用户名: 密码: 验证码:
柴油准均质混合气制备及燃烧的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机的发展面临着能源供给和环境保护的双重挑战,均质压燃燃烧能突破传统柴油机燃烧PM和NOX排放的最低极限,且具有较高的热效率,已成为一项非常有吸引力的技术。而柴油燃料蒸馏温度高,均质混合气制备是实现柴油均质压燃燃烧的关键和难点。围绕均质混合气制备问题,本文对燃料油膜蒸发特性和柴油喷雾热碰壁过程进行了基础试验研究;根据两者的研究结果,利用喷雾热碰壁方法成功制备柴油准均质混合气,并实现了缸外预混合和缸内早喷的柴油均质压燃燃烧;本文还研究了高喷射压力下的柴油喷雾静电荷电雾化技术,探索了改善柴油雾化质量的其它途径。
     采用热重分析法定量分析加热速率、油膜厚度和气氛流量等参数对柴油油膜蒸发过程的影响。与石油产品馏程测定法和文献所用典型油膜蒸发试验装置相比,燃料在热重分析仪中所处的状态和环境比较接近内燃机中燃料油膜的实际情况,油膜质量和温度变化可同时精确测量和记录,气氛流量也可精确控制,因此采用热重分析法来研究燃料油膜蒸发过程具有较大的优越性,尤其便于研究油膜蒸发与壁面温度的相关性。研究发现,在快速蒸发过程中,燃料油膜的蒸发并不严格按照各组分的沸点高低而依次进行,高沸点组分将在未达到其沸点之前挥发完毕;对0#柴油,若壁面温度达到250℃,油膜即可充分蒸发;提高加热速率可显著缩短油膜蒸发时间,但对蒸发终点的温度影响不大;减小油膜厚度也能缩短油膜蒸发时间,但与提高加热速率相比,效果不明显;气氛流量的微小变化也能对油膜蒸发产生明显影响。
     设计了一套柴油喷雾热碰壁试验系统,并采用高速摄影技术研究了壁面温度、壁面加热功率等对常压环境下柴油喷雾撞击高温金属壁面过程的影响。研究发现,高温壁面的热辐射能够促进着壁前喷雾前锋的雾化和蒸发;当壁面温度超过200℃后,撞壁柴油喷雾开始明显雾化,喷雾投影面积大幅度增加;当壁面温度处于260~360℃范围时,随壁面温度升高,喷雾投影面积变化不大,但喷雾内部浓度分布更加均匀;当壁面温度超过360℃后,喷雾投影面积开始减小,但喷雾内部浓度分布也比较均匀。壁面加热功率主要通过改变壁面温度来影响撞壁燃油的雾化。柴油喷雾热碰壁过程的基础研究为设计发动机试验用喷雾热碰壁装置提供了直接的参考数据。
     设计了喷雾热碰壁装置,并实现缸外预混合的柴油均质压燃燃烧,还研究了外部冷却废气再循环(EGR)、进气加热等的影响。本文设计的喷雾热碰壁装置结构非常紧凑,可方便地安装在进气道入口处;该装置仅加热金属壁面,当供电功率为600W时,热壁面温度可在4分钟左右达到250℃,并顺利起动发动机;进气气流经过热壁面后仅升高40℃左右,不会明显增加发动机热负荷。研究发现,喷雾热碰壁后可形成准均质混合气,限制该系统均质压燃燃烧范围的主要因素是颗粒物(PM)排放。在不采取其它措施的情况下,壁面温度为370℃时,在发动机转速700~1000r/min,λ=4~5的运转范围内可实现柴油均质压燃燃烧。引入外部冷却再循环废气后,本文系统均质压燃燃烧的大负荷边界可拓宽至λ≤2.6。进气加热可将本文系统均质压燃燃烧的小负荷边界拓宽至λ≥6.8。
     采用柴油喷雾热碰壁的方法,促进缸内早喷燃油的雾化和蒸发,实现均质压燃燃烧,并研究压缩比和供油提前角等对燃烧和排放的影响。本文设计了一种气隙隔热活塞,从而提高活塞顶局部的壁面温度,并减小喷孔锥角,实现了缸内早喷燃油的热碰壁。采用气隙隔热活塞后,早喷燃油的雾化质量得到改善,可在λ=5.5~7.5(发动机转速600r/min)范围内实现均质压燃燃烧。压缩比提高将使两阶段的放热都提前,减少PM、碳氢化合物(HC)和一氧化碳(CO)排放,但导致氮氧化合物(NOX)排放急剧增加;若推迟供油时刻,第一阶段放热的起始时刻基本不变,放热率峰值下降,第二阶段放热的起始时刻提前,放热率峰值升高。推迟供油时刻还将使缸内燃烧模式逐渐由HCCI燃烧向传统柴油机的喷雾扩散燃烧过渡,HC和CO排放明显降低,NOX排放急剧增加。
     在实际应用的燃油系统上实现高喷射压力下的柴油荷电雾化,对采用静电荷电技术来改善柴油雾化质量进行探索性研究。以Rayleigh极限为基础,建立柴油液滴荷电破碎的临界荷质比模型,从理论上得到临界荷质比为10-6~10-4库仑/克(C/g)。本文设计的高压喷射荷电器可实现峰值喷射压力达45~67MPa条件下的柴油荷电雾化,燃油雾化质量有所改善。但是,由于瞬时柴油流量大,燃油与电极接触时间短等原因,荷质比还比较低。
The development of internal combustion engine has to be faced with the huge stress of energy and environment protection. HCCI (Homogeneous Charge Compression Ignition) combustion could break through the low PM and NOX limit of conventional diesel engines, so it has become an attractive technology for diesel engines. But diesel fuel has high distillation temperatures, diesel homogeneous charge preparation is one of the key challenges for diesel HCCI. Focused on diesel homogeneous charge preparation, the fuel film evaporation characteristics and spray hot-impingement process were experimentally investigated. Based on the results of the above experiments, diesel quasi-homogeneous charge was prepared by spray hot-impingement, premixed HCCI and early direct-injection HCCI were fulfilled. Electrostatic charging atomization of diesel spray was also investigated to explore another diesel atomization technology.
