用户名: 密码: 验证码:
利用特异小麦资源创制育种新材料及其遗传评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最广泛种植的作物,它是世界上占35%人口的主要粮食作物。但普通小麦品种遗传基础狭窄,遗传差异小,制约其产量和品质的进一步提高。为了提高栽培小麦的产量和抗性,提高其遗传背景是非常重要的。在小麦属及其近缘属物种中,具有许多改良小麦所需的目标基因,它们能有效的丰富小麦的遗传变异和拓宽其遗传多样性。在向普通小麦转移外源遗传物质的过程中,远缘杂交和合成双二倍体扮演了重要的角色。矮秆波兰小麦(Triticum turgidum ssp.polonicum L.,AABB,2n=4x=28,Dwarfing Polish Wheat,DPW)是颜济、杨俊良教授在进行联合国粮农组织小麦植物资源考察项目时,采集于新疆吐鲁番的一份新的四倍体小麦矮秆资源,株高约68cm,属矮秆群,是迄今为止波兰小麦唯一的矮秆变异材料。它对赤霉酸反应不敏感,具有长穗、多小穗、多分蘖、裸粒等特征。华山新麦草(Psathyrostachys huashanica Kengex Guo)是禾本科(Poaceae)小麦族(Triticeae)新麦草属(Psathyrostachys Nevski)的一个多年生二倍体(2n=14)物种,含Ns基因组。它是我国特有的禾草植物,仅生长在陕西华山,与同属的其他物种有较大的形态差异和形成间断地理分布。华山新麦草具有抗寒、抗旱、耐瘠薄、早熟、优质、高抗小麦条锈病和全蚀病,中抗赤霉病等特点。由于华山新麦草独特的分类学地位、特殊的地理分布和作为小麦族的重要基因资源,目前该物种已被列为我国珍稀濒危一级保护植物和急需保护的农作物近缘种。
     本文围绕这两个特异种质材料进行相关研究。分析了矮秆波兰小麦矮秆基因的遗传特点和构建了第一张四倍体小麦矮秆基因的SSR分子图谱;在不使用幼胚培养等辅助条件下,在大田自然环境中,通过属间杂交和秋水仙碱加倍合成了矮秆波兰小麦与节节麦的双二倍体(SHW-DPW);并利用质体乙酰-CoA羧化酶(ACCase)基因(Acc-1)研究了SHW-DPW与新疆稻麦(Triticum petropavlovskyi Udacz.et Migusch.)的系统发育关系及其新疆稻麦可能的起源途径;研究比较了phKL基因与人工Ph基因突变系在小麦-华山新麦草杂种间的可杂交性与诱导部分同源染色体配对的作用大小;利用秋水仙碱处理普通小麦与华山新麦草的杂种F_1植株,第一次人工合成了小麦属与新麦草属间的双二倍体,并对它的形态学、分子细胞遗传学、抗病性等进行了研究。主要研究结果如下:
     1.矮秆波兰小麦是一份特异的来自中国新疆的具有矮秆性状的波兰小麦,株高约68cm。遗传学分析表明矮秆波兰小麦所携带的矮秆性状是由一对不完全显性基因控制,暂定名为Rht-dp。为了标记这个四倍体小麦的矮秆基因,利用矮秆波兰小麦与高秆波兰小麦(AS304)杂交,建立了F_2分离群体。共选用153对均匀分布于小麦A、B染色体的SSR引物,在供试亲本间扩增,其中43对引物在双亲之同表现差异,约占所用引物的28.1%。采用BSA方法,将已筛选的43对引物在矮、高池间进行扩增,发现引物WMC511、Xgwm495、Xgwm113和Xgwm251在矮、高池间表现多态,表明这些引物与Rht-dp连锁,并将该矮秆基因初步定位到4BS上。进一步用这四个标记对F_2代124个单株进行PCR扩增,根据扩增结果,采用Mapmaker 3.0软件计算遗传距离,结果显示,Rht-dp位于WMC511和Xgwm495、Xgwm113、Xgwm251之间,它们的排列顺序可能是WMC511—Rht-dp—Xgwm495—Xgwm113—Xgwm251,它们之间的遗传距离分别为0.4 cM、4.1 cM、2.5 cM、10.3 cM。研究结果为标记辅助育种提供了分子选择工具,同时也为进一步精细定位和图位克隆Rht-dp基因奠定了基础。
     2.未经幼胚拯救及激素处理,第一次成功获得了矮秆波兰小麦与节节麦(AS60和AS65)的F_1杂种。矮秆波兰小麦与节节麦(AS60和AS65)两个杂交组合的杂交结实率分别为1.67%和0.60%。只有T.turgidum ssp.polonicum(DPW)×Ae.tauschii(AS60)组合发芽良好,而且获得了24株杂种植株。所有F_1杂种植株生长旺盛,形态特征与面包小麦相似。F_1植株具有一些明显的来自于亲本矮秆波兰小麦和节节麦的特征,且完全不育。杂种F_1花粉母细胞减数分裂MI染色体主要以单价体形式出现,平均每个细胞有20.56个单价体,0.22个二价体,且全为棒状,未观察到环状二价体和多价体。此外,F_1杂种的成功获得对研究普通小麦的起源和育种利用具有重要意义。
     3.通过秋水仙碱处理矮秆波兰小麦与节节麦(AS60)的F_1杂种植株,第一次人工合成了一个六倍体小麦材料(SHW-DPW)。两株F_1植株的自交结实率分别为8.27%和15.31%。SHW-DPW的形态特征与F_1植株相似,但生长更旺盛。所有SHW-DPW植株形态相似,而且表达了亲本矮秆波兰小麦与节节麦的一些特征。SHW-DPW植株的颖片相对较软及穗轴节很短,这与其他合成六倍体小麦是不同的。SHW-DPW的穗子形态与新疆稻麦非常相似。SHW-DPW是可育的,2n=42条染色体的植株的自交结实率为58.95%,非整倍体的自交结实率为45.63%。在花粉母细胞减数分裂中期Ⅰ,新合成小麦SHW-DPW的42条染色体的配对构型为0.43个单价体、20.77个二价体和0.01个三价体,说明新双二倍体在细胞遗传上是相对稳定的。并对SHW-DPW在研究新疆稻麦起源和小麦育种利用方面的潜在价值进行了讨论。
     4.利用质体乙酰-CoA羧化酶(ACCase)基因(Acc-1)分析了我们合成的六倍体小麦SHW-DPW与新疆稻麦(Triticum petropavlovskyi Udacz.et Migusch.)及其小麦属(Triticum)和山羊草属(Aegilops)共47个物种的分子系统与进化关系。系统发育分析使用最大似然法(ML)和MJ构建系统发育树。所有新疆稻麦与波兰小麦材料Acc-1基因序列发生了大量的核苷酸替换,具有很高的遗传多样性。在新疆稻麦A、B和D基因组Acc-1基因序列上,以A基因组的遗传多样性最高,D基因组最低,B基因组居中。SHW-DPW的Acc-1基因序列分别与其母本矮秆波兰小麦和节节麦聚在一起,与新疆稻麦聚在不同的分支,结果表明SHW-DPW与新疆稻麦的亲缘关系比较远。在MJ网状结构中,新疆稻麦A、B基因组Acc-1基因序列首先与新疆的波兰小麦和普通小麦聚在一起,具有最高的序列相似性,揭示了他们之间特定的祖先—后代关系。在ML和MJ系统发育分析中,新疆稻麦D基因组Acc-1基因序列与普通小麦单独聚在一个分支,而5份节节麦与SHW-DPW聚在另一个分支,说明新疆稻麦与普通小麦的亲缘关系要近于新疆稻麦与节节麦的亲缘关系。以上研究结果表明新疆稻麦起源于独立的异源多倍化事件或由普通小麦经过简单的突变形成的可能性很小,它更可能是波兰小麦与普通小麦之间通过自发的基因渗入或自然驯化而产生。
     5.在普通小麦地方品种开县罗汉麦(Triticum aestivum L.,2n=6x=42,AABBDD)中天然存在促进小麦-外源杂种部分同源染色体配对的基因phKL。本研究在没有采用幼胚培养技术条件下,利用华山新麦草和普通小麦直接杂交,成功获得了杂种F_1。研究比较了phKL基因与人工Ph基因突变系在小麦-华山新麦草杂种间的可杂交性与诱导部分同源染色体配对的作用大小。在所有杂交组合中,杂种开县罗汉麦×华山新麦草的杂交结实率最高,为3.18%。在花粉母细胞减数分裂MI,开县罗汉麦×华山新麦草杂种的染色体配对构型为21.70个单价体、2.68个棒状二价体、0.34个环状二价体、0.06个三价体和0.02个四价体。与人工Ph基因突变系相比,开县罗汉麦与华山新麦草杂种的部分同源染色体配对水平显著增加,表现在棒状二价体、环状二价体和三价体的数量变多而单价体数量减少。研究结果表明,phKL在诱导小麦-华山新麦草部分同源染色体配对的作用能力比Ph1和Ph2强。因此,在转移亲源关系较远的外源遗传物质时,含有phKL基因的开县罗汉麦可能是一个更好的供体材料。
     6.在向普通小麦转移外源遗传物质的过程中,远缘杂交和合成双二倍体扮演了重要的角色。利用秋水仙碱处理普通小麦与华山新麦草的杂种F_1植株,第一次人工合成了小麦属与新麦草属间的双二倍体(AABBDDNsNs,PHW-SA)。PHW-SA的形态特征与杂种F_1植株相似,且生长显得更旺盛。所有PHW-SA植株形态相似,亲本J-11与华山新麦草的一些形态特征在新双二倍体中得到了完全表达。例如,PHW-SA植株节间呈紫色和基部小穗上有绒毛,这些都是来自华山新麦草的特点。PHW-SA是完全可育的,其自交结实率为37.10%-77.38%,平均59.11%。通过根尖细胞有丝分裂观察,PHW-SA的染色体数目变化范围2n=51到2n=56,70.59%的植株具有2n=56条染色体。在花粉母细胞减数分裂MI,PHW-SA(2n=56)染色体配对构型为1.15个单价体、27.34个二价体、0.03个三价体和0.02个四价体。在观察的1226个花粉母细胞中,在MI 49.79%染色体完全配对,表明该双二倍体(2n=56)在细胞遗传上是相对稳定的。在非整倍体植株中,减数分裂后期Ⅰ和Ⅱ出现数目不等的落后染色体和微核。本研究报道了普通小麦与华山新麦草的双二倍体的形成、形态和细胞学特征,并对该双二倍体在理论及应用方面的特殊价值进行了讨论。
