用户名: 密码: 验证码:
LD端面泵浦激光三能级热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光二极管(Laser-Diode,LD)泵浦的全固态激光器具有效率高、稳定性好、体积小和寿命长等优点,在光电技术产业、通信、军事和保健卫生等领域有着重要的应用。激光材料是全固态激光器的构成元件中(DPSSL)中最关键的部分,在很大程度上它决定了激光器的输出特性。随着大功率半导体激光器技术的不断完善和发展,高功率激光器已经成为国内外学者的研究热点,这些研究主要集中在如何有效地提高激光输出功率和改善激光光束质量方面,科研工作者为此进行了大量的卓有成效的努力,而所做的努力几乎都直接或间接地为了解决有害热问题,即热效应。本文对于LD泵浦激光晶体三能级热效应进行了数值模拟和实验测量,在精确求解晶体内温度及温度场分布的基础上求出晶体内部的热焦距,实验结果与理论计算结果基本吻合。其主要内容可概括如下:
     1、对全固态激光器的发展概况和蓝光激光器进行了回顾,介绍了全固态激光器的发展历程及趋势,阐述了全固态激光器的优势并列举了全固态激光器的应用领域,介绍了在科学技术领域中常见的激光晶体及它们各自的特性,对应用比较广泛的蓝光激光器做了说明。
     2、基于在实验中发现LD泵浦Nd:YAG后倍频LBO产生蓝光的过程中热效应比较严重,但是以往的物理模型在计算热效应时没有考虑到三能级和四能级的差别,导致在运用已有的模型进行数值模拟时与实际情况差别较大,不能真实地反应晶体内部的温度场分布,我们重新建立模型,修改了热转换系数,用matlab对泊松方程进行数值求解,得到了更准确的晶体内部温度场的分布,晶体内部温度的数值与修改模型前计算结果相比有较大提高,在此基础上求出了热焦距的数值,利用实验对热焦距的数值进行了测量,实验结果与理论计算基本吻合。
     3、对LD脉冲泵浦晶体准三能级的热效应进行了研究,利用matlab对泊松方程数值求解,得到了晶体内部温度的时变规律,结果表明脉冲泵浦与连续泵浦相比晶体内部的温度有较大下降,可以有效减缓热效应的影响。运用matlab分析比较了脉冲间隔时间、泵浦半径和晶体半径对温度时变规律的影响,数值模拟结果表明在脉冲间隔时间与热弛豫时间相比太小的情况下脉冲间隔时间的变化几乎不对晶体内部的温度分布产生影响,改变脉冲间隔时间,晶体内部的温度保持不变,当脉冲间隔时间和热弛豫时间可以比拟时,增大脉冲间隔时间可以有效降低晶体内部的温度;结果亦说明泵浦半径会影响晶体内部的热效应,减小泵浦半径会使热效应增强;晶体半径的大小也会影响晶体内部的温度分布,晶体半径越小,温度越高,热效应越明显。
Diode-pumped all-solid-state lasers (DPSSL) has a lot of advantages, such as high optical-optical conversion efficiency and high stability, small volume and long life. It is widely used in national defence, photoelectron industry,communication, medical treatment and sanitation.Laser crystal is the core of diode-pumped all-solid-state lasers, which decide the output powers from continuous-wave end-pumped solid-state lasers. With the development of high power diode lasers, high power DPSSL has become one of the main objectives of current research and development activities within the laser community.Research of DPSSL has mainly concentrated on scaling of output power,while remaining of a high spatial beam quality. For this researchers have done a lot of fruitful efforts, and almost all of the efforts to address, directly or indirectly harmful to thermal problems, namely thermal effect. The thermal effects of the three-level laser crystals pumped by LD is numerically simulated and experimentally measured. The thermal focal length is obtained on the basis of solving the crystal temperature and temperature distribution inside the crystal. The experimental results are consistent with the theoretical results. The main content can be summarized as follows:
     1. First of all, overview of the development of solid-state lasers and blue lasers were reviewed. The development process of solid-state lasers and Trends were described. The advantages of solid-state lasers were explained and solid-state lasers applications were listed. Common laser crystals in science and technology and their respective characteristics were described. The blue laser used widely are also illustrated.
