine on spinal fusion. Spine 1995;20:1549–53.
    49. Martin GJ Jr, Boden SD, Titus L. Recombinant human bone morphogenetic protein-2 overcomes the inhibitory effect of ketorolac, a nonsteroidal anti-inflammatory drug (NSAID), on posterolateral lumbar intertransverse process spine fusion. Spine 1999;24:2188– 93; discussion 93–4.
    50. Long J, Lewis S, Kuklo T, et al. The effect of cyclooxygenase-2 inhibitors on spinal fusion. J Bone Joint SurgAm2002;84-A:1763–8.
    51. Jackson RS, Asher MA, Lark RG. Analysis of posterior spinal wiring in a validated rabbit model. Clin Orthop 2000;373:285–94.
    52. Jenis LG, Wheeler D, Parazin SJ, et al. The effect of osteogenic protein-1 in instrumented and noninstrumented posterolateral fusion in rabbits. Spine J 2002;2:173–8.
    53. Grauer JN, Erulkar JS, Patel TC, et al. Biomechanical evaluation of the New Zealand white rabbit lumbar spine: a physiologic characterization. Eur Spine J 2000;9:250–5.
    54. Turgut M, Erkus M, Tavus N. The effect of fibrin adhesive (Tisseel) on interbody allograft fusion: an experimental study with cats. Acta Neurochir (Wien) 1999;141:273–8.
    55. Cook SD, Dalton JE, Tan EH, et al. In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material. Spine 1994; 19:1856–66.
    56. Bi WZ,Wang JF, Lu SB. [Anterior lumbar interbody fusion of canine with allograft cortical ring plus autogenous cancellus]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2001;15:366–9.
    57. Emery SE, Brazinski MS, Koka A, et al. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 1994;76:540–8.
    58. Fuller DA, Stevenson S, Emery SE. The effects of internal fixation on calcium carbonate: ceramic anterior spinal fusion in dogs. Spine 1996;21:2131–6.
    59. McAfee PC, Regan JJ, Farey ID, et al. The biomechanical and histomorphometric properties of anterior lumbar fusions: a canine model. J Spinal Disord 1988;1:101–10.
    60. Shima T, Keller JT, Alvira MM, et al. Anterior cervical discectomy and interbody fusion: an experimental study using a synthetic tricalcium phosphate. J Neurosurg 1979;51:533–8.
    61. Shirado O, Zdeblick TA, McAfee PC, et al. Quantitative histologic study of theinfluence of anterior spinal instrumentation and biodegradable polymer on lumbar interbody fusion after corpectomy. A canine model. Spine 1992;17:795–803.
    62. Wang GJ, Reger SI, Shao ZH, et al. Comparative strength of anterior spinal fixation with bone graft or polymethylmethacrylate: experimental operations and observations on dogs. Clin Orthop 1984;188: 303–8.
    63. Whitehill R, Stowers SF, Fechner RE, et al. Posterior cervical fusions using cerclage wires, methylmethacrylate cement and autogenous bone graft: an experimental study of a canine model. Spine 1987;12:12–22.
    64. Whitehill R, Reger S, Weatherup N, et al. A biomechanical analysis of posterior cervical fusions using polymethylmethacrylate as an instantaneous fusion mass. Spine 1983;8:368–72.
    65. Whitehill R, Barry JC. The evolution of stability in cervical spinal constructs using either autogenous bone graft or methylmethacrylate cement: a follow-up report on a canine in vivo model. Spine 1985; 10:32–41.
    66. Whitehill R, Reger SI, Fox E, et al. The use of methylmethacrylate cement as an instantaneous fusion mass in posterior cervical fusions: a canine in vivo experimental model. Spine 1984;9:246–52.
    67. Cook SD,Dalton JE, Prewett AB, et al. In vivo evaluation of demineralized bone matrix as a bone graft substitute for posterior spinal fusion. Spine 1995;20:877–86.
    68. Kahanovitz N, Arnoczky SP, Nemzek J, et al. The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 1994;19:705–9.
    69. Kioschos HC, Asher MA, Lark RG, et al. Overpowering the crankshaft mechanism: the effect of posterior spinal fusion with and without stiff transpedicular fixation on anterior spinal column growth in immature canines. Spine 1996;21:1168–73.
    70. Moon MS, Ok IY, Ha KY. The effect of posterior spinal fixation with acrylic cement on the vertebral growth plate and intervertebral disc in dogs. Int Orthop 1986;10:69–73.
    71. Muschler GF, Huber B, Ullman T, et al. Evaluation of bone-grafting materials in a new canine segmental spinal fusion model. J Orthop Res 1993;11:514–24.
    72. Muschler GF, Negami S, Hyodo A, et al. Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop 1996;328:250–60.
    73. Paramore CG, Lauryssen C, Rauzzino MJ, et al. The safety of OP-1 for lumbar fusion with decompression: a canine study. Neurosurgery 1999;44:1151–5; discussion 5–6.