     By employing TGA (Thermogravimetric analysis), the effects of heating rate, fuel film thickness and environmental flux were investigated. Compared with petrochemical distillation measurement method and apparatus developed in papers, states of fuel film in TG analyzer are closer to the fuel film existing conditions in internal combustion engines, film mass and temperature could be simultaneously precisely measured and recorded, the environmental flux also could be precisely controlled. Hence, TGA has more advantages in fuel film evaporation investigation, and TGA is especially suitable to study the relationship between the wall temperature and the film evaporation. It was revealed that, the evaporation sequence could not be strictly divided by the boiling points of each component for multi-component dissolved mixture during a quick evaporation process, and the heavier components could vaporize before reaching their boiling points. Films of 0# diesel fuel would fully evaporate when film temperature was beyond 250℃. The increase of heating rate would shorten fuel film evaporation time distinctly, but the end-point temperatures were scarcely affected. The thinner initial film thickness would result in a lower temperature for the same evaporated ratios. The slight change of environmental flux would evidently affect fuel film evaporation process.
     A diesel spray hot-impingement experimental system was set up, and the effects of wall temperature and heating power on the behavior of impinging spray were investigated at atmospheric pressure by employing high-speed camera video. It was found that, the thermal radiation of hot metal board could accelerate the atomization and evaporation of the spray front before impingement. When the wall temperature was higher than 200℃, the atomization of impinging spray became evident, the spray projection area began to hugely increase. When the wall temperature was at 260~360℃, the spray projection area changed a little, but spray uniformity could improve with wall temperature increase. If the wall temperature exceeded 360℃, the spray projection area would decrease dramatically with wall temperature increase, but spray uniformity would be further improved. The effect of wall heating power was displayed by the change of wall temperature. This experiment supplied reference data for the following design of spray hot-impingement apparatus used in engine tests.
