用户名: 密码: 验证码:
氮杂环与羧酸官能化硅烷的合成、组装及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅原子上带有官能化基团的小分子有机硅化合物称为官能化硅烷,分为π型官能化硅烷和杂原子型官能化硅烷。硅原子具有空的3d轨道,赋予了有机硅化合物许多独特的性质。一方面,π型和杂原子型官能基团分别可以给出不定域电子和孤对电子,可作为给电子体与具有空轨道的金属中心离子通过配位自组装形成小分子配合物或配位聚合物。由于硅原子的特殊结构和电子性质,所形成的配位化合物与一般的金属络合物相比,具有许多新颖的结构和更好的光、电、磁等性能。另一方面,与传统的碳化合物相比,官能化硅烷本身具有合成方法简单、热稳定性高,光学纯度高等优点。因此,官能化硅烷及配合物在有机光电材料、化学传感器及生物传感器等领域得到广泛的应用。本文围绕氮杂环与羧酸官能化硅烷的合成、组装及性能研究展开了一系列的研究工作。
     1.合成了一系列以苯基为桥的官能化硅烷的前驱体——溴苯基硅烷,包括溴原子在硅原子对位产物(1~7),溴原子在硅原子间位产物(8~11)以及苯撑产物(13),通过红外光谱、1H核磁共振谱和13C核磁共振谱等手段表征了其结构。研究了不同反应路线对产物的影响,找到了合成溴苯基硅烷的最佳反应条件,即采用有机锂试剂方法,以无水乙醚做反应溶剂,-78℃为反应温度。
     2.以溴苯基硅烷为起始原料,通过Ullmann缩合反应合成了一系列以苯基为桥的咪唑官能化硅烷,包括二(4-(1-咪唑基)苯基)二甲基硅烷(L1)、三(4-(1-咪唑基)苯基)甲基硅烷(L2)、二(4-(1-咪唑基)苯基)二苯基硅烷(L3)、三(4-(1-咪唑基)苯基)苯基硅烷(L4)、[二(4-(1-咪唑基)苯基)](4-溴苯基)苯基硅烷(L5)和[三(4-(1-咪唑基)苯基)](4-溴苯基)硅烷(L6),通过红外光谱、1H核磁共振谱、13C核磁共振谱和高分辨质谱等手段表征了其结构。研究了几种反应体系对产物的影响,找到了两种合适的反应体系。进一步研究表明这些化合物均具有良好的热稳定性,在紫外到蓝光区域有强烈的荧光发射,并且具有大的HOMO-LUMO能量差(4.9585 eV到5.1879 eV),使得这些化合物可以作为蓝光发射材料或空穴传输材料应用于有机电致发光领域。化合物L1~L4与Ag(Ⅰ)相互作用表明,随着Ag(Ⅰ)浓度的增加,对Ag(Ⅰ)显示不同的荧光响应。
     3.以溴苯基硅烷为起始原料,通过Ullmann缩合反应合成了一系列以苯基为桥的氮杂环官能化硅烷,包括二(4一(1-吡唑基)苯基)二甲基硅烷(L8)、二(3一(1一吡唑基)苯基)二甲基硅烷(L9)、三(4-(1-吡唑基)苯基)甲基硅烷(L10)、二(4-(1-苯并咪唑)苯基)二甲基硅烷(L11)、二(3-(1-苯并咪唑)苯基)二甲基硅烷(L12)、二(4-(4-甲基一1一咪唑基)苯基)二甲基硅烷(L13)、(3一(1一咪唑基)苯基)三甲基硅烷(L14)、二(3-(1-咪唑基)苯基)二甲基硅烷(L15)、三(3一(1-咪唑基)苯基)甲基硅烷(L16)和二(4-(1-吡唑基)苯基)甲基乙烯基硅烷(L17),通过红外光谱、1H核磁共振谱、13C核磁共振谱和高分辨质谱等手段表征了其结构。研究表明这些化合物具有良好的热稳定性,在紫外到蓝光区域有发射峰,可以作为蓝光发射材料应用于有机电致发光领域。对不同氮杂环官能化硅烷光学性能的比较表明,引入较大的共轭体系,在同一个分子中引入多个官能团以及在硅原子的对位(以苯基为桥)引入官能团是提高官能化硅烷的荧光效率的有效途径。
     4.以一种半刚性咪唑官能化硅烷作为配体,二(4一(1-咪唑基)苯基)二甲基硅烷(L1)为基体构筑了五种新的配位聚合物,[Ag(L1)]0.5[Ag(L1)]2·2.5ClO4-5H2O (CP-1), Ag(L1)PF6·H2O (CP-2), MnCl2(L1)2 (CP-3), Cu(Ll)Br (CP-41和Cu(L1)Cl(CP-5),用单晶X-射线衍射表征了其结构。结果显示这些金属有机化合物均是以一维链为基础的结构,说明L1是一种很好的线型配体。化合物CP-1含有两类一维链,通过编织和穿插而得到一种三维多孔结构,沿着a轴和b轴含有两种不同尺寸和形状的孔洞,高氯酸根离子和水分子分别填充在孔洞中。该化合物具有选择性离子交换性能,可以与PF6-和BF4-离子交换,而不能与CF3SO3-交换。化合物CP-3是一种以金属大环为构建单元的一维链通过氢键相互作用形成的二维层状结构。化合物CP-4和CP-5均是一维弯折链通过相互作用形成的二维层状结构,进而通过ABAB...堆积方式形成三维超分子结构。最后,讨论了热力学和动力学因素对配位聚合物结构的影响。
     5.合成了六种羧酸官能化硅烷,包括二(4-羧基苯基)二甲基硅烷(L18)、三(4-羧基苯基)甲基硅烷(L19)、四(4-羧基苯基)硅烷(L20)、二(3-羧基苯基)二甲基硅烷(L21)、三(3-羧基苯基)甲基硅烷(L22)和四(3-羧基苯基)硅烷(L23),通过红外光谱、1H核磁共振谱、13C核磁共振谱和高分辨质谱等手段表征了其结构。讨论了两种合成路线对产物的影响,寻找出一种适合合成羧酸官能化硅烷的最优反应路线。
     以L22和L23为配体构筑了两种配位聚合物,[Cd3(L22)2(Py)4]·4H2O (CP-6)和[Cd4(L23)2(DMF)2(H2O)6(EtOH)]·4DMF (CP-7)。CP-6是以配体L22和Cd(NO3)2通过双相反应得到的,是一种以高度扭曲的三金属八面体的次级构建单元(SBU)为基础构建的(6,3)三维多孔结构,存在正方形和椭圆形孔洞,水分子填充在孔洞内。CP-7是以配体L23和Cd(NO3)2通过单相反应得到的,存在两种由金属原子构成的节点,一种是单个Cd(Ⅱ)金属,一种是由三金属组成的金属簇,L23作为四面体的构件,与节点连接形成一种二维(4,4)层状结构,进而通过ABCD...堆积方式得到三维多孔超分子结构。
Functionalized silanes are defined as the small organosilicon compounds with functional groups and can be divided into two types:π-type and heteroatom-type. Organosilicon compounds possess many unique characteristics because silicon atom can provide 3d unoccupied orbitals. On the one hand, they can serve as ligands owing to 7r-type and heteroatom-type groups providing delocalized electron and isolated electron, and can be interacted with metal ions to form small metal complexes or coordination polymers through coordination assembly. Compared to the common metal complexes, these silicon-based metal complexes have many novel structures and better optical, electronic and magnetic properties and could be potentially applied in many fields, such as electroluminescent devices, sensor technology et al owing to the unique structure and electronic properties of silicon atom. On the other hand, compared to conventional carbon compounds, functionalized silanes have many advantages, such as more accessible synthesis, high thermal stability and high color purity. Thus they have been applied in extensive areas, including organic light emitting devices, chemical sensors or biosensors et al. In this dissertation, investigations have been carried out and focused on the synthesis, assembly and properties of nitrogen-heterocycle and carboxylate functionalized silanes. The main contents are as follows:
     1. A series of precursors of phenyl-bridged functionalized silanes—bromophenyl silanes have been synthesized, including products 1~7 with bromine in the p- position of silicon, products 8-11 with bromine in the m- position of silicon and pheyl-bridged product 13, then characterized by FTIR、1H NMR and 13C NMR. After the effects of different reaction methods on the products have been investigated and a suitable synthetic condition has been chosen as the synthesis of bromophenyl silanes. The condition is using organolithium reagent, anhydrous ether as the reaction solvent and-78℃as the reaction temperature.