     7.为了评估华山新麦草遗传物质在小麦育种中潜在的利用价值,本研究采用高分子量谷蛋白亚基分析(SDS-PAGE)、醇溶蛋白分析(A-PAGE)、Giemsa-C带、基因组原位杂交(GISH)和随机扩增多态性DNA(RAPD)方法对八倍体PHW-SA的分子细胞遗传学特点进行了分析,并检测了它的抗条锈病能力。Giemsa-C带分析表明,华山新麦草染色体具有强烈的端带,并在PHW-SA中完全表达。用华山新麦草的基因组DNA作探针,对PHW-SA进行基因组原位杂交分析,双二倍体56条染色体由10条完整的华山新麦草染色体、36条小麦染色体和10条小麦—华山新麦草易位染色体组成。种子贮藏蛋白分析表明PHW-SA表达了华山新麦草特异的条带,且出现了亲本物种没有的新带纹或亲本物种的带纹消失。PHW-SA的抗条锈病检测表明来自华山新麦草的抗条锈性在双二倍体中完全表达。选用5个对华山新麦草N_S基因组特异的RAPD引物,对双二倍体及其亲本进行扩增,结果表明能够在双二倍体和两个亲本中扩增出相同的带纹。对PHW-SA可以作为向普通小麦中转移有益基因的一种新的遗传资源进行了讨论。
Bread wheat(Triticum aestivum L.) is the most widely grown cereal in the world.It is the staple food for 35%of the world's population,and is becoming increasingly important in the developing world.To meet the demands for high yielding and stress-resistant wheat cultivars,it is desirable to increase the genetic base of this crop. Many wild species of the tribe Triticeae(Poaceae) are valuable sources for resistance to diseases,salinity,drought and insect pests.Wide crosses and synthetic amphiploids have played an important role in introgressing desirable traits from related species into cultivated wheat.Dwarfing polish wheat(Triticum turgidurn ssp.polonicum,DPW) is a tertraploid species(2n = 4x = 28,AABB),and was collected from Tulufan,Xinjiang, China.It is the only one dwarfing accession of T.turgidurn ssp.polonicum,with the height of about 68 cm,which is insensitive in gibberellin acid reaction,and is characterized as dwarfing,more tillers,more length of spike,more spikelets per spike and length of glume.Psathyrostachys huashanica Keng ex,Guo(2n=2x=14,NsNs) is a perennial species in the genus Psathyrostachys Nevski,and is located only in Hua Shan, Shanxi province,China.P.huashanica has been served as an important resource to wheat improvement because of its disease resistance,resistant ability to unfavorable environment,dwarfing and tremendous genetic diversity.At present,the amount of the population is much less than the past and being at the edge of extinction.Owing to distributing limitation and importance as breeding material for germplasm storage,it was listed into the first class of national protected rare plants and imperatively protected wild species in relation to crops.
     In the present study,we studied the genetic character and molecular mapping of dwarfing gene of dwarfing polish wheat using SSR.By colchicine treatment of the hybrid plants between dwarfing polish wheat and Aegilops tauschii Cosson.,a new synthetic hexaploid wheat(SHW-DPW) was artificially obtained for the fist time.The relationship between SHW-DPW and Triticum petropavlovskyi Udacz.et Miguch.and the origin of T. petropavlovskyi were discussed based on the sequences of a singly-copy nuclear gene encoding plastid acetyl-CoA carboxylase(Acc-1).The effects of phKL gene on crossability and homoeologous pairing of T.aestivum×p.huashanica hybrids were comparatively analyzed.The hybrid plants between T.aestivum and P.huashanica were treated with colchicine,a new intergeneric amphiploid(PHW-SA) was obtained for the fist time,and the morphology,fertility,molecular cytogenetic characterization and disease responses of the amphiploid were reported.The results were as follows:
     1.Dwarfing polish wheat(DPW) is a dwarfing accession of T.turgidum ssp. polonicum from Xinjiang of China.The mean plant height of DPW is 68cm.Genetic analysis of F_2、BC_1 and BC_2 populations derived from DPW×T.turgidum ssp.polonicum (AS304) indicated that the culm length in DPW was determined by a single partially dominant gene,and which was named as Rht-dp.In order to map the height-reducing gene Rht-dp,a total of 153 SSR primer pairs covering A and B wheat chromosomes were used for polymorphism survey of DPW and AS304.Among these primers,43(28.1%) showed polymorphism between the parents.By Bulk Segregant Analysis(BSA) of dwarfing and tall pools,four pairs of primer located on chromosome arm 4BS,WMC511、Xgwm495、Xgwm 113 and Xgwm251,were found being linked to Rht-dp.The 124 F_2 individuals were then amplified with the four markers.Further molecular mapping showed that Rht-dp was linked with SSR markers in the order of WMC511-Rht-dp-Xgwm495-Xgwm113-Xgwm251 with genetic distances of 0.4cM、4.1cM、2.5cM and 10.3cM using the software Mapmaker 3.0,respectively.The molecular markers developed in this study will be useful for marker-assisted selection of alternative height-reducing genes,and to better map and clone Rht-dp gene.