    74. Farey ID, McAfee PC, Gurr KR, et al. Quantitative histologic study of the influence of spinal instrumentation on lumbar fusions: a canine model. J Orthop Res 1989;7:709–22.
    75. Takahashi J, Saito N, Ebara S, et al. Anterior thoracic spinal fusion in dogs by injection of recombinant human bone morphogenetic protein-2 and a synthetic polymer. J Spinal Disord Tech 2003;16: 137–43.
    76. CahillDW,Martin GJ Jr,HajjarMV, et al. Suitability of bioresorbable cages for anterior cervical fusion. J Neurosurg 2003;98:195–201.
    77. Toth JM, An HS, Lim TH, et al. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model. Spine 1995;20:2203–10.
    78. Zdeblick TA, Cooke ME, Wilson D, et al. Anterior cervical discectomy, fusion, and plating: a comparative animal study. Spine 1993;18:1974–83.
    79. Johnston CE 2nd, Ashman RB, Baird AM, et al. Effect of spinal construct stiffness on early fusion mass incorporation: experimental study. Spine 1990;15:908–12.
    80. Anderson P, Rouleau J, Bryan V, et al. Wear analysis of the Bryan Cervical Disc prothesis. Spine 2003;28:186–94.
    81. Brantigan JW,McAfee PC, CunninghamBW, et al. Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone: an investigational study in the Spanish goat. Spine 1994;19:1436–44.
    82. van Dijk M, Smit TH, Arnoe MF, et al. The use of poly-l-lactic acid in lumbar interbody cages: design and biomechanical evaluation in vitro. Eur Spine J 2003;12:34–40.
    83. Sucato DJ, Welch RD, Pierce B, et al. Thoracoscopic discectomy and fusion in an animal model: safe and effective when segmental blood vessels are spared. Spine 2002;27:880–6.
    84. McLain RF, Yerby SA, Moseley TA. Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine 2002;27:E200–6.
    85. Toth JM, Wang M, Scifert JL, et al. Evaluation of 70/30 D,L-PLa for use as aresorbable interbody fusion cage. Orthopedics 2002;25:s1131–40.
    86. Blattert TR, Delling G, Dalal PS, et al. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 2002;27: 2697–705.
    87. CunninghamBW,KanayamaM, Parker LM, et al. Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine: a comparative endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 1999;24:509–18.
    88. Huntington CF,Murrell WD, Betz RR, et al. Comparison of thoracoscopic and open thoracic discectomy in a live ovine model for anterior spinal fusion. Spine 1998;23:1699–702.
    89. Cain CM, Langston PG, Weston PF, et al. Assessment of spinal cord blood flow and function in sheep after anterolateral cervical interbody fusion in the presence of cord damage. Spine 1994;19:511–9.
    90. Kandziora F, Pflugmacher R, Schafer J, et al. Biomechanical comparison of cervical spine interbody fusion cages. Spine 2001;26:1850–7.
    91. Lee EJ, Hung YC, Lee MY, et al. Kinematics of cervical spine discectomy with and without bone grafting: quantitative evaluation of late fusion in a sheep model. Neurosurgery 1999;44:139–46; discussion 46–7.
    92. Spivak JM, Chen D, Kummer FJ. The effect of locking fixation screws on the stability of anterior cervical plating. Spine 1999;24:334–8.
    93. Sandhu HS, Turner S, Kabo JM, et al. Distractive properties of a threaded interbody fusion device: an in vivo model. Spine 1996; 21:1201–10.
    94. Sandhu HS, Toth JM, Diwan AD, et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 2002;27:567–75.
    95. Paar O, Andereya S, Staatz G, et al. [Value of human recombinant osteogenetic proteins as bone replacement materials in lumbar spondylodesis. Results of an animal experiment study]. Unfallchirurg 2001;104:700–9.
    96. Cunningham BW, Kotani Y, McNulty PS, et al. Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion: a comparative radiographic, biomechanical, and histologic analysis in a sheep model. Spine 1998;23:1333–40.
    97. Kotani Y, CunninghamBW, Cappuccino A, et al. The effects of spinal fixation and destabilization on the biomechanical and histologic properties of spinal ligaments: an in vivo study. Spine 1998;23:672–82; discussion 82–3.
    98. Blattert TR, Delling G, Weckbach A. [Pediculoscopic assisted transpedicular spongioplasty for interbody fusion of the lumbar spine. An animal experiment study of the sheep model]. Unfallchirurg 2002;105:680–7.
    99. Blattert TR, Delling G, Weckbach A. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur Spine J 2003;12:216–23.
    100.Foster MR, Allen MJ, Schoonmaker JE, et al. Characterization of a developing lumbar arthrodesis in a sheep model with quantitative instability. Spine J 2002;2:244–50.