     2. Bromophenyl silanes as the starting materials, a series of phenyl-bridged imidazole functionalized silanes, including Bis(4-(1H-imidazol-1-yl)phenyl)dimethyl silane (L1), Tri(4-(1H-imidazol-1-yl)phenyl)methylsilane (L2), Bis(4-(1H-imidazol-1-yl)phenyl)diphenylsilane (L3), Tri(4-(1H-imidazol-1-yl)phenyl)phenylsilane (L4), [Bis(4-(1H-imidazol-1-yl)phenyl)](4-bromophenyl)phenylsilane (L5) and [Tri(4-(1H-imidazol-1-yl)phenyl)](4-bromophenyl)silane (L6) have been synthesized according to Ullmann condensation reaction and characterized by FTIR,1H NMR,13C NMR and mass spectroscopy. The effects of several different reaction systems on productions have been studied and two proper reaction systems have been obtained. They all display high thermal stability, are fluorescent with emission in the region of violet to blue, and possess large HOMO-LUMO energy gaps ranging from 4.9585 to 5.1879 eV. Thus they could be potentially used as blue emitters or hole blocking materials in OLEDs. Moreover, the metal ion titrations based on Ag (Ⅰ) and compounds 1-4 reveal that these ligands perform distinguishable fluorescence response with increase of Ag (Ⅰ) ions.
     3. Bromophenyl silanes as the starting materials, a series of phenyl-bridged nitrogen-heterocycle functionalized silanes have been synthesized via Ullmann condensation reaction, including Bis(4-(1H-pyrazol-1-yl)phenyl)dimethylsilane (L8), Bis(3-(1H-pyrazol-1-yl)phenyl)dimethylsilane (L9), Tri(4-(1H-pyrazol-1-yl)methyl silane (L10), Bis(4-(1H-benimidazol-1-yl)phenyl)dimethylsilane (L11), Bis(3-(1H-benimidazol-1-yl)phenyl)dimethylsilane (L12), Bis(4-methyl-(1H-imidazol-1-yl) phenyl)dimethylsilane (L13), (3-(1H-imidazol-1-yl)phenyl)trimethylsilane (L14), Bis(3-(1H-imidazol-1-yl)phenyl)dimethylsilane (L15), Tri(4-(1H-imidazol-1-yl) phenyl)methylsilane (L16) and Bis(4-(1H-imidazol-1-yl)phenyl)vinylmethylsilane (L17) and then characterized by FTIR,1H NMR,13C NMR and mass spectroscopy. They all display high thermal stability, are fluorescent with emission in the region of violet to blue. Thus they could be potentially used as blue emitters in OLEDs. The investigations on the optical properties of different nitrogen-heterocycle functionalized silanes reveal that three approaches, including highπ-conjugated system, multi- functional groups introduced in the compound and functional groups locating in the p- position with phenyl bridging are effective ways to increase the quantum yield of them.
     4. Based on a semirigid imdazole functionalized silane, Bis(4-(1H-imidazol-1-yl) phenyl)dimethylsilane (L1), five novel coordination polymers, [Ag(Ll)]0.5[Ag(Ll)]2·2.5ClO4·5H2O (CP-1), Ag(Ll)PF6·H2O (CP-2), MnCl2(L1)2 (CP-3), Cu(L1)Br (CP-4) and Cu(L1)Cl (CP-5) have been constructed and the structures were determined by single crystal X-ray diffraction. The results reveal that all of them were built from one-dimensional (1D) chains, which indicate that L1 is an excellent linear ligand. CP-1 is a 3D-braided porous metal-organic framework via self-assembly of two series of 1D polymer chains through both braiding and interpenetrating. CP-1 consists of two distinct kinds of channels with different sizes and shapes along a and b directions occupied by perchlorate anions and water molecules. Complex CP-1 possesses selective anion exchange with PF6- and BF4- anions over CF3SO3-/PF6-/ BF4-. CP-3 contains a 2D layered structure constructed from 1D chains with a 34-memebered macrometallocycle as the subunit. CP-4 and CP-5 belong to 2D layered structure built from 1D zigzag chains, then 3D supramolecular structures are formed through ABAB…stacking between adjacent 2D layers. At last, dynamic and thermodynamic effects on the structures of the coordination polymers are also discussed.
     5. Six carboxylate functionalized silanes, have been synthesized, including Bis(4-carboxyphenyl)dimethylsilane (L18), Tri(4-carboxyphenyl) methylsilane (L19), Tetra(4-carboxyphenyl)silane (L20), Bis(3-carboxyphenyl)dimethylsilane (L21), Tri (3-carboxyphenyl)methylsilane (L22) and Tetra(3-carboxyphenyl)silane (L23) and then characterized by FTIR,1H NMR,13C NMR and mass spectroscopy. Two synthetic routes on these compounds have been discussed and a suitable route for carboxylate functionalized silanes has been achieved.
     Based on L22 and L23, two novel coordination polymers, [Cd3(L22)2(Py)4]·4H2O (CP-6) and [Cd4(L23)2(DMF)2(H2O)6(EtOH)]·4DMF (CP-7) have been constructed and their structures were determined by single crystal X-ray diffraction.. CP-6 was obtained from L22 and Cd(NO3)2 through double phase reaction and is a 3D porous (6,3) network containing high disordered octahedral trimetallic secondary buliding units (SBUs). CP-6 consists of square and ellipse channels occupied by water molecules. CP-7 was built from L23 and Cd(NO3)2 through single phase reaction. In CP-7, two nodes based on metal ions exist. One is single Cd(II) and the other is trimetallic SBUs. L23 acts as tetrahedral spacers and forms an 2D (4,4) layered network. A 3D supramolecular structure is formed through ABCD…stacking between 2D layers.
引文
[1]杜作栋,陈剑华,贝小来,周重光,有机硅化学,高等教育出版社,1990.
    [2]Richard G. Jones, Wataru Ando and Julian Chojnowski, Silicon-Containing Polymers——The Science and Technology of Their Synthesis and Applications冯圣玉,栗付平,李美江等译,含硅聚合物——合成与应用,化学工业出版社,2008.
    [3]杜作栋,陈剑华,贝小来,周重光,有机硅化学,高等教育出版社,1990,15.
    [4]孙文艳,王灯旭,来庆玲,张洁,冯圣玉,官能化硅烷及其配位化合物的研究,化学进展,2010,22,400-405.
    [5]王灯旭,孙文艳,冯圣玉,含硅金属化合物,化学进展,2008,20,1651-1658.
    [6]Jean Marie Lehn, Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int.Ed.Engl.,1988,27,89-112.
    [7]Hiroshi Tsukube, Armed crown ether complexes in supramolecular assembly, Coord. Chem. Rev. (Thematic Issue),1996,148,1-17.
    [8]Joseph M. Timko, Stephen S. Moore, David M. Walba, Philippe C. Hiberty, Donald J. Cram, Host-guest complexation.2. Structural units that control association constants between polyethers and tert-butylammonium salts, J. Am. Chem. Soc.,1977, 99,4207-4219.
    [9]Jean Marie Lehn,超分子化学:概论和展望.北京:北京大学出版社,2002,21-56.
    [10]徐筱杰,超分子建筑:从分子到材料,科学技术文献出版社,2000,1-19.
    [11]刘育,张衡益.纳米超分子化学——从合成受体到功能组装体.北京:北京工业出版社化学与应用出版中心,2004.1-35.
    [12]Brian Moulton and Michael J. Zaworotko, From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.2001,101,1629-1658.
    [13]Chullikkattil P. Pradeep and Leroy Cronin, Supramolecular coordination chemistry, Annu. Rep. Prog. Chem., Sect. A,2007,103,287-332.
    [14]K. Tanaka and F. Toda, Solvent-Free Organic Synthesis, Chem. Rev.,2000,100, 1025-1074.
    [15]Leonard R. MacGillivray, Jennifer L. Reid and John A. Ripmeester, Supramolecular Control of Reactivity in the Solid State Using Linear Molecular Templates, J. Am. Chem. Soc.,2000,122,7817-7818.