     2. There is serious thermal effects in experimental process of blue laser generated by LD pumping Nd:YAG SHG LBO. But the previous physical model does not take into account the difference of three-level and four-level during the calculation of heat effects, which result in the great difference between numerical simulation of the existing model and the actual conditions. We re-established modeland modified the heat transfer. We also numerically soluted the Poisson equation with matlab to get a more accurate temperature distribution inside the crystal, the internal temperature of crystal has improved greatly compared tohe numerical results before modifying the model. The therotical thermal focal length is obtained on this basis. The thermal focal length is also measured by experiment. Experimental results are consistent with the theoretical calculation.
     3. Thermal effect of quasi-three level by pulsed LD pumping crystal were studied. The Poisson Equation were numerically solved with matlab. The internal temperature distribution of the crystals was obtained when time changes. The results show that internal temperature reduces with the pulsed pump compared to continuous pumping and relieve thermal effects. The impact of the pulse interval, the pump radius and the crystal radius towards temperature change law was analysed and compared with matlab. Numerical results show that changes in pulse interval time does not have an impact on the temperature distribution inside the crystal when the pulse interval is too small compared with the thermal relaxation time. The temperature inside the crystal remains the same when the pulse interval time changes. When the pulse intervals can be compared to the thermal relaxation time, increasing the pulse interval can reduce the temperature inside the crystal. Results also show that the pump radius will affect the thermal effect inside the crystal, reducing the pumpping radius can increase the thermal effect. Crystal radius size also affects the temperature distribution inside the crystal, the smaller of thecrystal radius, the higher of the temperature, the more obvious of thermal effects.
引文
[1] T. H. Maiman, Stimulated Optical Radiation in Ruby[J], Nature, 1960, volume1 87:493~494
    [2] R. Newman, Excitation of the Nd3+ Fluorescence in CaWO4 by Recombination Radiation in GaAs[J], J. Appl. Phys, 1963, volume34:437~438
    [3] P.P. Sorokin, M.J. Stevenson, Advances in Quantum Electronics[J], Phys. Rev. Letters 1960, volume5:65~68
    [4] E. Sniter , Optical Maser Action of Nd+3 in a Barium Crown Glass[J], Phys. Rev. Letters 1961,7(12):444
    [5] L. F. Johnson, L. Nassau: Proc. IRE Infrared fluorescence and stimulated emission of Nd3+ in CaWO4[J], 1961, 49:1704~1704
    [6] R.J.Keys, Microwave modulation of a GaAs injection laser[J],IEEE J. Quantum Electron., 1964, 52(6):715~715
    [7] M. Ross, YAG laser operation by semiconductor laser pumping[J], Profc. IEEE., 1968, 56(2):196~197
    [8] H. G. Danielmeyer et al., Diode‐Pump‐Modulated Nd:YAG Laser[J], J. Appl. Phys., 1972, 43(6):2911~2913
    [9] L. C. Conant, et al, GaAs Laser Diode Pumped Nd:YAG[J], LaserAppl. Opt., 1974, 13(11):2457~2458
    [10] J. E. Jackson, et al, Output fluctuations of high‐frequency pulse‐pumped Nd:YAG laser[J], J. Appl. Phys., 1974, 45(5):2353~2355
    [11] H. J. Eichler, A.Haase, et al, Cr4+:YAG as passive Q-switch for a Nd:YALO oscillator with an average repetition rate of 2.7 kHz, TEM00 mode and 13 W output[J], Appl Phys B 1994, 58(5):409~411
    [12] M. D. Perry, D. Pennington, et al., Petawatt laser pulses[J], Opt. Lett., 1999, 24(3):160~162
    [13]侯洵,超短脉冲激光及其应用[J],空军工程大学学报(自然科学版), 2000,1(1):1-5
    [14]林位株, CPM激光器的新进展——18飞秒[J],科学通报, 1993,19:463-467
    [15]张志刚等,飞秒激光脉冲技术的发展和应用[J],激光杂志, 1999, 20(5):7-10
    [16]杨云龙,千瓦级光纤激光器[J],激光与光电子学进展, 2000,6:13~17
    [17]友清,输出295mW的红光激光二极管[J],激光与光电子学进展, 1995, 7(5):34~34
