用户名: 密码: 验证码:
PDZ、SH3结构域结合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质在细胞的生命活动中扮演着重要角色,但是,其功能的发挥却并非依靠单个蛋白质独立的作用。它们在细胞中通常与其他蛋白质相互作用形成大的复合体,在特定的时间和空间内完成特定的功能,蛋白质之间的相互作用才是蛋白质执行其功能的途径。
     本论文主要研究了介导蛋白质相互作用网络的PDZ结构域和SH3结构域的结合特性。
     本文研究了PDLIM2蛋白中的PDZ结构域的结合特性。利用酵母双杂交技术筛选随机多肽文库,我们验证了PDLIM2-PDZ可识别x-x-W-L配体;此外还发现了K-H-K-V配体,是对PDLIM2-PDZ蛋白识别规律的补充。
     论文第二部分研究了PDZK2蛋白中PDZ1的结合特性。根据PDZK2 PDZ1结构域与PDZK1 PDZ1同源的性质,我们直接利用酵母双杂交技术筛选构建的PDZ配体库来研究PDZK2 PDZ1的结合特性。验证筛选方法较常规文库筛选具有高效性和针对性,可以快速研究相关结构域的结合特性。验证筛选文库相对于其他文库筛选方法可以得到除阳性配体外的阴性序列,并且阴性序列和阳性配体对比总结可以得到更全面的结合特性。
     论文第三部分成功构建新型非脯氨酸的随机多肽文库。我们尝试利用新型文库研究结合非脯氨酸的SH3结构域的结合特性,发现了FYN SH3结构域的一个非脯氨酸结合序列VSLVKLFF。
Proteins play important functions. But their functions can not be performed by a single protein alone. Proteins are usually associated with other in cells to form protein-protein complexes.
     This thesis studies the binding characteristics of the PDZ domain and SH3 domain, which mediates protein-protein interaction network.
     The PDLIM2 PDZ's binding characteristics were studied using yeast two-hybrid screening of random peptide library. x-x-W-L and K-H-K-V were found to be the concensuses of the binding sequences. This prompts that PDLIM2-PDZ protein may play different roles in different systems.
     With the knowledge that PDZK2 PDZ1 domain is homologous to PDZK1 PDZ1, we screened the class one peptide library for PDZK2 PDZ1's by yeast two-hybrid validation. The overall efficiency is dramatically improved compare to traditional screening. The results showed the sequences of both binding and unbinding clones.
     A non-proline random peptide librarie was constructed to study the SH3 domain binding characteristics. A non-proline ligand VSLVKLFF was found by screening the library with FYN SH3 domain.
引文
1 VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF. Systems biology: Functional analysis of natural microbial consortia using community proteomics.Nat Rev Microbiol.2009 Mar;7(3):196-205
    2 Pawson T, Nash P Assembly of cell regulatory systems through protein interaction domains. Science 2003,300(5618):445-452.
    3 Pawson T, Raina M, Nash P:Interaction domains:from simple binding events to complex cellular behavior. FEBS Lett 2002,513(1):2-10.
    4 Craven SE, Bredt DS PDZ proteins organize synaptic signaling pathways. Cell 1998,93(4):495-498.
    5 Hung AY, Sheng M:PDZ domains:structural modules for protein complex assembly. J Biol Chem 2002,277(8):5699-5702.
    6 Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC:Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997,275(5296):73-77.
    7 Ponting CP:Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 1997,6(2):464-468.
    8 ZimmermannP. PDZ domain-phosphoinositide interactions in cell-signaling. Verh K Acad Geneeskd Belg.2006;68(4):271-86
    9 Brone B, Eggermont J.PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes.Am J Physiol Cell Physiol.2005, 288(1):C20-9
    10 Mayer, B. J., SH3 domains:complexity in moderation. J. Cell Sci.2001,114, 1253-1263.
    11 Tong AH, Drees B, Nardelli G, et al. A combined experimental and computational strategy to define p rotein interaction networks for pep tide recognition modules. Science,2002,295:321-324.
    12 McPherson PS Regulatory role of SH3 domain-mediated protein-protein interactions in synaptic vesicle endocytosis. Cell Signal.1999,11(4):229-38
    13 Miki H. Tanpakushitsu Kakusan Koso Signal transduction through SH2, SH3 and PH domains.1997,42(10 Suppl):1484-93.
    1 Ponting CP. Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 1997,6(2):464-468.
    2 Christopherson KS, Hillier BJ, Lim WA et al. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 1999,274(39):27467-27473.