     2.The artificial hybridization between dwarfing polish wheat and two accessions of Ae.tauschii(AS60 and AS65) was carried out,and the F_1 hybrids were obtained successfully without using embryo rescue techniques for the first time.The crossabilities of hybrids T.turgidum ssp.polonicum(DPW)×Ae.tauschii(AS60) and T.turgidum ssp. polonicurn(DPW)×Ae.tauschii(AS65) were 1.67%and 0.60%respectively.Only the hybrids of T.turgidum ssp.polonicum(DPW)×Ae.tauschii(AS60) germinated well,and 24 F_1 hybrid plants were obtained.All the F_1 hybrid plants grew vigorously,and the morphological traits were similar to bread wheat.The F_1 plants had some obvious traits inherited from the parents and were completely sterile.Chromosome pairing in the hybrid was characterized by a large number of univalents,with an average of 20.56 and 0.22 bivalents per PMC,and no ring bivalents and multivalents were observed.Furthermore,the potential value of the F_1 hybrids between T.turgidum ssp.polonicurn and Ae.tauschii for studying wheat origin and breeding are discussed.
     3.By colchicine treatment of the hybrid plants between T.turgidum ssp.polonicum (DPW) from Xinjiang in China and Ae.tauschii from Middle East,a new synthetic hexaploid wheat(SHW-DPW) was artificially obtained for the fist time.The seed sets of the two F_1 plants were 8.27%and 15.31%,respectively.The morphology of the SHW-DPW plants was comparable to that of the primary F_1 plants,and the SHW-DPW plants appeared more robust.All the SHW-DPW plants were uniform in morphology and had some obvious traits inherited from T.turgidurn ssp.polonicurn(DPW) and Ae.tauschii. Especially,the glumes were very soft and the rachis intemodia was short,which was different from other synthetic hexaploid wheat.Their spikes were morphologically similar to those of T.petropavlovskyi.The SHW-DPW plants were fertile,with 58.95%selfed seed set for the euhexaploids and 45.63%for the aneuploids,respectively.The meiosis of the SHW-DPW plants was quite regular,which showed a pairing configuration of 0.43 univalents,20.77 bivalents and 0.01 trivalents.The rate of chromosome association of the aneuploids was comparatively lower than that in the euploid individuals.The potential utilization for wheat improvement and study for the origin of T.petropavlovskyi are discussed in the present paper.
     4.Based on the sequences of a singly-copy nuclear gene encoding plastid acetyl-CoA carboxylase(Acc-1),a total of 47 accessions Triticum and Aegilops representing diploid, tetraploid and hexaploid were used to estimate the origin of T.petropavlovskyi and the relationship of synthetic hexaploid wheat(SHW-DPW) and T.petropavlovskyi. Phylogenetic analysis was performed using maximum likelihood(ML),and median-joining (MJ) networks.Genetic diversity of all T.petropavlovskyi and T.turgidum ssp. polonicum accessions were high owing to a number of nucleotide substitutions among the wheat species.Among the three genomes,the A and B genome Acc-1 gene of T. petropavlovskyi have the more polymorphisms than D genome.The Acc-1 gene of SHW-DPW was consistently more closely related to the parent T.polonicum and Ae. tauschii than to T.petropavlovskyi,it showed that the relationship of SHW-DPW and T. petropavlovskyi was distant.Furthermore,it suggested that the A and B genome haplotypes from Acc-1 loci show that T.petropavlovskyi shares the highest average sequence identity with T.turgidum ssp.polonicum from Xinjiang and T.aestivum,and reveals specific progenitor-descendant relationships in the MJ networks based on intron sequence.In the ML tree of intron + sy data sets,the D genome sequences of the Acc-1 genes from T. petropavlovskyi are identical to the sequences of the D genome orthologs in T.aestivum, while the relationship of T.petropavlovskyi and Ae.tauschii are most distant,which is in agreement with the result of MJ networks analysis.Findings of this study reduced the probability of an independent allopolyploidization event and a single mutation in T. aestivum in the origin of T.petropavlovskyi and indicated a greater degree of gene flow between T.aestivum and T.turgidum ssp.polonicum leading to T.petropavlovskyi.It is most likely that T.petropavlovskyi was introduced from T.turgidum ssp.polonicum to T. aestivum via a spontaneous introgression or breeding effort.
     5.In the natural populations of common wheat landrace Kaixianluohanmai,there was a phKL gene which promotes homoeologous pairing of wheat-alien hybrids.In the present study,the effects of phKL gene on crossability and homoeologous pairing of T.aestivum×P.huashanica hybrids were comparatively analyzed.The crossability of the hybrid between Sichuan wheat landrace Kaixianluohanmai and P.huashanica was highest in all the hybrid combinations with 3.18%.The hybrids T.aestivum(Kaixianluohanmai)×p. huashanica showed a pairing configuration of 21.70 univalents + 2.68 rod bivalents + 0.34 ring bivalents + 0.06 trivalents + 0.02 quadrivalents and 3.54 chiasma per PMC at MI. However,the chiasma in hybrids of CS,CSphlb,CSph2a and CSph2b with P.huashanica was 0.56,1.90,0.87 and 0.60 respectively.Compared with the hybrids of CS,CSphlb, CSph2a and CSph2b with P.huashanica,a significant increase in the chiasma of homoeologous pairing was observed in the hybrids of T.aestivum(Kaixianluohanrnai)×p. huashanica.The effects were shown in the increment of rod bivalents,ring bivalents and trivalents and reduction of univalents.The results indicated that phKL showed a higher effect on promoting homoeologous pairing than phl and ph2 in T.aestivum×p. huashanica.The wheat landrace Kaixianluohanmai with phKL gene is probably a more desirable material for alien gene transferring than Ph2-deficiency lines.
     6.Wide crosses and synthetic amphiploids have played an important role in introgressing desirable traits from related species into cultivated wheat.The hybrid plants between T.aestivum cv.J-11 and P.huashanica were treated with colchicine,a new intergeneric amphiploid(PHW-SA) was obtained for the fist time.The morphological characteristics of PHW-SA resembled the parent J-11.The PHW-SA plants have purple internode and floss in basal spikelet,which are inherited from P.huashanica parent.The somatic chromosome number varied from 2n=51 to 2n=56,with 70.59%plants having 56 chromosomes.At metaphaseⅠ,PHW-SA(2n=56) showed average of 1.15 univalents, 27.34 bivalents,0.03 trivalents and 0.02 tetravalents per cell,and complete chromosome pairing was found in 49.79%of the PMCs.Lagging chromosomes and micronuclei were observed in the aneuploid cells.A survey of diseases resistance revealed that the stripe rust resistance from P.huashanica was totally expressed and powdery mildew was suppressed in the PHW-SA.The fertility of PHW-SA was 37.10%-77.38%,with average of 59.11%. PHW-SA can be used as a donor source in wheat breeding programme.