    [18]张伟力等,全固化飞秒激光器研究进展[J],光电子激光, 1999,10(3):282-285
    [19]张玲硕士学位论文北方交通大学2002,P1
    [20]于复生,陈江华,李树强等. LD泵浦的声光调Q腔内倍频固体激光器[J].半导体光电. 2000, 21 (4):249~252
    [21] YHirano, N.Pavel, S.Yamamoto, et al. 100-w, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system[J]. Optics Communications, 2000, 184:231~236
    [22]张玲硕士学位论文北方交通大学2002 P1-2
    [23]李士杰,姜亚南.激光基础.机械工业出版社, 1986: 214~222
    [24]李隆,史彭,刘小芳,LD端面抽运长方形激光晶体的热效应[J],光电工程,2005 ,32(4):35~38
    [25]李瑞贤硕士学位论文华中科技大学2004 P14 [26 ]何艳波硕士学位论文长春理工大学2008 P8
    [27]刘伟仁,霍玉晶,何淑芳,冯立春,全固体蓝色激光技术综述[J],激光与红外,2002, 32(4):221~223
    [28]高兰兰,檀慧明,利用复合Nd:YAG实现600 mW高效紧凑型蓝光激光器[J],光子学报,2004, 32(1):8~10
    [29] D. S. Sumida, T. Y. Fan, A 50 mJ per transversely diode pumped Yb:YAG laser at room temperature[J]. CLEO. 1994:419~420
    [30] C. Bibeau, R. Beach, High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser[J], IEEE J. Quantum Electron., 1998, 34(10): 2010~2019
    [31] D. S. Sumida, A. A. Betin, et al., Diode-pumped Yb:YAG catches up with Yb:YAG[J], Laser Focus World, 1999, 35(6): 63~70
    [32]谢国强博士学位论文复旦大学2007 P2
    [33] H. W. Mocker et al.,mode compettion and self‐locking effects in AQ‐switched ruby laser[J]. Appl. Phys. Lett., 1965,7(10) :270~273
    [34] A. J. DeMaria et al., self mode‐locking of lasers with saturable absorbers[J], Appl. Phys. Lett., 1966,8(7):174~176
    [35] P. W. Smith, Mode-locking of lasers[J],Proc. IEEE., 1970,58(9):1342~1357
    [36] H. A. Haus, Parameter ranges for CW passive modelocking[J]. IEEE J. Quantum Electron, 1976, QE-12:169-176
    [37] U. Keller et al., Coupled-cavity resonant passive mode-locked Ti-sapphire laser[J], Opt, Lett., 1990, 15:1377-1379
    [38] U. Keller et al., Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers[J]. Opt. Lett., 1992, 17(7):505-507
    [39] J. Aus der Au et al., High-power diode-pumped passively mode-locked Yb:YAG lasers[J], Opt. Lett., 1999, 24:1281-1283
    [40] Th. Graf et al., Multi-Watt Nd:YVO4 laser mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar[J], Opt. Commun., 1999, 159:84-87
    [41] G. J. Spühler et al., Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J], Opt. Lett. 1999, 16(3):376~388
    [42] Z. G. Zhang et al., Cerebral Microvascular Obstruction by Fibrin is Associated with Upregulation of PAI-1 Acutely after Onset of Focal Embolic Ischemia in Rats[J], Opt. Lett., 1999, 24:1768
    [43] G. J. Spuhler et al., 27W passively mode-locked Nd:YAG laser[J], IEEE. Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest, 2000
    [44] Y. F. Chen et al., Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable bragg reflector[J], Opt. Lett., 2001, 26(4):199-201
    [45] M. J. Lederer et al., Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking[J], J. Phys. D: Appl. Phys., 2001, 34(16):2455.
    [46] F. Brunner et al., Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser[J], Opt. Lett., 2001, 26(6):379-381.
    [47] Jing-Liang He, Chao-Kuei Lee, Jung Y. Jone Huang, Shing-Chung Wang, Ci.-Ling Pan, and Kai-Feng Huang, Diode-pumped Mode-locked Multi-watt Nd:GdVO4 laser with saturable Bragg reflector[J], Appl. Opt., 2003, 42(27):5496~5499
    [48] R. Burnham and A. D. Hays. High-power diode-array-pumped frequency-doubled cw Nd:YAG laser[J]. Opt. Lett., 1989, 14(1):14~27
    [49] F. Hanson and D. Haddock. Laser diode side pumping of neodymium laser rods[J]. Appl. Opt., 1988, 27(1):13~30
    [50] Hongrui Zhang, Mingju Chao, Mingyi Gao, et al., High power diode single- end-pumped Nd:YVO4 laser[J], Optics&Laser Technology, 2003, 35(6):445~449
    [51]张帅一,硕士学位论文山东师范大学2008 P5 第二章
    [1] M.E.Innocenzi, H.T.Yura, C.L.Fincher and R.A. Fields. Thermal modeling of continuous-waveend-pumped solid-state lasers[J]. Appl. Phys. Lett., 1990, 56(19): 1831~1833
    [2]. C. Pfistner, R. Weber, H. P Weber, et al. Thermal Beam Distortions in End-Pumped Nd:YAG, Nd:GSGG and Nd:YLF Rods[J]. IEEE J. Quantum Electron., 1994, QE-30(7): 1605-1615.