    3 London TB, Lee HJ, Shao Y et al. Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun 2004, 322(1):326-332.
    4 Hattori A., Okumura K., Nagase T., Kikuno R. C haracterization of long cDNA clones from human adult spleen DNA Res.7:357-366(2000)
    5 Torrado M, Senatorov VV, Trivedi R, Fariss RN. Pdlim2, a novel PDZ-LIM domain protein, interacts with alpha-actinins and filamin A.Invest Ophthalmol Vis Sci.2004,45(11):3955-63
    6 Loughran G, Healy NC, Kiely PA, Huigsloot M, Kedersha NL, O'Connor R. Mystique is a new insulin-like growth factor-I-regulated PDZ-LIM domain protein that promotes cell attachment and migration and suppresses Anchorage-independent growth. Mol Biol Cell.2005,16(4):1811-22.
    7 Zhao T, Yasunaga J, Satou Y, Nakao M, Takahashi M, Fujii M, Matsuoka M. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood.2009,113(12):2755-64.
    8 Yan P, Fu J, Qu Z, Li S, Tanaka T PDLIM2 suppresses HTLV-I Tax-mediated tumorigenesis by targeting Tax into the nuclear matrix for proteasomal degradation. Blood.2009 Jan 8
    9 Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol.2007 Jun;8(6):584-91. Epub 2007 Apr 29.
    10 Healy NC, O'Connor R J Leukoc Biol. Sequestration of PDLIM2 in the cytoplasm of monocytic/macrophage cells is associated with adhesion and increased nuclear activity of NF-kappaB.2009 Mar;85(3):481-90. Epub 2008 Dec 3
    11 Fields S, Sternglanz R The two-hybrid system:an assay for protein-protein interactions. Trends Genet 1994,10(8):286-292.
    12 Bartel P, Chien CT, Sternglanz R, Fields S Elimination of false positives that arise in using the two-hybrid system. Biotechniques 1993,14(6):920-924.
    13 Stelzl U, Worm U, Lalowski M et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005,122(6):957-968.
    14 Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005,437(7062):1173-1178
    15 Estojak J, Brent R, Golemis EA Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 1995,15(10):5820-5829.
    16 Guarente L:Strategies for the identification of interacting proteins. Proc Natl Acad Sci U S A 1993,90(5):1639-1641.
    17 Vidal M, Braun P, Chen E, Boeke JD, Harlow E Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A.1996 Sep 17;93(19):10321-6
    18 Marlene Maroun, Ami Aronheim A novel in vivo assay for the analysis of protein-protein interaction Nucleic Acids Research 27,13-17
    19 Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS.Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display.J Biol Chem. 2000,275(28):21486-91
    20 Sharma SC, Memic A, Rupasinghe CN, Spaller MR. T7 phage display as a method of peptide ligand discovery for PDZ domain proteins 2009 Feb 23
    21 Wim Van Criekinge and Rudi Beyaert Yeast Two-Hybrid:State of the Art Biol. Proced. Online 1999;2:1-38
    22 Pashmforoush M, Pomies P, Peterson KL, et al. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med.2001;7:591-597.
    23 Huang H, Gao Y:A method for generation of arbitrary peptide libraries using genomic DNA. Mol Biotechnol 2005,30(2):135-142.
    24 Huang HM, Zhang L, Cui QH, Jiang TZ, Ma SC, Gao YH Finding potential ligands for PDZ domains by tailfit, a JAVA program. Chin Med Sci J 2004, 19(2):97-104.
    25 Tonikian R, Zhang Y, Sazinsky SL et al. A specificity map for the PDZ domain family. PLoS Biol.2008;6(9):e239
    26 Nobutaka Hirano, Hiroyuki Ohshima, and Hideo Takahashi Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesisNucleic Acids Res.2006,34(17):4743-4751
    27 Kanai F., Marignani P.A., Sarbassova D. et al. TAZ:a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBOJ.19:6778-6791