     7.A new wheat-P,huashanica amphiploid,PHW-SA,was characterized by molecular cytological observation and tested for stripe rust resistance in order to evaluate the potential use of the P.huashanica for wheat improvement.The PHW-SA plants were deeply covered with floss in basal spikelet and purple internode,which is characteristic of the P.huashanica parent.Feulgen staining of the somatic metaphases revealed that the chromosome number varied from 51 to 56.At metaphaseⅠ,PHW-SA(2n=56) regularly showed averagely 1.15 univalents and 27.34(24-28) bivalents per cell,and complete chromosome pairing was found in 49.79%of the pollen mother cells(PMCs),indicating a degree of cytological stability.Giemsa-C banding showed that the P.huashanica chromosomes in PHW-SA produced strong bands only in their terminal regions.Genomic in situ hybridization(GISH) analysis suggested that PHW-SA carried 10 entire P. huashanica chromosomes,36 wheat chromosomes and 10 wheat-P,huashanica translocated chromosomes.Seeds storage proteins separated by acid polyacrylamide gel electrophoresis(A-PAGE) and sodium dodecyl sulphate-polyacrylarnide gel electrophoresis(SDS-PAGE) showed that PHW-SA expressed some of P.huashanica specific gliadin and glutenin bands,and some new bands appeared.A survey of diseases resistance revealed that the stripe rust resistance from P.huashanica was totally expressed and powdery mildew was suppressed in the PHW-SA.Random amplified polymorphic DNA(RAPD) analysis verified the presence of DNA of the parents in PHW-SA.The present study showed that the amphiploid PHW-SA could serve as novel sources for transfer of valuable genes to wheat.
引文
1.陈佩度,黄俐,刘大钧.用中国春双端二体分析西藏小麦的染色体构成.遗传学报,1991,18(1):39-43
    2.陈勤,孙雨珍,董玉琛.新疆小麦种间杂种的细胞遗传学研究.作物学报,1985,11:23-28
    3.陈庆富,周永红,彭正松,等.中国特有小麦中杂种黄化基因Ch1和提型胞质育性恢复基因的分布研究.广西植物,1998,18(4):325-330
    4.陈庆富.中国特有小麦起源探讨.贵州农业科学,1999,27(1):20-25
    5.陈漱阳,张安静,傅杰.普通小麦与华山新麦草的杂交.遗传学报,1991,18(6):508-512
    6.陈漱阳,侯文胜,张安静,等.普通小麦.华山新麦草异附加系的选育及细胞遗传学研究.遗传学报,1996,23(6):447-452
    7.崔运兴,马缘生.中国特有小麦的酯酶同工酶.植物学报,1990,32(1):39-44
    8.董玉探,郑殿升,乔丹杨,等.云南小麦(Triticum aestivum ssp.yunnanese King)的考察与研究.作物学报,1981,7:145-151
    9.董玉琛.小麦-山羊草双二倍体的合成与利用.见:胡含,王恒定(主编),植物细胞工程与育种.北京:北京工业大学出版社,1990,178-183
    10.董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81
    11.董玉柱,刘振兰,董英山,等.异源DNA导入水稻诱发活跃反转子Tos17发生可遗传DNA 甲基化变异.植物学报,2004,46(1):100-109
    12.凡星,张利,周永红,等.Elymus wawawaiensis编码乙酰-CoA羧化酶Acc-1基因序列的分析及系统学意义.四川农业大学学报,2005,23(4):383-387
    13.傅大雄,阮仁武,殷家民,等.小麦显性矮秆基因复等位多特性研究.中国农业科学,2004,37(9):1251-1260
    14.傅杰,陈漱阳,张安静.普通小麦与簇毛麦双二倍体的合成、育性及细胞遗传学研究.遗传学报,1989,16(5):348-356
    15.傅杰,陈漱阳,张安静.八倍体小滨麦的形成及细胞遗传学研究.遗传学报,1993,20(4):317-323
    16.盖均镒.试验统计方法.北京:中国农业出版社,2000
    17.郭宝宏,宋春华,贾继增.我国46个小麦品种的矮秆基因分析.国外农学—麦类作物,1996,5:4-5
    18.郭宝宏,宋春华,贾继增.我国小麦品种的Rht1,Rht2矮秆基因鉴定及分布研究.中国农业科学,1997,30(5):56-60
    19.郭本兆.中国植物志.北京:科学出版社.1987,9(3):51-104
    20.杭焱,金燕,卢宝荣.濒危植物华山新麦草(Psathyrostachys huashanica)的遗传多样性及其保护.复旦学报(自然科学版),2004,43(2):260-266
    21.侯文胜,张安静,杨群慧,等.普通小麦与华山新麦草异代换系的选育及细胞遗传学研究.西北植物学报,1997,17(3):368-373
    22.黄俐,陈佩度,刘大钧.用中国春双端二体分析云南小麦的染色体构成.中国农业科学,1989,22(4):13-16
    23.贾继增,丁寿康,李月华,等.中国小麦的主要矮秆基因及矮源的研究.中国农业科学,1992,25(1):1-5
    24.贾继增,张正斌.小麦21条染色体RFLP遗传多样性分析.中国科学(C辑),2001,31(1):13-21
    25.井金学,傅杰,袁红旭,等.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报,1999,29(2):147-150
    26.金善宝.中国小麦学.北京:中国农业出版社,1996
    27.兰秀锦,魏育明,郑有良,等.中国半野生小麦的酯酶同工酶分析.四川农业大学学报,2001,2(19):122-125
    28.李振声,等.小麦远缘杂交.北京:科学出版社.1985,156-164
    29.刘登才,罗明诚,杨俊良,等.小麦自然群体中部分同源染色体配对促进基因的染色体定位研究.西南农业学报,1997,10(3):10-15
    30.刘登才,颜济,杨俊良,等.小麦地方品种开县罗汉麦在远缘杂交中的遗传评价.作物学报,1999,25(6):778-780
    31.刘登才,杨足君,郑有良,等.用含隐性Ph基因的小麦材料转移Aegilops variabilis Eig遗传物质获得新种质TKL1.小麦遗传育种国际学术讨论会论文集.北京:中国农业出版社,2001,251-254
    32.刘冬成,高睦枪,关荣霞,等.小麦株高性状的QTL分析.遗传学报,2002,29(8):706-711
    33.刘光欣,周永红,郑有良,等.吐鲁番矮秆波兰小麦形态与细胞学研究.四川农业大学学报,2002a,20(3):189-193
    34.刘光欣,周永红,郑有良,等.矮秆波兰小麦矮秆性状对赤霉酸反应的研究.四川农业大学 学报,2002b,20(2):81-83
    35.刘仁虎,孟金陵.Mapdraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    36.罗明诚,颜济,杨俊良.四川小麦地方品种与节节麦和黑麦的可杂交性.四川农业大学学报,1989,7(2):71-76
    37.齐莉莉.用中国春双端二体研究新疆小麦染色体构成.南京:南京农业大学硕士学位论文,1986
    38.荣廷昭,李晚忱.田间实验与统计分析.成都:四川大学出版社.2001,2:70-72
    39.邵启全,李长森,巴桑次仁.西藏的半野生小麦.遗传学报,1980,7:150-156
    40.舒焕麟,杨足君,李光蓉.创新诱发材料SY95-71选育和利用价值研究.四川农业大学学报,1999,17(3):249-253
    41.宋志剑,康厚扬,周永红.矮秆波兰小麦赤霉酸不敏感基因的遗传分析.麦类作物学报,2007,27(3):425-427
    42.孙根楼,颜济,杨俊良.普通小麦和新麦草属同杂种的产生及细胞遗传学研究.遗传学报,1992,19(4):322-326
    43.唐国顺,薛秀庄.矮变1号小麦矮秆基因的染色体臂定位.陕西农业科学,1988,6:9-10
    44.万平,周青文,马正强,等.小麦矮秆基因Rht3的RAPD和RFLP标记分析.遗传学报,2001,28(11):1028-1033
    45.王海燕,王秀娥,陈佩度,等.云南、西藏及新疆小麦研究进展.麦类作物学报,2007,27(4):740-743
    46.王美南,商鸿生.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报,2000,28(6):69-71
    47.王秀娥,李万隆,刘大钧.新麦草属两物种的C-分带研究.南京农业大学学报,1998,21(1):10-13
    48.王玉成,薛秀庄,唐国顺.矮变1号小麦株高遗传的单体分析.作物学报,1982,8(3):193-187
    49.相志国,刘登才,郑有良,等.phKL基因诱导小麦远缘杂种部分染色体配对的能力界于Ph1和Ph2基因突变体之间.遗传,2005,27(6):935-940
    50.徐相波,张爱民,李新华,等.小麦矮源的利用和矮秆基因的研究进展.核农学报,2001,15(3):188-192
    51.颜济,杨俊良,崔乃然,等.新疆伊犁地区的节节麦的考察与研究.作物学报,1984,10(1):1-8
    52.颜济,杨俊良,主编.小麦生物系统学 第一卷 小麦-山羊草复合群.北京:中国农业出版社,1999,102-104
    53.颜济,杨俊良,颜旸.木原均,A.洛夫与小麦族(禾本科)的现代遗传学属的概念.植物分类学报,2005,43:82-93
    54.颜旸,刘大均.普通小麦和纤毛鹅观草属间杂种的产生及其细胞遗传学研究.中国农业科学,1987,20(6):17-21
    55.颜泽洪,郑有良,万永芳,等.粗山羊草高分子量麦谷蛋白新型亚基的筛选和鉴定.四川农业大学学报,2001,19(3):197-199
    56.颜泽洪.山羊草物种高分子量麦谷蛋白基因的分子克隆.四川农业大学博士学位论文,2001
    57.杨瑞武,周永红,郑有良.几种特异小麦的醇溶蛋白电泳分析.四川农业大学学报,2000a,18(1):15-17
    58.杨瑞武,周永红,郑有良,等.波兰小麦醇溶蛋自遗传差异及其与新疆稻麦的关系.麦类作物学报,2000b,20(4):1-5
    59.杨瑞武,周永红,郑有良.矮秆波兰小麦的C-带分析.四川农业大学学报,2001,19(2):112-114
    60.姚景侠.小麦属的新种—新疆稻穗麦之研究.遗传,1983,1:10-17
    61.岳明,张林静,马凯,等.华山新麦草濒危原因及种群繁殖对策.生态学报,2001,21(8):1314-1320
    62.赵继新,陈新宏,王小利,等.普通小麦-华山新麦草异代换系的分子细胞遗传学研究.西北植物学报,2004a,24(12):2277-2281
    63.赵继新,陈新宏,王小利,等.普通小麦-华山新麦草异附加系的分子细胞遗传学研究.西北农林科技大学学报,2004b,32(11):105-109
    64.张海琴.小麦族猬草属植物基因组组成及其分类地位研究.四川农业大学博士论文,2006
    65.张连全.小麦异源六倍化过程及其在遗传育种中的应用.四川农业大学博士论文,2007
    66.张政斌.小麦遗传学.北京:中国农业科技出版社,2001,145-166
    67.庄巧生.中国小麦品种改良及系谱分析.中国农业出版社,2003
    68.周阳,何中虎,张改生,等.用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布.作物学报,2003,29(6):810-814
    69.Ahmad M,Sorrells ME.Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat.Euphytica,2002,123:235-240
    70. Akond ASMGM, Watanabe N, Furuta Y, Comparative genetic diversity of Triticum aestivum-Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol, 2007. (Online first)
    71. Akond ASMGM, Watanabe N. Genetic variation among Portuguese landraces of Arrancada wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol, 2005, 52: 619-628