     By employing the spray hot-impingement apparatus designed in this paper, premixed diesel HCCI was fulfilled, and the effects of cooled external EGR, and intake heating were investigated. This apparatus is compact and can be fixed at the inlet of intake port. Only the metal wall of the equipment was heated, and it could be heated to be 250°C with about 4 minutes (power supply is 600 W, no air flow), then the engine could be started. The intake mixture temperature was only about 40°C higher than that of the intake air before the equipment, so the heat load of the engine would not be improved distinctly. It was revealed that the fuel-air mixture made by spray hot-impingement was quasi-homogeneous, and the limit of HCCI combustion was PM emission. Without other means, HCCI combustion run in the range ofλ=4 ~ 5 at the engine speed of 700 ~ 1000 r/min, when the hot surface temperature was about 370°C. Cooled external EGR could extend the high load limit of this system toλ≤2.6. Intake heating could extend the low load limit toλ≥6.8.
     By employing the spray hot-impingement method, the atomization and evaporation of early direct-injection fuel would be promoted, then the early direct-injection diesel HCCI could be realized. The effects of compression ratio and fuel supply advance angle were evaluated. An air-gap-insulted piston was designed, and the nozzle hole cone angle was reduced. So wall temperature of certain part on the piston top was improved, and spray hot-impingement would also be realized. The atomization and evaporation of early direct-injection fuel were improve by hot-impingement, and the engine could run atλ=5.5~7.5 (600r/min) with HCCI combustion. When compression ratio was increased, the two heat release phases all advanced. HC, CO and exhaust opacity were reduced, but NOX emission increased dramatically. If fuel supply timing was retarded, peak value of the first heat release phase would decrease with nearly unchanged combustion timing, and peak value of the second heat release phase would be increased with the advanced combustion timing. Along with the fuel supply delay, the in-cylinder combustion mode would be gradually transferred from HCCI to conventional spray diffusion combustion , so HC and CO emissions could effectively reduce, but NOX would increase sharply.
     The diesel electrostatic charging atomization was realized under high injection pressure on an applied fuel supply system, and this technology was employed to improve the diesel atomization. The model of break-up critical charge mass ratio for diesel droplet was constituted based on Rayleigh model, and the critical charge mass ratio was deduced to be 10-6~10-4C/g. In this paper, the designed high-pressure injection charger could realize the electrostatic atomization under the maximum injection pressure of 45~67MPa, and the atomization was improved after electrostatic charging. But the obtained charge mass ratio was relatively low.
引文
[1] 中国内燃机工业协会《中国内燃机工业年鉴》编委会[M],中国内燃机工业年鉴 2004 年,上海,上海交通大学出版社,2005,70、403