    28 Ellis S., Mellor H. The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements.Curr. Biol.2000,10:1387-1390
    29 Jensen LJ, Kuhn M, Stark M, Chaffron S. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res.2009.37.D412-6.
    30 Skrabanek L, Saini HK, Bader GD, Enright AJ. Computational prediction of protein-protein interactions. Mol. Biotechnol.2008;38:1-17. [PubMed]
    31 Harrington ED, Jensen LJ, Bork P. Predicting biological networks from genomic data. FEBS Lett.2008;582:1251-1258.
    1 E. Lindahl, U. Nyman, E. Melles Cellular internalization of proinsulin C-peptide 2005,288(1):C20-29
    2 Scott R.O., Thelin W.R., Milgram S.L.A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J. Biol. Chem. 2002,277:22934-22941
    3 Zachos N.C., Hodson C., Kovbasnjuk O. Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism., Cell. Physiol. Biochem.2008,22:693-704
    4 Kocher O., Comella N., Tognazzi K., Brown L.F.Identification and partial characterization of PDZKl:a novel protein containing PDZ interaction domains. Lab. Invest.1998,78:117-125
    5 Sugiura T, Kato Y, Wakayama T, Silver DL PDZK1 regulates two intestinal solute carriers (Slcl5al and Slc22a5) in mice Drug Metab Dispos.2008,36(6):1181-8
    6 Kocher O., Comella N., Gilchrist A., Pal R.PDZK1, a novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein.Lab. Invest.1999,79:1161-1170
    7 Rossmann H., Jacob P., Baisch S.The CFTR associated protein CAP70 interacts
    with the apical C1-/HC03-exchanger DRA in rabbit small intestinal mucosa. Biochemistry 2005,44:4477-4487
    8 Malmberg E.K., Andersson C.X., Gentzsch M.Bcr (breakpoint cluster region) protein binds to PDZ-domains of scaffold protein PDZK1 and vesicle coat protein Mint3. J. Cell Sci.2004,117:5535-5541
    9 Barabote RD, Tamang DG, Abeywardena SN Extra domains in secondary transport carriers and channel proteins. Biochim Biophys Acta.2006
    10 Ryan TJ, Emes RD, Grant SG, Komiyama NH. Evolution of NMDA receptor cytoplasmic interaction domains:implications for organisation of synaptic signalling complexes.BMC Neurosci.2008 Jan 15;9:6
    11 Cui H, Hayashi A, Sun HS, Belmares MP PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci.2007,27(37):9901-15
    12 Sornarajah L, Vasuta OC, Zhang L, Sutton C NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95.J Neurophysiol.2008, 99(6):3052-62.
    13 Nonaka M, Doi T, Fujiyoshi Y, Takemoto-Kimura S Essential contribution of the ligand-binding beta B/beta C loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding, and localization of postsynaptic density-95.J Neurosci.2006,26(3):763-74
    14 Kobayashi T, Yamada Y, Fukao M, Tsutsuura M, Tohse N.Regulation of Cavl.2 current:interaction with intracellular molecules.J Pharmacol Sci.2007, 3(4):347-53.
    15 Zachos NC, Hodson C, Kovbasnjuk O Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism.Cell Physiol Biochem.2008;22(5-6):693-704
    16 Godreau D, Neyroud N, Vranckx R, Hatem S.MAGUKs:beyond ionic channel anchoringMed Sci (Paris).2004,20(1):84-8.
    17 Scott R.O., Thelin W.R., Milgram S.L.A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J. Biol. Chem. 2002,277:22934-22941
    18 Virkki L.V., Forster I.C., Biber J., Murer H.Substrate interactions in the human type Ⅱa sodium-phosphate cotransporter (NaPi-Ⅱa). Am. J. Physiol. Renal Physiol. 2005,288:F969-81
    19 Struwe K., Arndt P., Gorboulev V. Regulation of the human organic cation transporter hOCT1. Ciarimboli G, J. Cell. Physiol.2004,201:420-428
    20 Kim H.J., Yang D.K., So I.PDZ domain-containing protein as a physiological modulator of TRPV6. Biochem. Biophys. Res. Commun.2007,361:433-438
    21 Dephoure N., Zhou C., Villen J.A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci.2008,105:10762-10767
    22 Monico C.G., Weinstein A., Jiang Z.Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am. J. Kidney Dis.2008,52:1096-1103
    23 Alper S.L., Stewart A.K., Chernova M.N.Anion exchangers in flux:functional differences between human and mouse SLC26A6 polypeptides. Novartis Found. Symp.2006,273:107-119
    24 Chernova M.N., Jiang L., Friedman D.J.Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants:differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem.2005,280:8564-8580
    25 Corbetta S., Eller-Vainicher C., Frigerio M. Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl-oxalate transporter in patients with primary hyperparathyroidism. Eur. J. Endocrinol.2009,160:283-288
    26 Wakamatsu A., Yamamoto J., Kimura K. NEDO human cDNA sequencing project focused on splicing variants. Submitted (OCT-2007)
    27 Chunying Li1, Partha C. Krishnamurthy2 Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia Cell. 2007,131(5):940-951