    72. Akond ASMGM, Watanabe N, Furuta Y. Comparative genetic diversity of Triticum aestivum-Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol, 2007 (online)
    73. Allan R E. Influence of semi-dwarfism and genetic background on stand establishment of wheat. Crop Science, 1980,20: 634-638
    74. Araus JL, Slafer GA, Romagosa I, et al. FOCUS: estimated wheat yields during the emergence of agriculture based on the carbon isotope discrimination of grains: evidence from a 10th millennium BP site on the Euphrates. J Archaeol Sci, 2001,28: 341-350
    75. Ayal S, Ophir R, Levy AA. Genomics of tetraploid wheat domestication. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005185-203
    76. Backhouse WO. Note on inheritance of crossability. J Genet, 1916 6: 91 -94
    77. Baden C. A taxonomic revision of Psathyrostachys (Poaceae). Nordic Journal of Botany, 1991, 11: 3-26
    78. Bandelt HJ, Forster P, R5hl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999, 16: 37-48
    79. Blanco A, De Giovanni C, Laddomada B, et al. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breeding, 1996, 115: 310-316
    80. Borlang N E. Wheat breeding and its impact on world food supply. In: Proceedings of 3~(th) International Wheat Genetics Symposium, Canberra, Australia, 1968, P: 5-15
    81. Branlard G, M Dardevet. Diversity of grain proteins and bread wheat quality. I. Correlation between gliadin bands and flour quality characteristics. J Cereal sci, 1985, 3: 329-343
    82. Borner A, Rder M, Korzun V. Comparative molecular mapping of GA insensitive Rht loci on chromosome 4B and 4D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1997,95: 1133-1137
    83. Bushuk W, Kerber ER, The role of Triticum carthlicum in the origin of bread wheat based on gliadin electrophoregrams, Can J Plant Sci, 1978, 58: 1019-1024
    84. Cao ZJ, Wang XP, Wang MN, et al. Genetic analysis and molecular markers of a novel stripe rust resistance gene YrHua in wheat originated from Psathyrostachys huashanica Keng. Acta Genet Sin, 2005, 32:738-742
    85. Cauderon Y, Saigne B, Dauge M. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Sears ER, and Sears LMS (eds), Proc. 4th Intern. Wheat Genet. Symp., 1973, 401—407. University of Missouri, Columbia, MO
    86. Ceoloni C, Donini P. Combining mutations for two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome, 1993, 36: 377-386
    87. Chen PD, Jiu DJ, Pei GZ, et al. The chromosome constitution of three endemic hexaploid wheats in Western China. In: Miller TE and Koebner RMD (eds), Proc. 7th Intern. Wheat Genet. Symp., Cambridge, England. 1988, vol 1:, pp. 75-80
    88. Chen Q, Zhou RH, Li LH. First intergenric hybrid between Triticum aestivum and Psathyrastachys juncea. Chinese Sci Bull, 1988, 33: 2071-2074
    89. CIMMYT. Wheat in the developing world. http: //www.cimmyt.org/Research/wheat/map/developing_world/index.htm.2003
    90. Coghlan A. Synthetic wheat offers hope to the world. NewScientist, 2006, 2538
    91. Cui YX, Ma YS. Evaluation and utilization of major agronomic characters of Chinese endemic wheat. Acta Agric Nucl Sin, 1988,2: 129-139
    92. Daryl JS, Peter I, Keith E. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
    93. Dewey DR. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed.), Gene Manipulation in Plant Improvement, 1984, 209-280. New York, Plenum
    94. Dhaliwal HS, Singh H, Gill KS, et al. Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB, ed. Biodiversity and wheat improvement. John Wiley & Sons pub, Chichester, UK, 1993, pp103-109
    95. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987, 19: 11-15
    96. Dorofeev VF, Filatenko AA, Migushova EF, et al. Flora of Cultivated Plants, Wheat, Kolos, Leningrad, 1979, vol. 1, pp 1-348
    97. Dvorak J, Pantaleo DT, Zhang HB, et al. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 1993, 36:21-31
    98. Driscoll CJ, Quinn CJ. Genetic variation in Triticum affecting the level of chromosome pairing in intergeneric hybrids. Can J Genet Cytol, 1970, 12: 278-282
    99. Dvorak J. Genome analysis in the Triticum-Aegilops alliance. In: Slinkard AE, ed. Proceedings of the 9th International Wheat Genetics Symposium (Saskatoon, Saskatchewan, Canada). University Extension Press, University of Saskatchewan, 1998, pp8-11
    100. Dvorak J, Luo MC. Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools, In: Caligari PDS. and Brandham PE, eds., Wheat Taxonomy: the Legacy of John Percival, The Linnean Society of London, London, 2001, pp. 127-136
    101. Dvorak J, Akhunov ED, 2005. Tempos of deletions and duplications of gene loci. in relation to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics, 171:323-332
    102. Efremova TT, Maystrenko OI, Laikova LI, et al. Comparative genetic analysis of hexaploid wheats Triticum petropavlovskyi Udacz. et Migusch. and Triticum aestivum L., Russ J Genet, 2000, 36: 1142-1148
    103. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA. Perfect markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105: 1038-1042
    104. Ellis MH, Rebetzke GJ, Azanza F, et al. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430
    105. Endo TR, Gill BS. Somatic karyotype, heterochromatin distribution and nature of chromosome differentiation in common wheat. Can J Genet Cytol, 1984,26: 669-678
    106. Falk DE, Kasha M. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Can J Genet Cytol, 1981, 23: 81-88
    107. Fan X, Zhang HQ, Sha LN, et al. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of gene encoding plastid acetyl-CoA carboxylase. Plant Science, 2007, 174 (4): 701-707
    108. Farqoo S, Iqbal N, Shah TM. Intergenetic hybridization for wheat improvement. Ⅲ. Genetic variation in Triticum species affecting homoeologous chromosome pairing. Cereal Res Commun, 1990, 18: 233-237
    109. Fedak G, Jui Y. Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol, 1982,24: 227-233
    110. Fedak G. Molecular aids for integration of alien chromatin through wide crosses, Genome, 1999, 42: 584-591
    111. Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381-1387
    112. Feldman M. The origin of cultivated wheat. In: Bonjean AP, Angus WJ, eds. The World Wheat Book. Lavoisier Publishing, Paris, 2001, pp1-56
    113. Feldman M, Levy AA. Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenet Genome Res, 2005,109: 250-258
    114. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39:783-791
    115. Flintham JE, Gale MD. The Tom Thumb dwarfing gene Rht3 in wheat, 2. Effects on height, yield and grain quality. Theor Appl Genet, 1983, 66: 249-256