    [2] 中国科学院能源战略研究组,中国能源可持续发展战略专题研究[M],北京,科学出版社,2006 年,9、10、24、25
    [3] 孙永祥,世界能源市场动向及中国与印度面临的挑战[J],天然气经济,2006.3,13-16
    [4] 董尧清,我国车用发动机面临节能和排放要求的新挑战及其应对[C],上海内燃机学会,2006.10.11
    [5] 何学良,詹永厚,李疏松,内燃机燃料[M],北京,中国石化出版社,1999 年,10
    [6] 苏万华,新一代内燃机燃烧(HCCI)理论的提出及其关键科学问题[C],内燃机高新技术发展研讨会论文集,2003 年,合肥
    [7] 程至远,解建光,内燃机排放与净化[M],北京,北京理工大学出版社,2000 年
    [8] 旻苏,机动车排放标准体系分析[J],世界标准化与质量管理,2006.6,第 6 期,29-31
    [9] 聂崇训,欧美柴油机排放标准参考[J],工程机械,2003.3,54-57
    [10] 李怀彬,解读《中国轻型汽车排放标准》[J],汽车工业研究,2005.9,29-32
    [11] 张会义,关于我国发展柴油轿车的几点思考[J],天津汽车,2006 年第 1 期,3-6
    [12] 武辉成,我国轿车动力柴油化发展探讨[J],汽车工业研究,2004.12,9-11
    [13] Flynn F P, Durrett P R, Hunter L G, et al. Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation[C], SAE Paper 1999-01-0509
    [14] 蒋德明,内燃机燃烧与排放学[M],西安交通大学出版社,西安,2001 年
    [15] Thring H R, Homogeneous-charge compression-ignition (HCCI) engines [C], SAE Paper 892068
    [16] Zhao F, Asmus W T, Assanis N D, et al. Homogeneous charge compression ignition (HCCI) engines: key research and development issues [M], Warrendale: Society of Automotive Engineers, 2003
    [17] Ryan III W T and Callahan J T, Homogeneous charge compression ignition of diesel fuel [C], SAE Paper 961160
    [18] Takeda Yoshinaka, Keiichi Nakagome and Keiichi Niimura, Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection [C], SAE Paper961163
    [19] Gray W A and Ryan W T, Homogeneous charge compression ignition (HCCI) of diesel fuel [C], SAE Paper 971676
    [20] Christensen M, Hultqvist A, and Johansson B, Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression ratio [C], SAE Paper 1999-01-3679
    [21] Suzuki H, Koike N and Odaka M, Combustion control method of homogeneous charge diesel engines[C], SAE Paper 980509
    [22] Odaka M, Suzuki H, Koike N, et al. Search for optimizing control method of homogeneous charge diesel combustion [C], SAE Paper 1999-01-0184
    [23] Kaneko N, Ando H, Ogawa H, et al. Expansion of the operating range with in-cylinder water injection in a premixed charge compression ignition engines [C], SAE Paper 2002-01-1743
    [24] Nakagome K, Shimazaki N, Niimura K, et al. Combustion and emission characteristics of premixed lean diesel combustion engine [C], SAE Paper 970898
    [25] Harada A, Shimazaki N, Sasaki S, et al. The effects of mixture formation on premixed lean diesel lean diesel combustion engine [C], SAE Paper 980533
    [26] Hashizume T, Miyamoto T, Akagawa H, et al. Combustion and emission characteristics of multiple stage diesel combustion [C], SAE Paper 980505
    [27] Akagawa H, Miyamoto T, Harada A, et al. Approaches to solve problems of the premixed lean diesel combustion [C], SAE Paper 1999-01-0183
    [28] Yokota H, Kudo Y, Nakajima H, et al. A new concept for low emission diesel combustion [C], SAE Paper 970891
    [29] Yamamoto H and Niimura K, Characteristics of fuel sprays from specially shaped and impinging flow nozzles [C], SAE Paper 950082
    [30] Iwabuchi Y, Kawai K, Shoji T, et al. Trial of new concept diesel combustion system – premixed compression-ignited combustion [C], SAE Paper 1999-01-0185