    28 Hu H, Columbus J, Zhang Y, Wu D A map of WW domain family interactions. Proteomics 2004,4(3):643-655.
    29 Feng S, Kasahara C, Rickles RJ, Schreiber SL:Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl Acad Sci, 1995,92(26):12408-12415.
    30 Mayer BJ:SH3 domains:complexity in moderation. J Cell Sci 2001,114(Pt 7):1253-1263
    31 Kofler M, Motzny K, Freund C:GYF Domain Proteomics Reveals Interaction Sites in Known and Novel Target Proteins. Mol Cell Proteomics 2005 4(11):1797-1811.
    32 Niebuhr K, Ebel F, Frank R:A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. Embo J 1997,16(17):5433-5444.
    33 Shiba T, Takatsu H, Nogi T, Matsugaki N:Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 2002,415(6874):937-941
    1. Zhang Y, Appleton BA, Wiesmann C Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol.2009,5(4):217-9.
    2. Zhang J, Carthew RW. Interactions between Wingless and DFz2 during Drosophila wing development. Development.1998,125(16):3075-85.
    3. Tsuda M, Kamimura K, Nakato H The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature.1999,400(6741):276-80
    4. Mishra P, Socolich M, Wall MA Dynamic scaffolding in a G protein-coupled signaling system. Cell.2007;131(1):80-92
    5. Cao X, Tanis KQ, Koleske AJ Enhancement of ABL kinase catalytic efficiency by
    a direct binding regulator is independent of other regulatory mechanisms. J Biol Chem.2008;283(46):31401-7.
    6. Chook YM, Gish GD, Kay CM The Grb2-mSos1 complex binds phosphopeptides with higher affinity than Grb2. J Biol Chem. 1996,271(48):30472-8
    7. Lettau M, Pieper J, Janssen O. Nck adapter proteins:functional versatility in T cells. Cell Commun Signal.2009 Feb 2; 7:1.
    8. Pawson T, Gish GD. SH2 and SH3 domains:from structure to function.Cell. 1992,71(3):359-62
    9.. Pawson T. SH2 and SH3 domains in signal transduction. Adv Cancer Res. 1994;64:87-110
    10:Feng, S., Chen, J. K., Yu, H., Simon, J. A. Two binding orientations for peptides to the Src SH3 domain:development of a general model for SH3-ligand interactions. Science 1994,266,1241-1247.
    11. Kay BK, Williamson MP, Sudol M. The importance of being proline:the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J.2000,14(2):231-41.
    12. Ren R, Mayer BJ, Cicchetti P. Identification of a ten-amino acid proline-rich SH3 binding site. Science.1993,259(5098):1157-61.
    13. Kang,H., Freund,C., Duke-Cohan, J.S SH3 domain recognition of a proline-independent tyrosine-based RKxxYxY motif in immune cell adapter SKAP55. EMBO J.,19,2889-2899.