    116. Fu TH, Ren ZL, Lin WJ. Study on ph genes in natural population of Sichuan common wheat landraces. In: Ren ZL, Peng JH (eds). Exploration of Crop Breeding. Sichuan Science and Technology Press, Chengdu, 1992, pp. 177-192
    117. Fukuda K, Sakamoto S. Studies on the factors controlling the formation of unreduced gametes in hybrids between tetraploid emmer wheats and Aegilops squarrosa L.. Jpn J Breed, 1992, 42: 747-760
    118. Gale MD, Law CN, Marshall GA, et al. The genetic control of gibberellic and insensitivity and coleoptile length in a "dwarf" wheat. Heredity, 1975, 34 (3): 393-399
    119. Gale MD, Marshall GA. The nature and genetic control of gibberellin insensitivity in dwarf wheat grain. Heredity, 1975. 35 (1): 55-65
    120. Gale MD, Marshall GA. The chromosomal location of Gai 1 and Rht 1 genes for gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat. Heredity, 1976, 37 (2): 283-289
    121.Gale MD,Youssefian S.小麦矮秆基因(一).国外农学一麦类作物.1987,6:3-7
    122.Gale MD,King RW.Semi-dwarf genes in Australian wheats.Agricultural Science,1988,1:18-20
    123.Gale MD,Atkinson MD,Chinoy CN,et al.Genetic maps of hexaploid wheat.Proceedings 8~(th)International Wheat Genetics Symposium(Li ZS,Xin ZY eds.).Beijing:China Agricultural Scientech Press,1995,29-40
    124.Genc I,Ozkan H,Yagbasantar T.Crossability of D-genome chromosomes substitution lines of durum wheat(Triticum turgidum ssp.turgidum concv,durum) with Secale cereale and Aegilops squarrosa.Wheat Inf Serv,1996,83:1-6
    125.Gill BS,Friebe B,Endo TR.Standard karyotype and nomenclature system for description of chromosom bands and structural abberation in wheat(Triticum aestivum L.).Genome,1991,34:830-839
    126.Golovnina KA,Glushkov SA,Blinov AG,et al.Molecular phylogeny of the genus Triticum.P1Syst Evol,2007,264:195-216
    127.Gornicki P,Fans J,King I,et al.Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets.Proc Natl Acad Sci USA,1997,94:14179-14184
    128.Gu X,Fu Y-X,Li WH.Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites.Molecular Biology and Evolution,1995,12:546-557
    129.Han FP,Fedak G,Quellet T,et al.Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae.Genome,2003,46:716-723
    130.Han FP,Liu B,Fedak G,et al.Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH,multicolor GISH and seed storage protein analysis.Theor Appl Genet,2004,109:1070-1076
    131.Hasegawa M,Kishino H,Yano T.Dating the human-ape split by a molecular clock of mitochondrial DNA.Journal of Molecular Evolution,1985,22:160-170
    132.Hedden P,Phillips AL.Gibberellin metabolism:new insights revealed by the genes.Trends Plant Sci,2000,5(12):523-530
    133.Hedden P,Phillips AL,Rojas MC,et al.Gibberellin biosynthesis in plants and fungi:a case of convergent Evolution? Plant Growth Regul,2002,20(4):319-331
    134.Heun M,Schafer-Pregl R,Klawan D,et al.Site of the einkorn wheat domestication identified by DNA fmgerprinting.Science,1997,278:1312-1314
    135. Hoisington D, Khairallah M, Reeves T, et al. Plant genetic resources: What can they contribute toward increased crop? Proc Natl Acad Sci, 1999, 96: 5937-5943
    136. Hsiao C, Richard R, Wang C, et al. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can J Genet Cytol, 1986,28: 109-120
    137. Huang S, Sirikhachornkit A, Su X, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc Natl Acad Sci USA, 2002, 99:8133-8138
    138. Huang SX, Su XJ, Haselkorn R, et al. Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase, Plant Sci, 2003, 164: 43-49
    139. Jakubtsiner MM. K poznaniyu pshenits Kitaja /A contribution to the knowledge of the wheats of China. Bot J, 1959,44: 1425-1436 (in Russian)
    140. Jan CC, Pace C de, McGuire PE, et al. Hybrids and amphiploids of Triticum aestivum L. and T. turgidum L. with Dasypyrum villosum (L.) Candargy. Z Pflanzenziicht, 1986, 96: 97-106
    141. Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73, 199-212
    142. Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102-106
    143. Kema GHJ, Lange W, Silfhout CH. Differential suppression of stripe rust resistance in synthetic wheat hexaploids derived from Triticum turgidum subsp. dicoccoides and Aegilops squarrosa. Phytopathology, 1995, 85: 425-429
    144. Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic(Tokyo), 1944, 19: 889-890
    145. Kihara H, Lilienfeld F. A new synthesized 6x-wheat. Hereditas(suppl), 1949, 307-319
    146. Kilian B, (O|¨)zkan H, Deusch O, et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 2007,24: 217-227
    147. Koba T, Shimada T. Crossability of common wheat with Aegilops squarrosa. Wheat Inf Serv, 1993, 77: 7-12
    148. Konishi T, Shinohara K, Yamada K, et al. Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme, Plant Cell Physiol, 1996,37: 117-122
    149. Korpelainen H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften, 2004, 91: 505-518
    150. Korzun V, Melz G, Bormer A. RFLP mapping of the dwarfing (Ddwl) and hairy peduncle (HP) genes on chromosome 5 of rye (Secale cereal L.). Theor Appl Genet, 1996, 8: 1073-1077
    151. Korzun V, Roder M, Worland A J, et al. Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrnl) in wheat using RFLP and microsatellite markers. Plant Breeding, 1997, 116:227-232
    152. Korzun V, Roder M, Ganal MW, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 96: 1104-1109
    153. Kosambi DD. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175
    154. Krowlow KD. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z Pflanzenzücht, 1970, 64: 44-72
    155. Lage J, Warburton ML, Crossa J, et al. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphtytica, 2003a, 134: 305-317
    156. Lage J, Skovmand B, Andersen SB, et al. Expression and suppression of resistance to Greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum × Aegilops tauschii crosses. J Econ Entomol, 2003b, 96: 202-206
    157. Lage J, Pe(n|~)a R J, et al. Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet Resour Crop Evol, 2006, 53: 955-962
    158. Lander ES, Green P, Abrahamson JA, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
    159. Lange W, Jochemsen G, Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat through chromosome - doubled hybrids. I. Two strategies for the production of the amphiploids, Euphytica, 1992, 59: 197-212
    160. Law CN, Worland AJ. An effect of temperature on the fertileity of wheat containing dwarfing genes Rht1, Rht2, Rht3. Annual Report Plant Breeding Institute, 1984, Cambridge, UK, P: 69-71