    [16]Jun Xiao, Meng Yang, Joseph W. Lauher and Frank W. Fowler, A Supramolecular Solution to a Long-Standing Problem:The 1,6-Polymerization of a Triacetylene, Angew. Chem., Int. Ed.,2000,39,2132-2135.
    [17]Gautam R. Desiraju, Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis, Angew. Chem. Int. Ed. Engl.,1995,34,2311-2327.
    [18]G. M. J. Schmidt, Photodimerization in the solid state, Pure Appl. Chem.,1971, 27,647-678.
    [19]Bernard F. Hoskins and Richard Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc.,1989, 111,5962-5964.
    [20]A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York,1977.
    [21]Stuart R. Batten, Suzanne M. Neville and David R. Turner, Coordination Polymers:Design, Analysis and Application. RSC Publishing,2009.
    [22]Shin-ichiro Noro, Susumu Kitagawa, Tomoyuki Akutagawa and Takayoshi Nakamura, Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands:Crystal structures and microporous properties, Prog. Poly. Sci.2009,34,240-279.
    [23]A. Corma, H. Garcia, and F. X. Llabres i Xamena, Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem. Rev.,2010,110,4606-4655.
    [24]Alistair C. McKinlay, Russell E. Morris, Patricia Horcajada, Gerard Ferey, Ruxandra Gref, Patrick Couvreur, and Christian Serre, BioMOFs:Metal-Organic Frameworks for Biological and Medical Applications, Angew. Chem. Int. Ed.,2010, 49,6260-6266.
    [25]Susumu Kitagawa, Ryo Kitaura, and Shin-ichiro Noro, Functional Porous Coordination Polymers, Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [26]Christer B. Aakeroy, Neil R. Champness and Christoph Janiak, Recent advances in crystal engineering, CrystEngComm,2010,12,22-43.
    [27]Barbara Barszcz, Coordination properties of didentate N,O heterocyclic alcohols and aldehydes towards Cu(Ⅱ), Co(II), Zn(Ⅱ) and Cd(Ⅱ) ions in the solid state and aqueous solution, Coord. Chem. Rev.,2005,249,2259-2276.
    [28]Richard Robson, Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs):a personal view, Dalton Trans.,2008,5113-5131.
    [29]Jaheon Kim, Banglin Chen, Theresa M. Reineke, Hailian Li, Mohamed Eddaoudi, David B. Moler, Michael O'Keeffe and Omar M. Yaghi, Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units:New Examples and Simplifying Principles for Complex Structures, J. Am. Chem. Soc., 2001,123,8239-8247.
    [30]Hyungphil Chun, Dongwoo Kim, Danil N. Dybtsev and Kimoon Kim, Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand, Angew Chem. Int. Ed., 2004,43,971-974.
    [31]F. Gandara, B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. A. Monge, D. M. Proserpio and N. Snejko, An Indium Layered MOF as Recyclable Lewis Acid Catalyst, Chem. Mater.,2008,20,72-76.
    [32]Michael F. Lappert and Fiona P. A. Scott, The reaction pathway from Speier's to Karstedt's hydrosilylation catalyst, J. Oraganomet Chem.,1995,492, C11-13.
    [33]Kai C. Hultzsch, James M. Nelson, Alan J. Lough and Ian Manners, Synthesis, Characterization, and Homopolymerization and Copolymerization Behavior of the Silicon-Bridged [1] Chromarenophane Cr(η-C6H5)2SiMe, Organometallics.,1995,14, 5496-5502.
    [34]Stefan Mansel, Ursula Rief, Marc-Heinrich Prosenc, Robin Kirsten and Hans-Herbert Brintzinger, ansa-Metallocene derivatives XXXII. Zirconocene complexes with a spirosilane bridge:syntheses, crystal structures and properties as olefin polymerization catalysts, J. Organomet. Chem.,1996,512,225-236.
    [35]Tomas Cuenca, Pascual Royo, Transition metal complexes with functionalized silyl-substituted cyclopentadienyl and related ligands:synthesis and reactivity, Coord. Chem. Rev.,1999,193-195,447-498.
    [36]Paul Nguyen, Paloma Gomez-Elipe, and Ian Manners, Organometallic Polymers with Transition Metals in the Main Chain, Chem. Rev.,1999,99,1515-1548.
    [37]Dirk Tews and Petra Escarpa Gaede, Organorhodium Compounds with Novel Bridged Dibenzo[b,e]fulvalene Ligands, Organometallics,2001,20,3869-3875.
    [38]Paul Hamon, Frederic Justaud, Olivier Cador, Philippe Hapiot, Stephane Rigaut,Loic Toupet, Lahcene Ouahab, Harald Stueger, Jean-Rene Hamon and Claude Lapinte, Redox-Active Organometallics:Magnetic and Electronic Couplings through Carbon-Silicon Hybrid Molecular Connectors, J. Am. Chem. Soc.,2008,130,17372-17383.
    [39]Zhi-Rong Qu, Zhen-Feng Chen, Jing Zhang, Ren-Gen Xiong, Brendan F. Abrahams and Zi-Ling Xue, The First Highly Stable Homochiral Olefin-Copper(I) 2D Coordination Polymer Grid Based on Quinine as a Building Block, Organomatallics,2003,22,2814-2816.
    [40]Guo-Li Zheng, Jian-Fang Ma, Zhong-Min Su, Li-Kai Yan, Jin Yang, Yin-Yan Li and Jing-Fu Liu, A Mixed-Valence Tin-Oxygen Cluster Containing Six Peripheral Ferrocene Units, Angew Chem Int Ed,2004,43,2409-2411.
    [41]Shu-Yan Song, Jian-Fang Ma, Jin Yang, Li-Li Gao and Zhong-Min Su, Synthesis of an Organotin Oligomer Containing a Heptanuclear Tin Phosphonate Cluster by Debenzylation Reactions:X-ray Crystal Structure of {Na6(CH3OH)2(H2O)}-{[(BzSn)3(PhPO3)5(μ3-O)(CH3O)]2Bz2Sn}·CH3OH, Organomatallics,2007,26,2125-2128.
    [42]Guo-Hai Xu, Jian-Fang Ma, Hai-Xia Yu, Shun-Li Li, Ying-Ying Liu, Jin Yang, Zhong-Min Su and Chun-Feng Shi, A Series of New Organotin-Cyanometalate Compounds Based on Triorganotin, Diorganotin, and Organooxotin Clusters, Organomatallics,2007,25,5996-6006.
    [43]A. K. Ghosh, A. D. Jana, D. Ghoshal, G. Mostafa and N. Ray Chaudhuri, Toward the Recognition of Enolates/Dicarboxylates:Syntheses and X-ray Crystal Structures of Supramolecular Architectures of Zn(II)/Cd(Ⅱ) Using 2,2'-Biimidazole, Cryst. Growth Des.,2006,6,701-707.
    [44]Hui-Fang Zhu, Jian Fan, Taka-aki Okamura, Wei-Yin Sun and Norikazu Ueyama, Syntheses and Structures of Zinc(Ⅱ), Silver(I), Copper(Ⅱ), and Cobalt(Ⅱ) Complexes with Imidazole-Containing Ligand:1-(1-Imidazolyl)-4-(imidazol-l-ylmethyl)benzene, Cryst. Growth Des.,2005,5,289-294.
    [45]Marion Schmitz, Stefan Leininger, Jun Fan, Atta M. Arif, and Peter J. Stang, Preparation and Solid-State Properties of Self-Assembled Dinuclear Platinum(Ⅱ) and Palladium(Ⅱ) Rhomboids from Carbon and Silicon Tectons, Organomatallics,1999, 18,4817-4824.
    [46]F. Albert Cotton, Evgeny V. Dikarev, Marina A. Petrukhina, Marion Schmitz, and Peter J. Stang, Supramolecular Assemblies of Dimetal Complexes with Polydentate N-Donor Ligands:From a Discrete Pyramid to a 3D Channel Network, Inorg. Chem., 2002,41,2903-2908.
    [47]Ok-Sang Jung, Young-A Lee, Yun Ju Kim and Jongki Hong, " Cyclic Tetramer" vs "Dimer of Cyclic Dimer":Subtle Anion Effects on the Cyclization of AgBF4 vs AgClO4 with Bis(3-pyridyl)dimethylsilane, Cryst. Growth Des.,2002,2,497-499.