    14. Keiichiro Kami 1, Ryu Takeya, Hideki Sumimoto Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pexl3p The EMBO Journal 2002,21,4268-4276
    15. Amy Hin Yan Tong, Becky Drees, Giuliano Nardelli A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules Science 2002,295.321-324
    16. Sparks, A. B., Rider, J. E., Hoffman, N. G. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCy, Crk, and Grb2. Proc. Natl. Acad. Sci.1996,93,1540-1544
    17. Sparks, A. B., Rider, J. E. and Kay, B. K. Mapping the specificity of SH3 domains with phage-displayed random-peptide libraries. Methods Mol. Biol.1998,84, 87-103
    18. Lewitzky, M., Harkiolaki, M., Domart, M.-C. Mona/Gads SH3C binding to hematopoietic progenitor kinase 1 (HPK1) combines an atypical SH3 binding motif, R/KXXK, with a classical PXXP motif embedded in a polyproline type Ⅱ (PPII) helix. J. Biol. Chem.2004,279,28724-28732
    19. Berry, D. M., Nash, P., Liu, S. K.-W., Pawson, T. A high-affinity Arg-X-X-Lys SH3 binding motif confers specificity for the interaction between Gads and SLP-76 in T cell signaling. Curr. Biol.2002,12,1336-1341
    20. Liu, Q., Berry, D., Nash, P., Pawson, T., Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide:a novel mode of peptide recognition. Mol. Cell.2003 11,471-481
    21. Lewitzky, M., Kardinal, C., Gehring, N. H. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gabl and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene 2001,20,1052-1062
    22. Liu, S. K., Berry, D. M. and McGlade, C. J. The role of Gads in hematopoietic cell signalling. Oncogene 2001,20,6284-6290
    23. Harkiolaki, M., Lewitzky, M., Gilbert, R. J. Structural basis for SH3 domainmediated high-affinity binding between Mona/Gads and SLP-76. EMBO J. 2003,22,2571-2582
    24. Kaneko, T., Kumasaka, T., Ganbe, T., Sato, T Structural insight into modest binding of a non-PXXP ligand to the signal transducing adaptor molecule-2 Src homology 3 domain. J. Biol. Chem.278,2003,48162-48168
    25. Mongiovi, A. M., Romano, P. R., Panni, S. A novel peptide-SH3 interaction. EMBO J.1999,18,5300-5309
    26. Freund, C., Kuhne, R., Yang, H., interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. EMBO J.2002,21,5985-5995
    27. Kojima, C., Hashimoto, A., Yabuta, I. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J.2004,23,4413-4422
    28. Jia, C. Y, Nie, J., Wu, C., Li, C. and Li, S. S. Novel SH3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Mol. Cell. Proteomics, 2005,in the press
    29. Douangamath, A., Filipp, F. V., Klein, A. T. J. Topography for independent binding of a-helical and PPII-helical ligands to a peroxisomal SH3 domain. Mol. Cell 10,2002,1007-1017
    30. Kami, K., Takeya, R., Sumimoto, H. and Kohda, D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J.2002,21,4268-4276
    31. Barnett, P., Bottger, G, Klein, A. T. J. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. EMBO J.2000,19,6382-6391
    32. Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. Solution structure of the PX domain, a target of the SH3 domain. Nat. Struct Biol.2001,8,526-530
    33. Li, C., Iosef, C., Jia, C. Y, Gkourasas, T. Disease-causing SAP mutants are defective in ligand binding and protein folding. Biochemistry 2003,42, 14885-14892
    34. Chan, B., Lanyi, A., Song, H. K. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol.2003,5,155-160
    35. Vaynberg, J., Fukuda, T., Chen, K. Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility. Mol. Cell 2005,17,513-523
    36. Newton J, Deutscher SL. Phage peptide display. Handb Exp Pharmacol.2008; (185 Pt 2):145-63.
    37. Hertveldt K, Robben J, Volckaert G Whole genome phage display selects for proline-rich Boi polypeptides against Bern1p. Biotechnol Lett.2006, 28(16):1233-9.
    38. Karkkainen S, Hiipakka M, Wang JH Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep.2006 Feb; 7(2):186-91
    39. Piliarik M, Vaisocherova H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol.2009; 503:65-88.
    40. Blagoev B, Kratchmarova I, Ong SE. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol.2003,21(3):315-8.
    41. Dziembowski A, Ventura AP, Rutz B Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J.2004, 23(24):4847-56.
    42. Lam KS, Salmon SE, Hersh EM A new type of synthetic peptide library for identifying ligand-binding activity Nature.1991,354(6348):82-4.
    43. Solheim SA, Petsalaki E, Stokka AJ. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. FEBS J.2008,275(19):4863-74.
    44. Calpe S, Wang N, Romero X The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol.2008; 97:177-250.
    45. Borowski C, Bendelac A. Signaling for NKT cell development:the SAP-FynT connection. J Exp Med.2005,201(6):833-6.
    46. Fisher S.E., van Bakel I., Lloyd S.E. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis). Genomics 1995,29:598-606
    47. Manning G, Whyte D.B., Martinez R. The protein kinase complement of the human genome. Science 2002,298:1912-1934
    48. Tanioka T., Hattori A., Masuda S. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem.2003,278:32275-32283
    [1]Poiesz B.J., Ruscetti F.W., Gazdar A.F. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci.1980, USA77,7415-7419.