    161. Lein A. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. I Ind Abst Vererb Lehre, 1943,81:28-61
    162. Lindo-Lawren, Von Bother R. Identification of the somatic chromosomes of Psathyrostachys fragilis (Poaceae).Can J Genet Cytol, 1984, 26: 430- 435
    163. Line RF, Qayoum A. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1991, 1968—87. U. S. Department of Agriculture Technical Bulletin 1788, 44
    164. Liu DC, Yen C, Yang JL, et al. The chromosomal distribution of crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica, 1999,108: 79-82
    165. Liu DC, Lan XJ, Yang ZJ, et al. A unique Aegilops tauschii genotype needless to immature embryo culture in cross with wheat, Acta. Bot. Sin., 2002,44: 708-713
    166. Liu DC, Zheng YL, Yan ZH, et al. Combination of homoeologous pairing gene phKL and Ph2-deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot Sin, 2003,45: 1121-1128
    167. Liu B, Vega JM, Segal G, et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome, 1998, 41: 271-277
    168. Lukaszewski AJ, Gustafson JP. Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet, 1983, 64: 239-248
    169. Luo MC, Yang ZL, Yen C, et al. The cytogenetic investigation on F_1 hybrid of Chinese wheat landraces. In: Ren ZL, Peng JH (eds). Exploration of Crop Breeding. Sichuan Science and Technology Press, Chengdu, 1992, pp. 169-176
    170. Luo MC, Yen C, Yang JL. Crossability percentages of bread wheat landraces from Hunan and Hubei Provinces, China with rye. Wheat Inf Serv, 1994, 78: 34-38
    171. Ma H, Singh RP, Mujeeb-Kazi A. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 1995a, 82: 117-124
    172. Ma H, Singh RP, Mujeeb-Kazi A. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica, 1995b, 83: 87-93
    173. Ma R, Zheng DS, Fan L. The possibility of ph genes existing spontaneously in common wheat. Acta Agron Sin, 1999,25: 99-104
    174. Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res, 2005, 109: 236-249
    175. Marchylo BA, Kruger JE, Hatcher DW. Quantitative reversed-phase high-performance liquid Chromatographic analysis of wheat storage proteins as a potential quality prediction tool. J Cereal Science, 1989,9: 113-130
    176. Martin A, Sanchez-Monge Laguna E. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica, 1982, 31,262-267
    177. Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F_1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 2004,109: 1710-1717
    178. Matsuoka Y, Yamazaki Y, Ogihara Y, et al Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol,2002, 19:2084-2091
    179. McFadden ES, Sears ER. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 1944, 13: 26-27
    180. McGuire PE, Dvorak J. Genetic regulation of heterogenetic chromosome pairing in polyploidy species of the genus Triticum sensulato. Can J Genet Cytol, 1982, 24:57-82
    181.Mcintosh RA, Yamazaki Y, Devos KM, et al. Catalogue of gene symbols for wheat, In: Proceedings of 10~(th) international wheat genetics symposium. volume 4, 2003, Paestum, Italy
    182. Mcintosh RA, Devos KM, Dubcovsky J, et al. Catalogue of gene symbols for wheat. 2004 Supplement
    183. Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
    184. Miller TE, Reader SM, Shaw PJ, et al. Towards an understanding of the biological action of the Ph1 locus in wheat. In: Slinkard AE (ed.). Proc. 9~(th) Intem. Wheat Genet. Symp., Vol. 1. University Extension Press, Saskatoon, 1998, pp. 17-19
    185. Moore K. The physiological control of F_1 grass-dwarfs in Triticum aestivum. Euphytica, 1966, 15: 329-347
    186. Moore G, Devos KM, Wang Z, et al. Cereal genome evolution: Grasses, line up and from a circle. Current Biology, 1995, 5: 737-740
    187. Mori N, Liu YG, Tsunewaki K. Wheat phylogeny determined by RFLP analysis nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet, 1995, 90: 29-134
    188. Morris R, Schmidt J W, Johnson V A. Chromosomal location of a dwarfing gene in 'Tom Thumb' wheat derivative by monosomic analysis. Crop Science, 1972, 12: 247-249
    189. Mujeeb-Kazi A, Roldan S, Suh DY. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome, 1987, 29: 537-553
    190. Mujeeb-Kazi A, Cortes A, Riera-Lizarazu O: The cytogenetics of a Triticum turgidum × Psathyrostachys juncea hybrid and its backcross derivatives. Theor Appl Genet, 1995, 90: 430-437
    191. Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii, 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996,43: 129-134
    192. Multani DS, Dhaliwal HG, Singh P, et al. Synthetic amphiploids of wheat as a resistance source to Kamal bunt (Neovossia indica), Plant Breed, 1988, 101: 122-125
    193. Ogbonnaya FC, Halloran GM, Lagudah ES. D genome of wheat - 60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed. Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005, pp205-220
    194. Ozkan H, Levy AA, Feldman M. Allopolyploidy -induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735-1747
    195. Peng JR, Richards DE, Hartley NM, et al. Green revolution genes encode mutant gibberellin response modulators. Nature, 1999,400: 256-261
    196. Petersen G, Seberg O, Yde M, et al. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol, 2006, 39: 70-82
    197. Plaschke J, Korzun V, Koebner RMD, et al. Mapping the GA_3-insensitive dwarfing gene ctl on chromosome 7 in rye. Plant Breeding, 1995, 114: 113-116
    198. Plourde A, Fedak G, St-Pierre CA, et al. A novel intergeneric hybrid in the Triticeae: Triticum aestivum × Psathyrostachys juncea. Theor Appl Genet, 1990, 79: 45-48
    199. Podkowinski J, Sroga GE, Haselkorn R, et al. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat, Proc Natl Acad Sci USA, 1996,93: 1870-1874
    200. Reif JC, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 2005, 110: 859-864
    201. Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715
    202. Riley R, Chapman V. The inheritance in wheat of crossability with rye. Genet Res, 1967, 9: 259-267
    203. Riley R., Coucoli H, Chapman V. Chromosomal interchanges and the phylogeny of wheat. Heredity 22: 233-248.Sakamoto S, 1973. Patterns of phylogenetic differentiation in the tribe Triticeae. Seiken Ziho, 1967,24: 11-31
    204. R(o|¨)der MS, Korzun V, Wendehake K, et al. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
    205. Rodriguez F, Oliver JL, Marin A, et al. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 1990, 142: 485-501
    206. Song KP, Lu K, Tank, et al. Rapid genome change in synthetic polyploidys of Brassical and its implications for polyploidys evolution. Proc Nat Acad Sci USA, 1995, 92: 7719-7723