    101.Kanayama M, Cunningham BW, Weis JC, et al. The effects of rigid spinal instrumentation and solid bony fusion on spinal kinematics: a posterolateral spinal arthrodesis model. Spine 1998;23:767–73.
    102.Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine 1997;22:2365–74.
    103.Olinger A, Pistorius G, LindemannW, et al. Effectiveness of a handson training course for laparoscopic spine surgery in a porcine model. Surg Endosc 1999;13:118–22.
    104.Muhlbauer M, Ferguson J, Losert U, et al. Experimental laparoscopic and thoracoscopic discectomy and instrumented spinal fusion: a feasibility study using a porcine model. Minim Invasive Neurosurg 1998;41:1–4.
    105.Olinger A, Vollmar B, Hildebrandt U, et al. Experimental development and validation of a technique for lumboendoscopic anterior fusion of lumbar spine fractures: comparison of endoscopic and open surgery in a live porcine model. Surg Endosc 2000;14:844–8.
    106.Li H, Zou X, Laursen M, et al. The influence of intervertebral disc tissue on anterior spinal interbody fusion: an experimental study on pigs. Eur Spine J 2002;11:476–81.
    107.Takahashi T, Tominaga T, Yoshimoto T, et al. Biomechanical evaluation of hydroxyapatite intervertebral graft and anterior cervical plating in a porcine cadaveric model. Biomed Mater Eng 1997;7:121–7.
    108.Suzuki K, Mochida J, Chiba M, et al. Posterior stabilization of degenerative lumbar spondylolisthesis with a Leeds-Keio artificial ligament: a biomechanical analysis in a porcine vertebral model. Spine 1999;24:26–31.
    109.Gurwitz GS,Dawson JM,McNamara MJ, et al. Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine 1993;18:977–82.
    110.Asazuma T, Stokes IA, Moreland MS, et al. Intersegmental spinal flexibility with lumbosacral instrumentation: an in vitro biomechanical investigation. Spine 1990;15:1153–8.
    111.Ebara S, Kamimura M, Itoh H, et al. A new system for the anterior restoration and fixation of thoracic spinal deformities using an endoscopic approach. Spine 2000;25:876–83.
    112.Grubb MR, Currier BL, Shih JS, et al. Biomechanical evaluation of anterior cervical spine stabilization. Spine 1998;23:886–92.
    113.Rapoff AJ, Ghanayem AJ, Zdeblick TA. Biomechanical comparison of posterior lumbar interbody fusion cages. Spine 1997;22:2375–9.
    114.Placzek R, Birken L, Morlock M, et al. [Effect of various cylinder diameters of implants for lumbar inter-corporeal spinal fusion on compressive strength on the FSU model]. Biomed Tech (Berl) 1998;43:253–6.
    115.Zhao J, Hai Y, Ordway NR, et al. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage. Spine 2000;25:425–30.
    116.Fricka KB, Mahar AT, Newton PO. Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Spine 2002;27:702–6.
    117.Wilke HJ,Krischak ST,Wenger KH, et al. Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 1997;6:129–37.
    118.Nasca RJ, Montgomery RD, Moeini SM, et al. Intervertebral spacer as an adjunct to anterior lumbar fusion. Part II. Six-month implantation in baboons. J Spinal Disord 1998;11:136–41.
    119.Hecht BP, Fischgrund JS, Herkowitz HN, et al. The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 1999;24:629–36.
    120.Akamaru T, Suh D, Boden SD, et al. Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion. Spine 2003;28:429–34.
    121.Boden SD, Martin GJ Jr, Morone MA, et al. Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 1999;24:1179–85.
    122.Suh DY, Boden SD, Louis-Ugbo J, et al. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine 2002;27:353–60.
    123.Zdeblick TA, Ghanayem AJ, Rapoff AJ, et al. Cervical interbody fusion cages: an animal model with and without bone morphogenetic protein. Spine 1998;23:758–65; discussion 66.
    124.Zdeblick TA, Wilson D, Cooke ME, et al. Anterior cervical discectomy and fusion: a comparison of techniques in an animal model. Spine 1992;17:S418–26.
    125.Zdeblick TA, Cooke ME, Kunz DN, et al. Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine 1994;19:2348–57.
    126.Hildebrandt U, Pistorius G, Olinger A, et al. First experience with laparoscopic spine fusion in an experimental model in the pig. Surg Endosc 1996;10:143–6.
    127.Spivak JM, Bharam S, Chen D, et al. Internal fixation of cervical trauma following corpectomy and reconstruction. The effects of posterior element injury. Bull Hosp Jt Dis 2000;59:47–51.
    128.Bomback DA, Grauer JN, Lugo R, et al., Comparison of posterolaterallumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine 2004;29:1612–7.
    129.Sawin PD, Dickman CA, Crawford NR, et al. The effects of dexamethasone on bone fusion in an experimental model of posterolateral lumbar spinal arthrodesis. J Neurosurg 2001;94:76–81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700