    [48]Ok-Sang Jung, Yun Ju Kim, Kwan Mook Kim, and Young-A Lee, A 20-A-Thick Interwoven Sheet Consisting of Nanotubes, J. Am. Chem. Soc.,2002,124,7906-7907.
    [49]Jung Woon Lee, Eun Ae Kim, Yun Ju Kim, Young-A Lee, Youngshang Pak, and Ok-Sang Jung, Relationship between the Ratio of Ligand to Metal and the Coordinating Ability of Anions. Synthesis and Structural Properties of AgX-Bearing Bis(4-pyridyl)dimethylsilane (X= NO2-, NO3-,CF3SO3-, and PF6-), Inorg. Chem.,2005, 44,3151-3155.
    [50]Ok-Sang Jung, Young-A Lee, and Yun Ju Kim, A Unique Double Strand Consisting of Siloxane-Type Macrocycles, Chem. Lett.,2002,1096-1097.
    [51]Young Mee Na, Tae Hwan Noh, In Sung Chun, Young-A Lee, Jongki Hong, and Ok-Sang Jung, Subtle Ring-Constraint Effects on the Formation of Metallacycles. Cyclodimer versus Cyclotrimer of Bis(chloro)-1,4-bis(dimethyl-3 or 4-pyridylsilyl) benzenepalladium(Ⅱ) Complexes, Inorg. Chem.,2008,47,1391-1396.
    [52]Young-A Lee, Shin A Kim, Sang Myung Jung, Ok-Sang Jung and Young Hee Oh, A Unique Zigzag Strand of Silver Perchlorate with Bis(3-pyridyl)cyclotetramethylene silane, Bull. Korean Chem. Soc.2004,25,581-583.
    [53]Byung Ⅱ Park, In Sung Chun, Young-A Lee, Ki-Min Park, and Ok-Sang Jung, Supramolecular Framework with Two Different Kinds of Channels via Self-Assembly of 1D Coordination Polymers in a Prismatic Manner, Inorg. Chem.,2006,45, 4310-4312.
    [54]Parbati Sengupta, Hongming Zhang, and David Y Son, Spacer Flexibility in Bis(pyridyl) Ligands:Chelating Organosilicon Pyridylethynyl Ligands, Inorg. Chem., 2004,43,1828-1830.
    [55]Neetu Rani, Parbati Sengupta, Ajai K. Singh, R.J. Butcher, Organosilicon backbone containing pyridyl/quinolyl ligands:Synthesis, complexation reactions and single crystal structures of metallamacrocyclic Pd(Ⅱ) and Cu(Ⅱ) complexes, Polyhedron,2007,26,5477-5483.
    [56]Evgeny V. Dikarev, Vladimir V. Chernyshev, Roman V. Shpanchenko, Alexander S. Filatova and Marina A. Petrukhina, Bulk material vs. single crystal:powder diffraction to the rescue, Dalton Trans.,2004,4120-4123.
    [57]Felipe Garcia, Alexander D. Hopkins, Simon M. Humphrey, Mary McPartlin, Michael C. Rogers and Dominic S. Wright, The first example of a Si-bridged tris(pyridyl) ligand:synthesis and structure of [MeSi(2-C5H4N)3LiX] (X=0.2Br, 0.8Cl), Dalton Trans.,2004,361-362.
    [58]Ok-Sang Jung, Yun Ju Kim, Young-A Lee, Shin Won Kang, and Sung Nak Choi, Tunable Transannular Silver-Silver Interaction in Molecular Rectangles, Cryst. Growth Des.,2004,4,23-24.
    [59]Moon Soon Cha, Byung Il Park, Hyun Ji Kang, Kyung Ho Yoo and Ok-Sang Jung, Doubly Supported Cyclodimer. Structural Features of Copper(II) Nitrate with 1,4-Bis(dimethyl-3-pyridylsilyl)benzene, Bull. Korean Chem. Soc.2007,28,1057-1059.
    [60]Julio Perez and Lucia Riera, Pyrazole Complexes and Supramolecular Chemistry, Eur. J. Inorg. Chem.,2009,4913-4925.
    [61]Eric E P, Daniel Rabinovich, Christopher D. Incarvito, Thomas E. Concolino, and Arnold L. Rheingold, Syntheses and Structures of Methyltris(pyrazolyl)silane Complexes of the Group 6 Metals, Inorg. Chem.,2000,39,1561-1567.
    [62]Lauakia M R, Jamshaid A F, Christopher D I, Arnold L. Rheingold and Daniel Rabinovich, Zinc bis(pyrazolyl)silane complexes, Polyhedron,2000,19,1815-1820.
    [63]Eric E P, Arnold L R, Daniel Rabinovich, Methyltris(pyrazolyl)silane:new tripodal nitrogen-donor ligands, Inorg. Chem. Commun.,1999,2,194-196.
    [64]Robert T. Stibrany, Spencer Knapp, Joseph A. Potenza and Harvey J. Schugar, Product of a DMF Aminalization, Bis[bis(3,5-dimethylpyrazol-1-yl)(dimethylamino) methane]copper(Ⅱ)Perchlorate-Bis(dichloromethane), Inorg. Chem.,1999,38,132-135.
    [65]Cara S. Tredget, Sally C. Lawrence, Benjamin D. Ward, Robert G. Howe, Andrew R. Cowley and Philip Mountford, A Family of Scandium and Yttrium Tris((trimethylsilyl)methyl) Complexes with Neutral N3 Donor Ligands, Organometallics,2005,24,3136-3148
    [66]Douglas D. Klendworth, West Chester, Gregory G. Hlatky, Polymerization system with organosilicon compound, US6093673,2000.
    [67]Gregory G. Hlatky, Transition metal complexes containing neutral, multidentate azacycle ligands, US6384229,2002.
    [68]Yunjun Wu, Shaowu Wang, Xiancui Zhu, Gaosheng Yang, Yun Wei, Lijun Zhang and Hai-bin Song, Synthesis, Characterization, and Catalytic Activity of Rare Earth Metal Amides Supported by a Diamido Ligand with a CH2SiMe2 Link, Inorg. Chem., 2008,47,5503-5511.
    [69]C. N. R. Rao, Srinivasan Natarajan and R. Vaidhyanathan, Metal Carboxylates with Open Architectures, Angew. Chem. Int. Ed.,2004,43,1466-1496.
    [70]Tian-Fu Liu, Jian Lu and Rong Cao, Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands, CrystEngComm,2010,12,660-670.
    [71]Leslie J. Murray, Mircea Dinca and Jeffrey R. Long, Hydrogen storage in metal-organic frameworks, Chem. Soc. Rev.,2009,38,1294-1314.
    [72]Sang Soo Han, Jose L. Mendoza-Cortes and William A. Goddard III, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks, Chem. Soc. Rev.,2009,38,1460-1476.
    [73]Tina Duren, Youn-Sang Bae and Randall Q. Snurr, Using molecular simulation to characterise metal-organic frameworks for adsorption applications, Chem. Soc. Rev., 2009,38,1237-1247.
    [74]Jesse L. C. Rowsell, Andrew R. Millward, Kyo Sung Park, and Omar M. Yaghi, Hydrogen Sorption in Functionalized Metal-Organic Frameworks, J. Am. Chem. Soc., 2004,126,5666-5667.
    [75]Adam L. Grzesiak, Fernando J. Uribe, Nathan W. Ockwig, Omar M. Yaghi and Adam J. Matzger, Polymer-Induced Heteronucleation for the Discovery of New Extended Solids, Angew. Chem. Int. Ed.,2006,45,2553-2556.
    [76]Omar M. Yaghi, Metal-Organic Frameworks:A Tale of Two Entanglements, Nature materials,2007,6,92-93.
    [77]David Britt, David Tranchemontagne, and Omar M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. USA,2008,105,11623-11627.
    [78]Jeffrey R. Long and Omar M. Yaghi, The pervasive chemistry of metal-organic Frameworks, Chem.Soc.Rev.,2009,38,1213-1214.