    [3]. Xiaoyuan Peng, Anand Asundi, Yihong Chen, and Zhengjun Xiong. Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis[J]. Apply Optics, 2001, 40(9): 1396-1403
    [4] SOVIZIA M, MASSUDIA R. Thermal distribution calculation in diode pumed Nd:YAG laser rod by boundary elecment method[J]. Optics&laser Technology, 2007, 39:46-52.
    [5]. Andrea Gnoli, Luca Razzari and Marcofabio Righini. Z-scan measurements using high repetition rate lasers: how to manage thermal effects[J]. Optics Express, 2005, 13(20): 7976-7981
    [6]. Jianlang Li, Jun Dong, Musha Mitsurua, Akira Shirakawa, Ken-ichi Ueda.Transient temperature profile in the gain medium of CW and end-pumped passivelyQ-switched microchip laser[J]. Optics Communications, 270 (2007): 63–67.
    [7] Peng Shi,Wen Chen,Long Li,Ansheng Gan et al. Semianalytical thermal analysis on a Nd:YVO4 crystal[J], APPLIED OPTICS, 2007, 46(19):
    [8]ZHENG Yi, GAO Mingyi, YAO Jianquan. Study on Thermal Effect of Anisotropic Laser Medium by LD End-pumped[J]. Journal of Optoelectronics & Laser.(光电子·激光)2003, 14(10):1094~1097
    [9] Li Long, Shi Peng, Tian Laike, et al., Thermal Deformation of a Rectangle Nd-ion Doped Laser Crystal by High Power Diode Laser End-pumped[J]. Acta Optica Sinica, 2006,35 (4): 499~503
    [10]孙尧,李涛,于果蕾等,激光二极管端面抽运Nd:GdYVO4晶体热效应分析倍频研究[J],中国激光,2007,34(3):359-363
    [11]张帅一,激光二极管端面抽运激光晶体热效应研究[J],中国激光,2008,35(3):333~337
    [12]宋小鹿,李兵斌,王石语等,脉冲激光二极管端面抽运全固态激光器热效应瞬态过程[J],中国激光,2007,34(11):1476~1482
    [13]史彭,陈文,李隆等,激光分布对抽运Nd:YVO4晶体热效应的影响[J],光学精密工程,2008,16(2):197~201
    [14]甘安生,李隆,史彭,激光二极管端面泵浦Yb:YAG薄片激光器的热效应[J],光子学报,2008,37(4):631~635
    [15]高彦伟,刘晓峰,孙年春等,刻螺纹对Nd:YAG晶体棒的热透镜效应影响实验研究[J],激光杂志,2008,29(3):6~7
    [16]李健,滑文强,黄春霞,张玉,张海娟,陈锋。基于边界对流传热的LD端面抽运圆柱形晶体的热效应[J],中国激光,2009, 36(7):1754~1758 第三章
    [1] Ulrich Wittrock. High power rod, slab, and tube lasers.柏林工大光学研究所研究报告
    [2]高俊超,硕士学位论文华中科技大学2004 P2
    [3] T. Y. Fan. Heat generation in Nd:YAG and Yb:YAG[J],IEEE J. Quantum Electron., 1993, 29(6):1457~1459
    [4] T. Kimura, K.Otsuka,Thermal effects of a continuously pumped Nd3+:YAG Laser.[J], IEEE J. Quantum Electron., 1971, 7(8):403~407
    [5]吕百达,固体激光器件.北京邮电大学出版社, 2002年版,P92
    [6]吕百达,固体激光器件.北京邮电大学出版社, 2002年版,P96
    [7]高俊超,硕士学位论文华中科技大学2004 P2~3
    [8] M. E. Innocenzi, H. T. Yura, C. L. Fincher and R. A. Fields, Thermalmodeling of continuous wave end-pumped solid-stated lasers[J]. Appl. Phys. Lett., 1990, 56(19):1831 ~1833
    [9]郑义,高明义,姚建铨。LD端面泵浦各向异性激光介质的热效应研究[J],光电子·激光,2003,14(10):1094~1098
    [10]史彭,李隆,刘小芳等,偏心度对矩形截面Nd:GdVO4晶体热效应的影响[J].光电子·激光, 2005, 16(10):1187~1192
    [11] Shi Pinkly Long, Gan An-sheng et al, Thermal Effect Research of End-pumped Rectangle Nd:GdVO4 Crystal[J], Chinese J. Lasers, 2005, 32(7):923-928
    [12] Tiao Li, Zhuang Zhuo, Xiao min Li et al., Study on optical characteristics of Nd:YVO4/:YVO4 composite crystal laser[J], CHINESE OPTICS LETTERS, 2007, 5(3):175~177
    [13]孙尧,李涛,于果蕾等,激光二极管端面抽运Nd:GdYVO4晶体热效应分析倍频研究[J],中国激光,2007, 34(3):359~363
    [14] C. Pfistner, R. Weber, H. P Weber, et al. Thermal Beam Distortions in End-Pumped Nd:YAG, Nd:GSGG, and Nd:YLF Rods[J]. IEEE J. Quantum Electron., 1994, QE-30(7): 1605-1615.