    [31] Hasegawa R and Yanagihara H, HCCI combustion in DI diesel engine [C], SAE Paper 2003-01-0745
    [32] Walter B and Gatellier B, Development of the high power NADITM concept using dual mode diesel combustion to achieve zero NOx and particulate emissions [C], SAE Paper 2002-01-1744
    [33] 苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI 复合燃烧放热特征及其对排放和热效率的影响[J],内燃机学报,第 22 卷(2004)第 3 期,193-202
    [34] 石磊,邓康耀,王宇宾,崔毅,何方正,进气上止点燃油喷射实现柴油 HCCI 燃烧的试验研究[J],燃烧科学与技术,第 11 卷第 2 期,2005 年 4 月,175-178
    [35] 李理光,黄叶舟,龚允怡,高压喷雾碰壁的粒度特性研究[J],内燃机学报,1996 年,第 2期,119-126
    [36] Mase Y, Kawashima J and Sato T, Nissan’s new multivalve DI diesel engine series [C], SAE Paper 981039
    [37] Kimura S, Aoki O, Ogawa H, et al. New combustion concept for ultra-clean and high-efficiency small DI diesel engines [C], SAE Paper 1999-01-3681
    [38] Kimura S, Aoki O, Kitahara Y, et al. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards [C], SAE Paper 2001-01-0200
    [39] C Arcoumanis and J-C Chang, Flow and heat transfer characteristics of impinging transient diesel sprays [C], SAE Paper 940678
    [40] Andreas M Lippert, Donald W Stanton, Rolf D Reitz, et al. Investigating the effect of spray targeting and impingement on diesel engine cold start [C], SAE Paper 2000-01-0269
    [41] Ichiro Sakata, Kazuyoshi Ishisaka, Hiromichi Yanagihara, et al. Development of TOYOTA reflex burn (TRB) system in DI diesel [C], SAE Paper 900658
    [42] 汪洋,谢辉,苏万华等,激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程[J],燃烧科学与技术,2002 年第 4 期,338-341
    [43] 杨德胜,高希彦,柴油机 TR 燃烧系统的设计与试验研究[J],燃烧科学与技术,2005 年第 1 期,82-86
    [44] 乔信起,宋永臣,高希彦等,伞帘喷雾燃烧系统喷雾特性的试验研究[J],上海交通大学学报,1999 年第 8 期,959-961
    [45] Jiro Senda, Masanori Ohnishi, Tomohiro Takahashi, et al. Measurement and modeling on wall wetted fuel film profile and mixture preparation in intake port of SI engine [C], SAE Paper 1999-01-0798
    [46] Rudolf H Stanglmaier, Matthew J Hall, and Ronald D Matthews, In-cylinder fuel transport during the first cranking cycles in a port injected 4-valve engine [C], SAE Paper 970043
    [47] Jian Li and Nick Collings, A semi-empirical model of fuel transport in intake manifolds of SI engines and its application in transient conditions [C], SAE Paper 1999-01-1314
    [48] Hengqing Liu, N A Henein and Walter Bryzik, Simulation of diesel engines cold-start [C], SAE Paper 2003-01-0080
    [49] 刘振海,热分析导论[M],北京,化学工业出版社,1991 年,32-33
    [50] C Pichon, V Risoul, G Trouvé, et al. Study of evaporation of organic pollutants by thermogravemetric analysis: experiments and modeling [J], Thermochimica Acta, 306 (1997) 143-151
    [51] Niel Pieterse and Walter W. Focke, Diffusion-controlled evaporation through a stagnant gas: estimating low vapour pressures from thermogravimetric data [J], Termochimica Acta, 406 (2003) 191-198
    [52] 宋崇林,王亚权,范国梁等,热重法测量柴油机排气微粒中有机可溶成分的研究[J],汽车技术,2000.11,20-22
    [53] 魏荣田,周莉,卢文彤,热重分析仪测量柴油机油烟炱含量[J],现代仪器,2003.3,52-53
    [54] 文鹏,李凡,吴争鸣等,气相色谱和热重技术应用于模拟蒸馏的研究进展[J],煤炭转化,Vol. 20, No. 4,Oct. 1997,1-8