    207. Salamini F, Ozkan H, Brandolini A, et al. Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet, 2002, 3: 429-441
    208. Sanchez-Monge Laguna E. Hexaploid Triticale. In: Proc. 1st. Intern. Wheat Genet. Symp., 1959, 181-194. Public Press Ltd, Winnipeg
    209. Schaller H. The role of sterols in plant growth and development. Prog Lipid Res, 2003, 42 (3): 163-175
    210. Sears ER. Misdivision of univalents in common wheat. Chromosoma, 1952, 4: 535-550
    211. Sears ER. Chromosome engineering in wheat. Stadler Symp., Univ. of Missouri, Columbia, Missouri, 1972,4: 23-38
    212. Sears ER. Genetic control of chromosome pairing in wheat. Ann Rev Genet, 1976, 10: 31-51
    213. Sears ER. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977,19:585-593
    214. Sears ER. A wheat mutant conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol, 1982,24: 715-719
    215. Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13: 1749-1759
    216. Sharma HC, Gill BS. Currentstatus of wide hybridization in wheat, Euphytica, 1983,32: 17-31
    217. Sitch LA, Snape JW. Allelic variations at the crossability loci in wheat (Triticum aestivum). Wheat Inf Serv, 1986,63: 11-15
    218. Slageren MW. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), Wageningen Agricultural University, Wageningen, 1994, pp. 88-94
    219. Song QJ, Fickus EW, Cregan PB. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet, 2002, 104: 286-293
    220. Sourdille P, Charmet G, Trottet M, et al. Linkage between RFLP molecular markers and the dwarfing genes Rht-Bl and Rht-D1 in wheat. Hereditas, 1998, 128: 41-46
    221. Sutka J, KOVACS G. Chromosomal location of dwarfing gene Rhtl2 in wheat. Euphytica, 1987, 36: 521-523
    222. Sutton KH. Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reverse-phase high-performance lid chromatography. J Cereal Science, 1991, 14: 25-34
    223. Tanaka M. Newly synthesized amphidiploids from the hybrids, emmer wheats × Aegilops squarrosa varieties, Wheat Inf Serv, 1961,8:8
    224. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673-4680
    225. Udaczin RA, Miguschova EF. Novoe v poznanii roda Triticum L. Vestnik S.-Kh. Nauki, 1970, 9: 20-24
    226. Van Ginkel M, Ogbonnaya F. Using synthetic wheats to bread wheat cultivars better adapted to changing production conditions (invited paper). Turner NC, Acuna T and Johnson RC. "Ground-breaking stuff". Proceedings of the 13th Australian Agronomy Conference, 10-14 September, 2006, Perth, Western Australia. Australian Society of Agronomy. The Regional Institue Ltd Publisher, March 2006, ISBN 1 920842314
    227. Waddell PJ, Penny D. Evolutionary trees of apes and humans from DNA sequences. In A. J. Locke and C. R. Peters [eds.], Handbook of symbolic evolution, 1996, 53-73. Clarendon Press, Oxford, UK.
    228. Wang HY, Wang XE, Chen PD, et al. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. Journal of Genetics and Genomics, 2007, 34 (7): 623-633
    229. Wall AM, Riley R, Chapman V. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res, 1971, 18: 311-328
    230. Warburton ML, Crossa J, Franco J, et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 2006, 149: 289-301
    231. Ward RW, Yang ZL, Kim HS, et al. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of Ae. taucshii from China and Southwest Asia. Theor Appl Genet, 1998, 96:312-318.
    232. Wei JZ, Wang RRC. Genome-and species-specific makers and genome relationships of diploid perennial species in Triticeae based on RAPD analysis. Genome, 1995, 38: 1230-1236
    233. Wei YM, Zheng YL, Zhou YH, et al. Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles among Chinese endemic wheat. Acta Botanica Sinica, 2001, 43 (8): 834-839
    234. Wei YM, Zheng YL, Liu DC, et al. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genet Resour Crop Evol, 2002, 49: 327-330
    235. Worland AJ, Law CN, Shakoor A. The genetical analysis of an induced height mutant in wheat. Heredity, 1980,45 (1): 61-71
    236. Worland AJ, Law CN. Aneuploidy in semi dwarf wheat varieties. Euphytica, 1985, 34: 317-327
    237. Worland AJ, Law CN. Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day-length insensitiveity, hybrid dwarfism and yellow-rust resistance. Z. Pflanzenzüchtg, 1986, 96: 331-345
    238. Worland AJ, Petrovic S. The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27. Euphytica, 1988a, 38: 55-63
    239. Worland AJ, Petrovic S, Law CN. Genetic analysis of chromosome 2D of wheat. Ⅱ. The importance of this chromosome to Yugoslavian varieties. Plant Breeding, 1988b, 100: 247-259
    240. Worland AJ, Lorzun V, R(o|¨)der MS. Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96:1110-1120
    241. Worland AJ, Sayers EJ, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breading programs. Euphytica, 2001, 119: 155-159
    242. Xu SJ, Dong YS. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 1992, 35: 379-384
    243. Xu SJ, Joppa LR. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 1995, 38: 607-615
    244. Yang WY, Yen C, Yang JL. Cytogenetic study on the origin of some special Chinese landraces of common wheat, Wheat Inf Serv, 1992, 75: 14-20
    245. Yang Z. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 1993, 10: 1396-1401
    246. Yang ZJ, Li GR, Chang ZJ, et al. Characterization of a partial amphiploid between Triticum aesttvum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006, 149: 11-17
    247. Yen C, Luo MC, Yang JL. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guangtou and other landraces of White Wheat Complex from China. In: Miller TE and Koebner RMD (eds), Proc. 7th Intern. Wheat Genet. Symp., Cambridge, England. 1988, vol. 1, pp. 175-179
    248. Yoshihiro, M, Shuhei N. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F_1 hybrid with Aegilops tauschii Coss., Theor Appl Genet, 2004,109: 1710-1717
    249. Zhang PZ, Dreisigacker S, Melchinger AE, et al. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers. Mol Breed, 2005, 15: 1-10
    250. Zheng DS, Ma R, Liu SC, et al. Sakyukomogi: a valuable wheat germplasm for distant hybridization. Chin J Plant Genet Resour, 2000, 1: 38-41
    251. Zheng YL, Luo MC, Yen C, et al. Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv, 1992, 75: 36-40
    252. Zhou RH, Jia JZ, Dong YC, et al. Detecting the progenies chromatin of Triticum aestivum and Psathyrostachys juncea using genome in situ hybridization. Science in China, Series C, 1997, 27, 543-549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700