    [15] LIU Ju-hai, LU Jian-ren,LV Jun-hua et al. Thermal Lens Determination of End-Pumped Solid-State Lasers by a Simple Direct Approach[J]. CHIN. PHYS. LETT, 1999, 16(3):181-183
    [16]张彪,侯学元,李宇飞等.端面泵浦Nd:GdYVO4的热焦距及基频运转[J],光电子·激光, 2002, 13(9):920-922
    [17]毛艳丽,邱宏伟,徐军,邓佩珍,干福熹。高浓度掺钕钇铝石石榴石(Nd:YAG)晶体的光谱与激光特性光[J],光学学报, 2001, 21(10):1264-1267。
    [18]杨永明,周荣,过振,王石语,蔡德芳,文建国。LD端泵下Nd:YAG端面形变热效应的研究[J],光子学报,2005,34(9):1297-1300。
    [19]史彭,李金平,李隆等,抽运光分布对Nd:YAG微片激光器热效应的影响[J] ,中国激光,2008, 35(5):643-646
    [20]张帅一,黄春霞,于果蕾等,激光二极管端面抽运激光晶体的热效应[J],中国激光,2008, 35(3):333~337
    [21]史彭,李隆,甘安生等,LD端面抽运矩形截面YAG-Nd:YAG复合晶体热效应[J],光电子激光,2006,17(12):197~201
    [22]李健,滑文强,黄春霞,张玉,张海娟,陈锋。基于边界对流传热的LD端面抽运圆柱形晶体的热效应[J],中国激光,2009, 36(7):1754~1758
    [23] SOVIZIA M, MASSUDIA R. Thermal distribution calculation in diode pumed Nd:YAG laser rod by boundary element method[J]. Optics&laser Technology, 2007, volume39:46-52.
    [24] Walter Koechner, Solid-State Laser Engineering[M]. Beijing: Science Press, 2002:357~358 W.克希耐尔,固体激光工程[M],北京:科学出版社, 2002:357~358
    [25]周炳琨,激光原理[M].国防工业出版社,2005,172~173
    [26]祖宁宁,LD端面泵浦连续Nd:GdVO4激光的理论研究[J],吉林,吉林大学2009:93~99
    [27]杨永明,过振,王石语等,干涉条纹法测量LD端面泵浦Nd:YAG热透镜焦距[J],光子学报,2005,34(2):202~204
    [28] METIN S. MANGIR AND DAVID A. ROCKWELL. Measurements of Heating and Energy Storage in Flashlamp-Pumped Nd:YAG and Nd-Doped Phosphate Laser Glasses[J]. IEEE J. Quantum Electron.,1986,22(4):574~580
    [29] Frauchiger J., Aalbers P., Weber H. P., Modeling of thermal lensing and higher order ring mode oscillation iend-pumped solid state laser[J]. IEEE J. Quantum Electron, 1992, 26(4):1064~1056
    [30] D. C. Brown. heat, fluorescence, and stimulated-emission power densities andfraction in Nd:YAG[J], IEEE J. Quantum Electron., 1998, 34:560~572
    [31]高俊超,硕士学位论文,华中科技大, 2004, P5
    [32]李隆,田丰,赵致民等. LD端面泵浦折叠腔Nd:YVO4/LBO激光器[J].光子学报,2004, 33(4):396~399.