    [2]Jeang KT, Giam CZ, Majone F, Aboud M:Life, death and Tax:role of HTLV-I oncoprotein in genetic instability and cellular transformation. J Biol Chem 2004, 279:31991-31994.
    [3]Barmak K, Harhaj EW, Grant C, Alefantis T, Wigdahl B:Human T cell leukemia virus type I-induced disease:pathways to cancer and neurodegeneration. Virology 2003, 308:1-12.
    [4]Ciminale V, Hatziyanni M, Felber BK, Bear J, Hatzakis A, Pavlakis GN:Unusual CD4+CD8+phenotype in a greek patient diagnosed with adult T-cell leukemia positive for human T-cell leukemia virus type I (HTLV-I). Leuk Res 2000,24:353-358.
    [5]Hanon E, Stinchcombe J, Asquith B, Taylor GP, Tanaka Y, Griffiths GM, Weber JN, Bangham CRM:Fratricide amongst CD8+T lymphocytes naturally infected with HTLV-I. Immunity 2000,13:657-664.
    [6]Asquith B, Hanon E, Taylor GP, Bangham CRM:Is human T-cell lymphotropic virus type I really silent? Philos Trans R Soc Lond B Biol Sci 2000:1013-1019
    [7]Mesnard JM, Barbeau B, Devaux C. HBZ, a new important player in the mystery of adult T-cell leukemia. Blood.2006 Dec 15;108(13):3979-82.
    [8]Alena M. Iniguez, Koko Otsuki, Gustavo P. Magalhaes, Edimilson A. Silva, Ana Carolina P. Vicente AIDS Research and Human Retro viruses. Jun 2005, Vol.21, No.6: 580-582
    [9]Derse D, Mikovits J, Ruscetti F. X-I and X-II open reading frames of HTLV-I are not required for virus replication or for immortalization of primary T-cells in vitro. Virology. 1997 Oct 13;237(1):123-8.
    [10]Smith MR, Greene WC:Characterization of a novel nuclear localization signal in the HTLV-I tax transactivator protein. Virology 1992,187:316-320.
    [11]Poiesz BJ, Poiesz MJ, Choin D:The human T-cell lymphoma/leukemia viruses. Cancer Investigation 2003,21:253-277.
    [12]Alefantis T, Barmark K, Harhaj EW, Grant C, Wigdahl B:Characterization of a nuclear export signal within the human T-cell leukemia virus type I transactivator Tax. J Biol Chem 2003,278:21814-21822.
    [13]Hirata A, Higuchi M, Niinuma A, PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology.2004;318:327-336.
    [14]Xie L, Yamamoto B, Haoudi A, Semmes OJ, Green PL. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood.2006 Mar 1;107(5):1980-8. Epub 2005 Nov 1.
    [15]Felber BK, Paskalis H, Kleinman-Ewing C:The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 1985,229:675-679.
    [16]Jeang KT:Functional activities of the human T-cell leukemia virus type Ⅰ Tax oncoprotein:cellular signalling through NF-κB. Cytokine Growth Factor Rev 2001, 12:207-217.
    [17]Iha H, Kasai T, Kibler KV, Iwanaga Y:Pleiotropic effects of HTLV type 1 Tax protein on cellular metabolism:mitotic checkpoint abrogation and NF-κB activation. AIDS Res Hum Retroviruses 2000,16:1633-1638.
    [18]Brady J, Jeang KT, Duvall J, Khoury G:Identification of p-40xresponsive regulatory sequences within the human T-cell leukemia virus type-I long terminal repeat. J Virol 1987,61:2175-2181.
    [19]Jeang KT, Boros I, Brady J, Radonovich M:Characterization of cellular factors that interact with the human leukemia virus type-I p40x-responsive 21-base-pair sequences. J Virol 1988,62:4499-4509.
    [20]Ching YP, Chun ACS, Chin KT, Jeang KT, Jin DY:Specific TATAA and bZIP requirements reveal that HTLV-I Tax has transcriptional activity subsequent to the assembly of an initiation complex. Retro virology 2004,1:18.
    [21]Vendel AC, McBryant SJ, Lumb KJ:KIX-mediated assembly of the CBP-CREB-HTLV-1 tax coactivator-activator complex. Biochemistry 2003,42:12481-12487.
    [22]Gachon F, Thebault S, Peleraux A, Devaux C, Mesnard JM:Molecular interactions involved in the transactivation of the human T-cell leukemia virus type 1 promoter mediated by Tax and CREB-2 (ATF-4). Mol Cell Biol 2000,20:3470-3481.