    [55] 陆沁莹,李桂华,热重诺亚克法—— 一种新型的润滑油蒸发损失测定方法[J],润滑油,Vol. 19, No. 2,Apr. 2004,47-49
    [56] 梁汉昌,石油化工分析手册[M],北京,中国石化出版社,2000 年,143-146
    [57] 高莹,中国强制性国家标准汇编,石油卷[M],北京,中国标准出版社,2003 年,48-49,73-74
    [58] 景和平,梅宁,李华军等,柴油机燃烧室壁面上油膜蒸发的试验研究[J],安徽工学院学报,1995,14(4):98-103
    [59] 许斯都,史绍熙,段家修等,复合式燃烧室壁面温度的变化规律及其对燃烧过程影响的研究[J],内燃机学报,1989.7(2):125-130
    [60] Naoya Kato, Michiyasu Moritsugu, Takashi Shimura, et al. Piston temperature measuring technology using electromagnetic induction [C], SAE Paper 2001-01-2027
    [61] Manuel A Gonzalez, Gary L Borman and Rolf D Reitz, A study of diesel cold starting using both cycle analysis and multidimensional calculations [C], SAE Paper 910180
    [62] G?ran Almkvist, Ingemar Denbratt, G?ran Josefsson, et al. Measurement of fuel film thickness in the inlet port of an S. I. Engine by laser induced fluorescence [C], SAE Paper 952483
    [63] Donald W Stanton and Christopher J Rutland. Modeling fuel film formation and wall interaction in diesel engines [C], SAE Paper 960628
    [64] 刘正白,黄兴存,周经纬,李约上等,直喷式柴油机油膜雾化燃烧的半经验数学模型[J],内燃机学报,1994.12(1):9-15
    [65] Jiro Senda, Tomohiro Higaki, Yasuyuki Sagane, et al. Modeling and measurement onevaporation process of multicomponent fuels [C], SAE Paper 2000-01-0280
    [66] Ichiro Sakata, Kazuyoshi Ishisaka, Hiromichi Yanagihara, et al. Development of TOYOTA reflex burn (TRB) system in DI diesel [C], SAE Paper 900658
    [67] Satoshi Kato and Shigeru Onishi, New type of diesel engine by impingement of fuel jet (OSKA-D) [C], SAE Paper 901618
    [68] Bai-Fu Lin, Masaru Ogura, Susumu Daidoji, et al. Study on DI diesel engine with an impinging nozzle head – performance and combustion characteristics [C], SAE Paper 911774
    [69] 裴毅强,苏万华,林铁坚,一种基于稀扩散燃烧的 BUMP 燃烧室及其对柴油机碳烟和 NOX排放影响的实验研究[J],内燃机学报,2002 年,第 5 期,381-386
    [70] 杨德胜,高希彦,柴油机 TR 燃烧系统的设计与试验研究[J],燃烧科学与技术,2005 年 2月,第 1 期,82-86
    [71] Yang De-sheng, Gao Xi-yan, Zhang Song-tao, et al. Realization of low-temperature premixed combustion with diesel TR combustion system [C], Transactions of CSICE, Vol. 23(2005) No.4 313-321
    [72] 姚春德,燃油撞击对柴油机混合气形成及其燃烧过程影响的研究[J],内燃机学报,2001年,第 2 期,123-127
    [73] Al-Roub M M A, Hydrodynamics and heat transfer of multiple droplet impingement [D], Michigan: UMI Company (UMI Number: 9707905), 1997
    [74] Hiroyasu H, Kadota T and Senda J, Droplet evaporation on a hot surface in pressurized and heated ambient gas [C], Transaction of JSME, 39-328, pp.3779 (1973)
    [75] Zhang N, Yang W – J, Evaporation and Explosion of Liquid Drops on a Heated Surface [J], Experiments in Fluids 1, 101-111 (1983)
    [76] Stanglmaier R H, Roberts C E, Moses C A, Vaporization of Individual Fuel Drops on a Heated Surface: A Study of Fuel-Wall Interactions within Direct-Injected Gasoline (DIG) Engines [C], SAE Paper 2002-01-0838
    [77] Naber J D and Reitz R D, Modeling engine spray wall impingement [C], SAE Paper 880107
    [78] Naber J D and Farrell P V, Hydrodynamics of droplet impingement on a heated surface [C], SAE Paper 930919