    [33] Zhigang Li , Zhengjun Xiong ,Weiling Huang et al., Study of High Power LaserDiode End-Pumped Composite Crystal Lasers[J]. Chinese Laser, 2005, 32(3): 297~300
    [34] Tsunekane M., Taguchi N., Lnaba H. Efficient 946nm laser operation of a composite Nd:YAG rod with undoped ends[J]. Applied Optics, 1998, 37(24): 5713~5719
    [35]吕百达,固体激光器件,北京邮电大学出版社, 2002,P93~108
    [36]李健,周芳,孙尧等.大功率LD脉冲泵浦Nd:YAG蓝光激光器研究[J],江西科学, 2005,23(4):349~352
    [37]刘均海,博士学位论文,山东大学, 1999, P7 第四章
    [1]张行愚,赵圣之,王青圃等.激光二极管抽运的激光器热透镜效应的研究[J]。中国激光,2000,27(9):777~781
    [2] M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fidids, Thermal modeling of continuous‐wave end‐pumped solid‐state lasers[J], Apples. Phys. Lett., 1990, 56:1831-1833.
    [3] J. Liu, J. M. Yang, and J. L. He, Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser[J], Opt. Commun, 2003, volume 219:317 ~321.
    [4] A. K. Cousins, Scaling CW diode-end-pumped Nd:YAG lasers to high average powers[J]. IEEE J. Quantum Electron, 1992, 28:1057-1069.
    [5] Jie Liu, Qianqian Peng, Jimin Yang, Quickies Jiang, Jingliang He, Linage Qin, Xianlin Meng, Diode-pumped Nd:YxGd1-xVO4 crystal continuous-wave laser[J], CHINESE OPTICS LETTERS, 2004, 2(1): 29~30
    [6] W. Koechner, Transient thermal profile in optically pumped laser rods[J]. Appl. Phys., 1973, 44:3163.
    [7] J. L. Li, J. Dong, M. Mitsurua, A. Shirakawa, K. I. Ueda, Opt. Commun,, 2007: 27~63.
    [8] Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, L. J. Lee, and S. C. Wang, IEEE J. Quantum Electron., 1997:33~42
    [9] Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, L. J. Lee, and S. C. Wang, IEEE Photon Technol Lett, 1997:9 ~14.
    [10] J. Liu, Y. G. Wang, J. M. Yang, J. L. He, X. Y. Ma, Opt. Commun.,2006, 15:261~332
    [11] Z. Xiong, Z. G. Li, Nicholas Moore, W. L. Huang, and G. C. Lim, IEEE J. Quantum Electron. 2003, 39:979.
    [12] C. Pfistner, R. Weber, H. P Weber, S. Merazzi and R. Gruber, IEEE J. Quantum Electron. 1994, 30:1605.
    [13]祖宁宁,LD端面泵浦连续Nd:GdVO4激光的理论研究[D],吉林,吉林大学2009,
    [14]蓝信矩等,激光技术,北京:科学出版社,2000
    [15] C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, Q-switching stability limits of continuous-wave passive mode locking[J], J. Opt. Soc. Am. B, 1999, 16:46-56
    [16] F. X. K?rtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, Control of solid-state laser dynamics by semiconductor devices[J], Opt. Eng., 1995, vol. 34, pp:2024-2036
    [17] A. Haus, Parameter ranges for cw passive modelocking[J], IEEE J. Quantum Electron, 1976, 12(2) :169-176
    [18] J. Kong, D. Y. Tang, S. Ng et al.. Diode-pumped passively mode-locked Nd:GdVO4 laser with a GaAs saturable absorber mirror[J]. Appl. Phys.(B), 2004, 79(2):203~206
    [19] Jia Yulei, Wei Zhiyi, Zheng Jiaan et al.. Diode-pumped self-starting mode-locked Nd:YVO4 laser with semiconductor saturable absorber output couple[J]. Chin Phys. Lett., 2004, 21(11):2209~2211
    [20]宋小鹿,李兵斌,王石语等,脉冲激光二极管端面抽运全固态激光器热效应瞬态过程[J],中国激光,2007, 34(11):1476~1482
    [21]宋小鹿,李兵斌,王石语等,脉冲激光二极管侧面抽运Nd:YAG激光器晶体时变热效应[J],物理学报,2009, 58(3):1700~1707
    [22]余锦,檀惹明,钱龙生等.纵向泵浦固体激光介质热透镜效应的理论研究,强激光与粒子束,2000,12(1):27~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700