    [23]Reddy TR, Tang H, Li X, Wong-Staal F:Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4). Oncogene 1997, 14:2785-2792.
    [24]Suzuki S, Singhirunnusorn P, Mori A, Yamaoka S Constitutive activation of TAK1 by HTLV-1 TAX-dependent overexpression of TAB2 induces activation of JNK-ATF2 but not IKK-NF-kappa B. J Biol Chem.2007 Jul 11
    [25]Forgacs E, Gupta SK, Kerry JA, Semmes OJ. The bZIP transcription factor ATFx binds human T-cell leukemia virus type 1 (HTLV-1) Tax and represses HTLV-1 long terminal repeat-mediated transcription. J Virol.2005 Jun;79(1l):6932-9.
    [26]Chai J, Tarnawski AS:Serum response factor:discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol 2002,53:147-157.
    [27]Shuh M, Derse D:Ternary complex factors and cofactors are essential for human T-Cell leukemia virus type 1 Tax transactivation of the serum response element. J Virol 2000,74:11394-11397.
    [28]Fujii M, Iwai K, Oie M, Fukushi M, Yamamoto N, Kannagi M, Mori N:Activation of oncogenic transcription factor AP-1 in T cells infected with human T cell leukemia virus type 1. AIDS Res Hum Retroviruses 2000,16:1603-1606.
    [29]Ng PWP, Iha H, Iwanaga Y, Bittner B, Chen Y, Jiang Y, Gooden G, Trent JM, Meltzer P, Jeang KT, Zeichner SL:Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK-3 mixed lineage kinase involvement in Tax-mediated NF-κB activation. Oncogene 2001,20:4484-4496.
    [30]Karin M, Lin A:NF-κB at the crossroads of life and death. Nat Immunol 2002, 3:221-227.
    [31]Li Q, Verma IM:NF-κB regulation in the immune system. Nat Rev Immunol 2002, 2:725-734.
    [32]Zhong H, May MJEJ, Ghosh S:The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1.Mol Cell 2002,9:625-636.
    [33]Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-Ⅰ and implications for cell transformation. Oncogene.2005 Sep 5;24(39):5952-64.
    [34]Peloponese JM, Yeung ML, Jeang KT. Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein:implications for oncogenesis and inflammation. Immunol Res.2006; 34(1):1-12.
    [35]Hong S, Wang LC, Gao X, and Kuo YL, Liu B:Heptad repeats regulate protein phosphatase 2a recruitment to I-kappaB kinase gamma/NF-kappaB essential modulator and are targeted by human T-lymphotropic virus type 1 tax. J Biol Chem. 2007 Apr 20; 282(16):12119-26. Epub 2007 Feb 21
    [36]Verma UN, Yamamoto Y, Prajapati S, Gaynor RB:Nuclear role of IκB kinase-γ/NF-κB essential modulator (IKKy/NEMO) in NF-κB-dependent gene expression. J Biol Chem 2004,279:3509-3515.
    [37]Harhaj NS, Sun SC, Harhaj EW. Activation of NF-kappa B by the human T cell leukemia virus type I Tax oncoprotein is associated with ubiquitin-dependent relocalization of I kappa B kinase. J Biol Chem.2007 Feb 9; 282(6):4185-92. Epub 2006 Dec 4.
    [38]Sun SC, Harhaj EW, Xiao G, and Good L:Activation of IκB kinase by the HTLV type 1 Tax protein:mechanistic insights into the adaptor function of IKKy. AIDS Res Hum Retroviruses 2000,16:1591-1596.
    [39]Iwanaga R, Ohtani K, Hayashi T, Nakamura M. Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I.Oncogene.2001 Apr 19; 20(17):2055-67.
    [40]Kannagi M, Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Masuda M:Adult T-cell leukemia:future prophylaxis and immunotherapy. Expert Rev Anticancer Ther 2004,4:369-376.
    [41]Pise-Masison CA, Radonovich M, and Mahieux R, Chatterjee P:Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes. Cancer Res 2002,62:3562-3571.
    [42]Asquith B, Zhang Y, Mosley AJ, de Lara CM:In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection.
    [43]Wu K, Bottazzi ME, de la Fuente C, Deng L:Protein profile of Tax-associated complexes. J Biol Chem 2004,279:495-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700