    [79] Bai C and Gosman A D, Development of methodology for spray impingement simulation [C], SAE Paper 950283
    [80] Arcoumanis C, Chang J-C, Flow and heat transfer characteristics of impinging transient diesel sprays [C], SAE Paper 940678
    [81] 史绍熙,李理光,许斯都等,高压喷射下自由射流和受限碰壁喷雾特性的试验研究[J],内燃机学报,1997 年,第 4 期,383-389
    [82] Werlberger P, Cartellieri W, Fuel Injection and Combustion Phenomena in a High Speed D. I. Diesel Engine Observed by means of Endoscopic High Speed Photography [C], SAE Paper, 870097
    [83] 成晓北,黄荣华,邓元望等,柴油机喷雾撞壁的研究[J],车用发动机,2001 年第 6 期,1-7
    [84] 陈志恒,方集林,BDSB 型单缸试验发动机的研制[J],内燃机工程,第 14 卷(1993)第1 期,52-56
    [85] 胡宗杰,李理光,于水等,进气管燃油热碰壁形成混合气的 HCCI 燃烧研究[C],2005 年中国内燃机学会燃烧学术会议,中国昆明,2005 年 8 月
    [86] 纪常伟,韩爱民,赵勇等,内燃机废气再循环率评价方法的试验研究[J],北京工业大学学报,2004 年 9 月,第 3 期,338-341
    [87] Toru Noda and David E Foster, A Numerical study to control combustion duration of hydrogen-fueled HCCI by using multi-zone chemical kinetics simulation [C], SAE Paper 2001-01-0250
    [88] Toshiji Amano, Satoshi Morimoto and Yasuharu Kawabata, Modeling of the effect of air/fuel ratio and temperature distribution on HCCI engines [C], SAE Paper 2001-01-1024
    [89] Magnus Sj?berg, John E Dec, Aristotelis Babajimopoulos, et al. Comparing enhanced natural thermal stratification against retarded combustion phasing for smoothing of HCCI heat-release rates [C], SAE Paper 2004-01-2994
    [90] John E Dec, Wontae Hwang and Magnus Sj?berg, An investigation of thermal stratification in HCCI engines using chemiluminescence imaging [C], SAE Paper 2006-01-1518
    [91] 符锡仁,日本陶瓷发动机研究的新进展[J],材料导报,1994,No.3,27-29
    [92] 韩树,骆清国,马志雄,低散热柴油机研究综述[J],装甲兵工程学院学报,2003 年 3 月(第 17 卷第 1 期),22-24
    [93] 杨长林,居荫诚,舒国才等,改善低散热发动机燃烧过程的措施[J],内燃机学报,第 13卷(1995)第 4 期,392-400
    [94] D. A. Parker, An air-gap insulated piston [J], Industrial lubrication and tribology, 1987(4)
    [95] 徐维新,绝热发动机陶瓷活塞的设计和材料选择[J],内燃机工程,第 10 卷 1989 年第 2期,70-77
    [96] L Rayleigh, On the equilibrium of liquid conducting masses charged with electricity [J], Philos.Mag., 1882, 10,184
    [97] Elghazaly and Castle, Analysis of the Instability of Evaporating Charged Liquid Droplets [C], IEEE Transactions on Industry Application, Vol.IA-22, No.5, 1986
    [98] Elghazaly and Castle, Experimental Study on the Breakup of Charged Liquid Droplets [C], IEEE Transaction on Industry Application, Vol.IA-25, No.1, 1989
    [99] Toshiyuki Sugimoto, Kazutoshi Asano, Yoshio Higashiyama, Negative corona discharge at a tip of water cone deformed under dc field [J], Journal of Electrostatics, 53 (2001) 25-38
    [100] Xiaopeng Chen, Jiusheng Cheng and Xie zhen Yin, Numerical Analysis of Electrohydrodynamics in a Round Pipe [C], IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No.2, April 2003
    [101] Hideo Watanabe, Tetsushi Matsuyama, Hideo Yamamoto, Experimental study on Electrostatic atomization of highly viscous liquids [J], Journal of Electrostatics 57 (2003) 183-197