    [79]Omar M. Yaghi, Michael O'Keeffe, Nathan W. Ockwig, Hee K. Chae, Mohamed Eddaoudi and Jaheon Kim, Reticular Synthesis and the Design of New Materials, Nature,2003,423,705-714.
    [80]Omar M. Yaghi and Qiaowei Li, Reticular Chemistry and Metal-Organic Frameworks for Clean Energy, MRS Bulletin,2009,34,682-690.
    [81]J. R. Phatt and Shelby F. Thames, Organosilicon Compounds. ⅩⅧ. Silicon-Containing Dianhydrides, J. Org. Chem.,1973,35,4271-4274.
    [82]Robert P. Davies, Rob Less, Paul D. Lickiss, Karen Robertson and Andrew J. P.White, Tetravalent Silicon Connectors MenSi(p-C6H4CO2H)4-n (n=0,1,2) for the Construction of Metal-Organic Frameworks, Inorg. Chem.,2008,47,9958-9964.
    [83]Joseph B. Lambert, Zhongqiang Liu, and Chunqing Liu, Metal-Organic Frameworks from Silicon- and Germanium-Centered Tetrahedral Ligands, Organometallics,2008,27,1464-1469.
    [84]Zhongqiang Liu, Charlotte L. Stern, and Joseph B. Lambert, Metal-Organic Frameworks from Dipodal and Tripodal Silicon-Centered Tetrahedral Ligands, Organometallics,2009,28,84-93.
    [85]Robert P. Davies, Rob Less, Paul D. Lickiss, Karen Robertson and Andrew J. P.White, Structural Diversity in Metal-Organic Frameworks Built from Rigid Tetrahedral [Si(p-C6H4CO2)4]4- Struts, Cryst. Growth Des.,2010,10,4571-4581.
    [86]Stephanie E. Wenzel, Michael Fischer, Frank Hoffmann and Michael Froba, Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker-A Promising Material for Hydrogen Storage, Inorg. Chem.,2009,48,6559-6565.
    [87]Chandi Pariya, Yoseph S. Marcos, Yixun Zhang, Frank R. Fronczek and Andrew W. Maverick, Organosilicon-Based Multifunctional β-Diketones and their Rhodium and Iridium Complexes, Organometallics,2008,27,4318-4324.
    [88]Adrien P. Cote and George K.H. Shimizu, The supramolecular chemistry of the sulfonate group in extended solids, Coord. Chem. Rev.,2003,245,49-64.
    [89]Jiwen Cai, Structural chemistry and properties of metal arenesulfonates, Coord. Chem. Rev.,2004,248,1061-1083.
    [90]Hing W. Yim, Kin-Chung Lam, Arnold L. Rheingold and Daniel Rabinovich, Bismuth(Ⅲ) thioether chemistry:synthesis and structure of a coordination polymer derived from BiCl3 and MeSi(CH2SMe)3, Polyhedron,2000,19,849-853.
    [91]Hing W. Yim, Linh M. Tran, Eric E. Pullen, Daniel Rabinovich, Louise M. Liable-Sands, Thomas E. Concolino and Arnold L. Rheingold, One-Dimensional Copper(Ⅰ) Coordination Polymers Based on a Tridentate Thioether Ligand, Inorg. Chem.,1999,38,6234-6239.
    [92]Mathew M. Maye, Sandra C. Chun, Li Han, Daniel Rabinovich and Chuan-Jian Zhong, Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether, J. Am. Chem. Soc.,2002,124,4958-4959
    [93]Mathew M. Maye, Jin Luo, I-Im S. Lim, Li Han, Nancy N. Kariuki, Daniel Rabinovich, Tianbo Liu and Chuan-Jian Zhong, Size-Controlled Assembly of Gold Nanoparticles Induced by a Tridentate Thioether Ligand, J. Am. Chem. Soc.,2003, 125,9906-9907.
    [94]Chinwon Rim, Hongming Zhang and David Y. Son, Silyl-Substituted Thioether Ligands and Their Ag(Ⅰ) Complexes, Inorg. Chem.,2008,47,11993-12003.
    [95]Guo Huang, Chen Yang, Zhengtao Xu, Haohan Wu, Jing Li, Matthias Zeller, Allen D. Hunter, Stephen Sin-Yin Chui and Chi-Ming Che, Shape-Selective Sorption and Fluorescence Sensing of Aromatics in a Flexible Network of Tetrakis[(4-methylthiophenyl)ethynyl]silane and AgBF4, Chem. Mater.2009,21,541-546.
    [96]Masaaki Okazaki, Shin Ohshitanai, Masatoshi Iwata, Hiromi Tobita and Hiroshi Ogino, Synthesis and reactivity of (phosphinoaklyl)silyl complexes, Coord. Chem. Rev.,2002,226,167-178.
    [97]Maravanji S. Balakrishna, P. Chandrasekaran and P. P. George, Coord. Chem. Rev.,2003,241,87-117.
    [98]Thomas G. Gardner and Gregory S. Girolami, Titanium(0) Arene Complexes: Synthesis and X-ray Crystal Structure of [η6-C10H8Ti{tBuSi(CH2PMe2)3}], Angew. Chem. Int. Ed. Engl.1988,27,1693-1695.
    [99]C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phy. Lett.,1987,51,913.
    [100]Shufen Chen, Lingling Deng, Jun Xie, Ling Peng, Linghai Xie, Quli Fan and Wei Huang, Recent Developments in Top-Emitting Organic Light-Emitting Diodes, Adv. Mater.,2010,22,5227-5239.
    [101]Pierre M. Beaujuge and John R. Reynolds, Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices, Chem. Rev.,2010,110,268-320.
    [102]Bodo H. Wallikewitz, Matthias de la Rosa, Jonas H.-W. M. Kremer, Dirk Hertel and Klaus Meerholz, A Lasing Organic Light-Emitting Diode, Adv. Mater.,2010,22, 531-534.
    [103]Jonathan G. C. Veinot and Tobin J. Marks, Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers, Acc. Chem. Res.,2005,38,632643
    [104]Abhishek P. Kulkarni, Christopher J. Tonzola, Amit Babel and Samson A. Jenekhe, Electron Transport Materials for Organic Light-Emitting Diodes, Chem. Mater.,2004,16,4556-4573.
    [105]Paul L. Burn, Shih-Chun Lo and Ifor D. W. Samuel, The Development of Light-Emitting Dendrimers for Displays, Adv. Mater.,2007,19,1675-1688.
    [106]Jianzhao Liu, Jacky W. Y. Lam and Ben Zhong Tang, Aggregation-induced Emission of Silole Molecules and Polymers:Fundamental and Applications, J. Inorg. Organomet. Polym.,2009,19,249-285.
    [107]Yuriy N. Luponosov, Sergei A. Ponomarenko, Nikolay M. Surin, and Aziz M. Muzafarov, Facile Synthesis and Optical Properties of Bithiophenesilane Monodendrons and Dendrimers, Org. Lett.,2008,10,2753-2756.
    [108]Jean Roncali, Philippe Leriche and Antonio Cravino, From One- to Three-Dimensional Organic Semiconductors:In Search of the Organic Silicon?, Adv. Mater.,2007,19,2045-2060.
    [109]Yuriy N. Luponosov, Sergei A. Ponomarenko, Nikolay M. Surin, Oleg V. Borshchev, Elena A. Shumilkina and Aziz M. Muzafarov, First Organosilicon Molecular Antennas, Chem. Mater.,2009,21,447-455.
    [110]Yasuhiro Shirai, Long Cheng, Bo Chen, and James M. Tour, Characterization of Self-Assembled Monolayers of Fullerene Derivatives on Gold Surfaces:Implications for Device Evaluations, J. Am. Chem. Soc.,2006,128,13479-13489.
    [111]Youngmin You, Cheng-Guo An, Deug-Sang Lee, Jang-Joo Kim and Soo Young Park, Silicon-containing dendritic tris-cyclometalated Ir(III) complex and its electro-phosphorescence in a polymer host, J. Mater. Chem.,2006,16,4706-4713.
    [112]Dong-Ren Bai and Suning Wang, Comparative Study on Tetrahedral and Tripodal Luminescent Silane and Methane Compounds with a 2,2'-Dipyridylamino Group, Organometallics,2004,23,5958-5966.