    [102] Hans-Joachim Schmid, Lutz Vogel, On the modelling of the particle dynamics in electrohydrodynamic flow-fields: I. Comparison of Eulerian and Lagrangian modelling approach [J], Powder Technology, 135-136 (2003) 118-135
    [103] Hans-Joachim Schmid, Lutz Vogel, On the modelling of the particle dynamics in electrohydrodynamic flow-fields: II. Influences of inhomogeneities on electrostatic precipitation, Powder Technology [J], 135-136 (2003) 136-149
    [104] S N Jayasinghe, M J Edirisinghe, Electrostatic atomisation of a ceramic suspension [J], Journal of the European Ceramic Society 24 (2004) 2203-2213
    [105] Claude Deslouis, Bernard Tribollet, Recent developments in the electro-hydrodynamic (EHD) impedance technique [J], Journal of Electroanalytical Chemistry, 572 (2004) 389-398
    [106] Luna Ding, timothy Lee, Chi-Hwa Wang, Fabrication of momodispersed taxol-loaded particles using electrohydrodynamic atomization [J], Journal of controlled release, 102 (2005) 395-413
    [107] Kim, Robert J Turnbull, Generation of Charged Drops of Insulating Liquids by Electrostatic Spraying [J], Journal of Applied Physics, Vol.47, No.5, 1976
    [108] Kelly S Robinson, Robert J Turnbull and Kyekyoon Kim, Electrostatic Spraying of Liquid Insulations [C], IEEE Transactions on Industry Application, Vol.IA-16, No.2, 1980
    [109] Morio Jido, Burning characteristics of electrostatically sprayed liquid fuel and formation of combined droplets of different fuels [C], Industry Applications Society Annual Meeting, IEEE, 1989: 2058-2065
    [110] A J Yule, J S Shrimpton, A P Watkins, W Balachandran, D Hu, Electrostatic ally atomizedHydrocarbon Sprays [J], Fuel, Volume 74, No 7, 1995.
    [111] J S Shrimpton, A J Yule, Characterisation of Charged Hydrocarbon Sprays for Application in Combustion Systems [J], Experiments in Fluids, 1999,26: 460-469
    [112] Robert E Hertrick, Michael H Parsons, Electrospray for Fuel Injection [C], SAE Paper 972987
    [113] Uwe Leuteritz, Amin Velji, Ernstwendelin Bach, A Novel Injection System for Combustion Engines Based on Electrostatic fuel Atomization [C], SAE Paper 2000-01-2041
    [114] 李世武,燃油带电荷辅助雾化的机理与试验研究[D],吉林工业大学博士学位论文,2000.6
    [115] Matthew E Thomas, Roberto Disalvo, Electrostatic Atomization Insertion into Compression Ignition Engines [C], SAE Paper 2002-01-3053
    [116] 闻建龙,王军峰,陈松山等,荷电喷雾燃烧的研究[J],农业机械学报,2003,34(5): 4-7
    [117] 闻建龙,王军峰,张军,柴油高压静电雾化燃烧的研究[J],内燃机学报,2003,21(1): 31-34
    [118] Macky W A, Research on Uncharged Water Drops in Uniform Electric Field [C], Proc. Roy. Soc. A 133, 565, 1931
    [119] Vonnegut B, Neubauer R L, Electrostatic Spraying of Liquids from a Glass Capillarity [J], J. Coll. Sci. 7, 616, 1952
    [120] Jones and Thong, The Production of Charged Monodisperse Fuel Drops by Electrical Dispersion [J], Journal of Physics, D: Applied Physics, Vol.4: 1159, 1971
    [121] 庄逢辰,液体火箭发动机喷雾燃烧的理论、模型及应用[M],北京,国防科技大学出版社,1995 年,255-258
    [122] M A Abbas, J Latham, The instability of evaporating charged drops [J], Journal of Fluid Mechanics, Vol.30: 663, 1967

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700