    [113]Xue-Ming Liu, Jianwei Xu, Xuehong Lu and Chaobin He, Novel Glassy Tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as Building Blocks for Efficient and Nonaggregating Blue-Light-Emitting Tetrahedral Materials, Org. Lett.,2005,7,2829-2832.
    [114]Xue-Ming Liu, Tingting Lin, Junchao Huang, Xiao-Tao Hao, Kian Soo Ong, and Chaobin He, Hyperbranched Blue to Red Light-Emitting Polymers with Tetraarylsilyl Cores:Synthesis, Optical and Electroluminescence Properties, and ab Initio Modeling Studies, Macromolecules,2005,38,4157-4168.
    [115]Li-Hsin Chan, Rong-Ho Lee, Chia-Fen Hsieh, Hsiu-Chih Yeh and Chin-Ti Chen, Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials, J. Am. Chem. Soc.,2002,124,6469-6479.
    [116]Warren J. Oldham, Jr., Rene J. Lachicotte and Guillermo C. Bazan, Synthesis, Spectroscopy, and Morphology of Tetrastilbenoidmethanes, J. Am. Chem. Soc.,1998, 120,2987-2988.
    [117]Yi-Yeol Lyu, Jeonghun Kwak, Ohyun Kwon, Soo-Hyoung Lee, Doyun Kim, Changhee Lee and Kookheon Char, Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices, Adv. Mater., 2008,20,2720-2729.
    [118]Yi-Yeol Lyu, Jeonghun Kwak, Woo Sung Jeon, Younghun Byun, Hyo Sug Lee, Doseok Kim, Changhee Lee and Kookheon Char, Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes, Adv. Funct. Mater.,2009,19,420-427.
    [119]Qun Shen, Shanghui Ye, Gui Yu, Ping Lua and Yunqi Liu, Synthesis of tetraarylsilanes and its usage as blue emitters in electroluminescence, Syn. Met.,2008, 158,1054-1058.
    [120]Dong-Ren Bai, Shijin Han, Zheng-Hong Lu and Suning Wang, Bright blue luminescent pyrenyl-containing organosilicon compounds with contrasting charge transport functionality-SiPh2(p-C6H4-pyrenyl)(p-C6H4-N-benzimidazolyl) and SiPh2 (p-C6H4-pyrenyl)(p-C6H4-NPh(1-naph), Can. J. Chem.,2008,86,230-237.
    [121]Li-Hsin Chan, Rong-Ho Lee, Chia-Fen Hsieh, Hsiu-Chih Yeh and Chin-Ti Chen, Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials, J. Am. Chem. Soc.,2002,124,6469-6479.
    [122]Tatsuya Igarashi, Specific silane compounds, method of synthesizing them, luminescent device materials comprising them, and luminescent devices containing such materials, US 6307083,2001.
    [123]Won-Sik Han, Ho-Jin Son, Kyung-Ryang Wee, Kyoung-Tae Min, Soonnam Kwon, Il-Hwan Suh, Seung-Hoon Choi, Dong Hyun Jung and Sang Ook Kang, Silicon-Based Blue Phosphorescence Host Materials:Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(N-Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(N-Carbazolyl)phenyl Numbers, J. Phys. Chem. C,2009,113,19686-19693.
    [124]Min-Ling Hung, Chung-Wen Ko, Tswen-Hsin Liu, Organic electroluminescent devices, US 0115674,2006.
    [125]Jun Ogasawara and Salsuke Watanabe, Organic electroluminescence element and silicon compound, US 0214572,2005.
    [126]Kazumi Nii, Novel indole derivatives, material for light-emitting device and light-emitting device using the same, US 0135167,2004.
    [127]Min-Ling Hung, Silicon compound, organic electroluminescent device and display panel using the same, US 0181200,2006.
    [128]Tatsuya Igarashi and Toshiki Taguchi, Particular silane compounds, luminescent device materials comprising said compounds, and luminescent devices containing said materials, US 6310231,2001.
    [129]Dong-Ren Bai, Xiang-Yang Liu and Suning Wang, Charge-Transfer Emission Involving Three-Coordinate Organoboron:V-Shape versus U-Shape andImpact of the Spacer on Dual Emission and Fluorescent Sensing, Chem. Eur. J.,2007,13,5713-5723.
    [130]Yi Liao, Martha Baskett, Paul M. Lahti and Fernando Palacio, Structure and exchange in silicon-linked tetraradicals, Chem. Commun.,2002,252-253.
    [131]Joji Ohshita, Toshiyuki Iida, Nobuaki Ohta, Kenji Komaguchi, Masaru Shiotani and Atsutaka Kunai, Synthesis of Phenylnitroxides Bridged by an sp3-Linkage, Org. Lett.,2002,4,403-406.
    [132]Carmen Racles and Maria Cazacu, Siloxane-Containing Liquid-Crystalline Supramolecular Polymers:Preparation and Study of Thermotropic Behavior, J. Appl. Poly. Sci.,2008,109,4000-4009.
    [133]Okba Saied, Thierry Maris and James D. Wuest, Deformation of Porous Molecular Networks Induced by the Exchange of Guests in Single Crystals, J. Am. Chem. Soc.,2003,125,14956-14957
    [134]Jean-Hugues Fournier, Thierry Maris, Michel Simard and James D. Wuest, Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetraphenols Derived from Tetraphenylmethane and Tetraphenylsilane, Cryst. Growth Des.,2003,3,535-540.
    [135]Dominic Laliberte, Thierry Maris and James D. Wuest, Molecular tectonics— Use of urethanes and ureas derived from tetraphenylmethane and tetraphenylsilane to build porous chiral hydrogen-bonded networks, Can. J. Chem.,2004,82,386-398.
    [136]Hani M. El-Kaderi, Joseph R. Hunt, Jose L. Mendoza-Cortes, Adrien P. Cote, Robert E. Taylor, Michael O'Keeffe and Omar M. Yaghi, Designed Synthesis of 3D Covalent Organic Frameworks, Science,2007,316,268-272.
    [137]Jean-Hugues Fournier, Thierry Maris, James D. Wuest, Wenzhuo Guo and Elena Galoppini, Molecular Tectonics. Use of the Hydrogen Bonding of Boronic Acids To Direct Supramolecular Construction, J. Am. Chem. Soc.,2003,125,1002-1006.
    [138]Yoshiteru Kawakami, Yoshinobu Sakuma, Takashi Wakuda, Tatsuya Nakai, Masayoshi Shirasaka and Yoshio Kabe, Hydrogen-Bonding 3D Networks by Polyhedral Organosilanols:Selective Inclusion of Hydrocarbons in Open Frameworks, Organometallics,2010,29,3281-3288.
    [1]A. Frenzel, M. Gluth, R. Herbst-Irmer and U. Klingebiel, Indol-1-yl- und pyrrol-1-yl-substituierte verbindungen des siliciums und phosphors, J. Organomet. Chem.,514,281-286.
    [2]L. Birkofer and A. Ritter, The Use of Silylation in Organic Syntheses, Angew. Chem. Internat. Edit.,1965,4,417-429.
    [3]Shelton Bank, Clifford L. Ehrlich, Mark Mazur, and Jon A. Zubieta, Substituent Effect on the Electrochemical Oxidation of Trityl Anions.2. Effect of an Electron-Withdrawing Group, J. Org. Chem.1981,46,1243-1247.
    [4]Takatsugu hi, Andrew S. Ichimura, Noboru Koga and Hiizu Iwamura, Magnetic Interaction between Two Triplet Nitrene Units through Diphenylsilane and 1,2-Diphenyldisilane Couplers, J. Am. Chem. Soc.,1993,115,8928-8932.
    [5]Giseop Kwak and Toshio Masuda, Poly(silyleneethynylenephenylene) and Poly (silylenephenyleneethynylenephenylene)s:Synthesis and Photophysical Properties Related to Charge Transfer, Macromolecules,2002,35,4138-4142.
    [6]Jean-Hugues Fournier, Xin Wang and James D. Wuest, Derivatives of tetra-phenylmethane and tetraphenylsilane:Synthesis of new tetrahedral building blocks for molecular construction, Can. J. Chem.,2003,81,376-380.
    [7]Xue-Ming Liu, Chaobin He, Xiao-Tao Hao, Li-Wei Tan, Yanqing Li and K. S. Ong, Hyperbranched Blue-Light-Emitting Alternating Copolymers of Tetrabromoaryl-methane/Silane and 9,9-Dihexylfluorene-2,7-diboronic Acid, Macromolecules,2004, 37,5965-5970.
    [8]D. E. Fenton and J. J. Zuckerman, Nuclear Magnetic Resonance Chemical Shifts of the Acid Protons in Silyl-Substituted Benzoic Acids and Phenols and the Question of (π→d)→π Interaction in the Silicon-Phenyl Bond, Inorg. Chem.,1968,7,1324- 1326.
    [9]Jean-Hugues Fournier, Thierry Maris, Michel Simard and James D. Wuest, Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetraphenols Derived from Tetraphenylmethane and Tetraphenylsilane, Cry. Growth Des.,2003,3,535-540.
    [10]Dennis Troegel, Frank Moller, Christian Burschka and Reinhold Tacke, 4-((2-Halogeno-5-pyridyl)dimethylsilyl)phenylboronic Acids:New Potential Building Blocks for the Synthesis of Silicon-Containing Drugs, Organometallics,2009,28, 3218-3224.
    [11]Maaike Wander, Peter J. C. Hausoul, Leo A. J. M. Sliedregt, Bart J. van Steen, Gerard van Koten and Robertus J. M. Klein Gebbink, Synthesis of Polyaryl Rigid-Core Carbosilane Dendrimers for Supported Organic Synthesis, Organometallics,2009,28,4406-4415.
    [12]Xiaobin Deng and Chengzhi Cai, Synthesis of tripod-shaped oligo(phenylene)s with multiple ethenyl groups at the bases for chemisorption on hydrogen-terminated silicon surfaces, Tetra. Lett,2003,44,815-817.
    [1]Elizabeth A. Lewis, John R. Lindsay Smith, Paul H. Walton, Stephen J. Archibald, Simon P. Foxon and Gerard M. P. Giblin, Tuning the metal-based redox potentials of manganese cis,cis-1,3,5-triaminocyclohexane complexes, J. Chem. Soc., Dalton Trans.,2001,1159-1161.
    [2]Taihei Kawakami and Takashi Kato, Use of Intermolecular Hydrogen Bonding between Imidazolyl Moieties and Carboxylic Acids for the Supramolecular Self-Association of Liquid-Crystalline Side-Chain Polymers and Networks, Macromolecules,1998,31,4475-4479.
    [3]Katalin Osz, Gabor Lente and Csilla Kallay, New Protonation Microequilibrium Treatment in the Case of Some Amino Acid and Peptide Derivatives Containing a Bis(imidazolyl)methyl Group, J. Phys. Chem. B,2005,109,1039-1047.
    [4]Chih-Hsin Chen, Wei-Sheng Huang, Mei-Yi Lai, Wen-Cheng Tsao, Jiann T. Lin, Ying-Hsien Wu, Tung-Huei Ke, Li-Yin Chen and Chung-Chih Wu, Versatile, Benzimidazole/Amine-Based Ambipolar Compounds for Electroluminescent Applications:Single-Layer, Blue, Fluorescent OLEDs, Hosts for Single-Layer, Phosphorescent OLEDs, Adv. Funct. Mater.,2009,19,2661-2670.
    [5]Zhangjian Fang, Shimin Wang, Lei Zhao, Zuxun Xu, Jun Ren, Xianbao Wang and Qiongfeng Yang, Synthesis and characterization of blue light emitting materials containing imidazole, Mater. Chem. Phy.,2008,107,305-309.
    [6]Dong-Ren Bai, Shijin Han, Zheng-Hong Lu and Suning Wang, Bright blue luminescent pyrenyl-containing organosilicon compounds with contrasting charge transport functionality-SiPh2(p-C6H4-pyrenyl)(p-C6H4-N-benzimidazolyl) and SiPh2 (p-C6H4-pyrenyl)(p-C6H4-NPh(1-naph), Can. J. Chem.,2008,86,230-237.
    [7]Wade White, Zachary M. Hudson, Xiaodong Feng, Sijin Han, Zheng-Hong Lu and Suning Wang, Linear and star-shaped benzimidazolyl derivatives:synthesis, photophysical properties and used as highly efficient electron transport materials in OLEDs. Dalton Trans.,2010,39,892-899.
    [8]Xiao-Bing Zhang, Zhi-Xiang Han, Zheng-Hui Fang, Guo-Li Shen and Ru-Qin Yu, 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode, Anal. Chim. Acta,2006,562,210-215.
    [9]Hans Toni Ratte, Bioaccumulation and toxicity of silver compounds:A review Environ. Toxicol. Chem.,1999,18,89-108.
    [10]Anders W. Andren and David E. Armstrong, The environmental chemistry and toxicology of silver, Environ. Toxicol. Chem.,1999,18,1-2.
    [11]Alan Ceresa, Aleksandar Radu, Shane Peper, Eric Bakker and Erno Pretsch, Rational Design of Potentiometric Trace Level Ion Sensors. A Ag+-Selective Electrode with a 100 ppt Detection Limit, Anal. Chem.,2002,74,4027-4036.
    [12]Keiichi Kimura, Setsuko Yajima, Kenta Tatsumi, Masaaki Yokoyama and Masatoshi Oue, Silver Ion-Selective Electrodes Using π-Coordinate Calix[4]arene Derivatives as Soft Neutral Carriers, Anal. Chem.,2000,72,5290-5294.
    [13]Xianshun Zeng, Linhong Weng, Langxing Chen, Xuebing Leng, Hongfang Ju, Xiwen He and Zheng-Zhi Zhang, The synthesis of some pyridyl functionalized calix[4]arenes as the sensor molecule for silver ion-selective electrodes, J. Chem. Soc., Perkin Trans.2,2001,545-549.
    [14]Valeria Amendola, David Esteban-Gomez, Luigi Fabbrizzi, Maurizio Licchelli, Enrico Monzani and Felix Sancenon, Metal-Enhanced H-Bond Donor Tendencies of Urea and Thiourea toward Anions:Ditopic Receptors for Silver(Ⅰ) Salts, Inorg. Chem., 2005,44,8690-8698.
    [15]Lei Liu, Deqing Zhang, Guanxin Zhang, Junfeng Xiang and Daoben Zhu, Highly Selective Ratiometric Fluorescence Determination of Ag+ Based on a Molecular Motif with One Pyrene and Two Adenine Moieties, Org. Lett.,2008,10,2271-2274.
    [16]Dengxu Wang, Haiyan He, Xiaohui Chen, Shengyu Feng, Yuzhong Niu and Daofeng Sun, A 3D porous metal-organic framework constructed of 1D zigzag and helical chains exhibiting selective anion exchange, CrystEngComm,2010,12,1041-1043.
    [17]程能林,溶剂手册,化学工业出版社,2002,p 844.
    [18]Jason P. Cross, Miriam Lauz, Paul D. Badger and Stephane Petoud, Polymetallic Lanthanide Complexes with PAMAM-Naphthalimide Dendritic Ligands: Luminescent Lanthanide Complexes Formed in Solution, J. Am. Chem. Soc.,2004, 126,16278-16279.
    [19]Stephen R. Meech and David Phillips, Photophysics of some common fluorescence standards, J. Photochem.,1983,23,193-217.
    [20]Henri-Jean Cristau, Pascal P. Cellier, Jean-Francis Spindler and Marc Taillefer, Highly Efficient and Mild Copper-Catalyzed N- and C-Arylations with Aryl Bromides and Iodides, Chem. Eur. J.,2004,10,5607-5622.
    [21]Artis Klapars, Jon C. Antilla, Xiaohua Huang and Stephen L. Buchwald, A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles, J. Am. Chem. Soc.,2001,123,7727-7729.
    [22]Jean-Pierre Corbet and Gerard Mignani, Selected Patented Cross-Coupling Reaction Technologies, Chem. Rev.,2006,106,2651-2710.
    [23]Jian Fan, Wei-Yin Sun, Taka-aki Okamura, Wen-Xia Tang and Norikazu Ueyama, Novel Metal-Organic Frameworks with Specific Topology from New Tripodal Ligands:1,3,5-Tris(1-imidazolyl)benzene and 1,3-Bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene, Inorg. Chem.,2003,42,3168-3175.
    [24]Thomas Jerphagnon, Gerard P. M. van Klink, Johannes G. de Vries and Gerard van Koten, Aminoarenethiolate-Copper(I)-Catalyzed Amination of Aryl Bromides, Org. Lett.,2005,7,5241-5244.
    [25]Florian Monnier and Marc Taillefer, Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions:Copper Makes a Difference, Angew. Chem. Int. Ed.,2008,47, 3096-3099.
    [26]Hui Zhang, Qian Cai and Dawei Ma, Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles, J. Org. Chem.,2005,70,5164-5173
    [27]杜作栋,陈剑华,贝小来,周重光,有机硅化学,高等教育出版社,1990,p61.
    [28]Shufen Chen, Lingling Deng, Jun Xie, Ling Peng, Linghai Xie, Quli Fan and Wei Huang, Recent Developments in Top-Emitting Organic Light-Emitting Diodes, Adv. Mater.,2010,22,5227-5239.
    [29]Dong-Ren Bai and Suning Wang, Comparative Study on Tetrahedral and Tripodal Luminescent Silane and Methane Compounds with a 2,2'-Dipyridylamino Group, Organometallics,2004,23,5958-5966.
    [30]Xue-Ming Liu, Jianwei Xu, Xuehong Lu and Chaobin He, Novel Glassy Tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as Building Blocks for Efficient and Nonaggregating Blue-Light-Emitting Tetrahedral Materials, Org. Lett.,2005,7,2829-2832.
    [31]Li-Hsin Chan, Rong-Ho Lee, Chia-Fen Hsieh, Hsiu-Chih Yeh and Chin-Ti Chen, Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials, J. Am. Chem. Soc.,2002,124,6469-6479.
    [32]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.04 2003 (Gaussian, Inc.:Pittsburgh, PA).
    [33]Abhishek P. Kulkarni, Christopher J. Tonzola, Amit Babel and Samson A. Jenekhe, Electron Transport Materials for Organic Light-Emitting Diodes, Chem. Mater.,2004,16,4556-4573.
    [34]Corey Seward, Jacquelyn Chan, Datong Song and Suning Wang, Anion Dependent Structures of Luminescent Silver(I) Complexes, Inorg. Chem.,2003,42, 1112-1120.
    [35]P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. Paris,1928,9,113-203.
    [36]H. A. Benesi and J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc.,1949,71, 2703-2707.
    [1]Chih-Hsin Chen, Wei-Sheng Huang, Mei-Yi Lai, Wen-Cheng Tsao, Jiann T. Lin, Ying-Hsien Wu, Tung-Huei Ke, Li-Yin Chen and Chung-Chih Wu, Versatile, Benzimidazole/Amine-Based Ambipolar Compounds for Electroluminescent Applications:Single-Layer, Blue, Fluorescent OLEDs, Hosts for Single-Layer, Phosphorescent OLEDs, Adv. Funct. Mater.,2009,19,2661-2670.
    [2]Wade White, Zachary M. Hudson, Xiaodong Feng, Sijin Han, Zheng-Hong Lu and Suning Wang, Linear and star-shaped benzimidazolyl derivatives:synthesis, photophysical properties and used as highly efficient electron transport materials in OLEDs. Dalton Trans.,2010,39,892-899.
    [3]Wen-Yi Hung, Liang-Chen Chi, Wei-Jiun Chen, You-Ming Chen, Shu-Hua Chou and Ken-Tsung Wong, A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow-green electrophosphorescence, and two-color-based white OLEDs, J. Mater. Chem.,2010,20,10113-10119.
    [4]Mei-Yi Lai, Chih-Hsin Chen, Wei-Sheng Huang, Jiann T. Lin, Tung-Huei Ke, Li-Yin Chen, Ming-Han Tsai and Chung-Chih Wu, Benzimidazole/Amine-Based Compounds Capable of Ambipolar Transport for Application in Single-Layer Blue-Emitting OLEDs and as Hosts for Phosphorescent Emitters, Angew. Chem. Int. Ed.,2008,47,581-585.
    [5]Smaail Radi, Abdelkrim Ramdani, Yahya Lekchiri, Michel Morcellet, Gregorio Crini and Ludovic Janus, New tetrapyrazolic macrocycle. Synthesis and preliminary use in metal ion extraction, Tetrahedron,2004,60,939-942.
    [6]Joanna E. Cosgriff and Glen B. Deacon, Another Surprise from Pyrazolate Ligands, Angew. Chem. Int. Ed.,1998,37,286-287.
    [7]Tao Wu, Dan Li and Seik Weng Ng, Solvent control in the hydrothermal synthesis of two copper(I) iodide-benzimidazole coordination polymers, CrystEngComm,2005, 7,514-518.
    [8]Tao Wu, Mian Li, Dan Li and Xiao-Chun Huang, Anionic CunIn Cluster-Based Architectures Induced by In Situ Generated N-Alkylated Cationic Triazolium Salts, Cryst. Growth Des.,2008,8,568-574.
    [9]Jens Hunger, Harald Krautscheid and Joachim Sieler, Hydrothermal Synthesis and Structure of Coordination Polymers by Combination of Bipyrazole and Aromatic Dicarboxylate Ligands, Cryst. Growth Des.,2009,9,4613-4625.
    [10]Daniel L. Reger, Elizabeth A. Foley and Mark D. Smith, Structural Impact of Multitopic Third-Generation Bis(l-pyrazolyl)methane Ligands:Double, Mononuclear Metallacyclic Silver(I) Complexes, Inorg. Chem.,2010,49,234-242.
    [11]Liang Zhao and Thomas C. W. Mak, Assembly of Silver(Ⅰ) Two- and Three-Dimensional Coordination Networks with Complementary Tridentate Heteroaryl Ethynide Ligands, Inorg. Chem.,2009,48,6480-6489.
    [12]Dong-Ren Bai, Shijin Han, Zheng-Hong Lu and Suning Wang, Bright blue luminescent pyrenyl-containing organosilicon compounds with contrasting charge transport functionality-SiPh2(p-C6H4-pyrenyl)(p-C6H4-N-benzimidazolyl) and SiPh2 (p-C6H4-pyrenyl)(p-C6H4-NPh(1-naph), Can. J. Chem.,2008,86,230-237.
    [13]Robert T. Stibrany, Spencer Knapp, Joseph A. Potenza and Harvey J. Schugar, Product of a DMF Aminalization, Bis[bis(3,5-dimethylpyrazol-1-yl)(dimethylamino) methane]copper(Ⅱ)Perchlorate-Bis(dichloromethane), Inorg. Chem.,1999,38,132-135.
    [14]Cara S. Tredget, Sally C. Lawrence, Benjamin D. Ward, Robert G. Howe, Andrew R. Cowley and Philip Mountford, A Family of Scandium and Yttrium Tris((trimethylsilyl)methyl) Complexes with Neutral N3 Donor Ligands, Organometallics,2005,24,3136-3148.
    [15]程能林,溶剂手册,化学工业出版社,2002.
    [16]Jason P. Cross, Miriam Lauz, Paul D. Badger and Stephane Petoud, Polymetallic Lanthanide Complexes with PAMAM-Naphthalimide Dendritic Ligands: Luminescent Lanthanide Complexes Formed in Solution, J. Am. Chem. Soc.,2004, 126,16278-16279.
    [17]Stephen R. Meech and David Phillips, Photophysics of some common fluorescence standards, J. Photochem.,1983,23,193-217.
    [18]Won-Sik Han, Ho-Jin Son, Kyung-Ryang Wee, Kyoung-Tae Min, Soonnam Kwon, Il-Hwan Suh, Seung-Hoon Choi, Dong Hyun Jung and Sang Ook Kang, Silicon-Based Blue Phosphorescence Host Materials:Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(N-Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(N-Carbazolyl)phenyl Numbers, J. Phys. Chem. C,2009,113,19686-19693.
    [19]Jun Ogasawara and Salsuke Watanabe, Organic electroluminescence element and silicon compound, US 0214572,2005.
    [1]Haiyan He, David Collins, Fangna Dai, Xiaoliang Zhao, Guoqing Zhang, Huiqing Ma and Daofeng Sun, Construction of Metal-Organic Frameworks with 1D Chain, 2D Grid, and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates, Cryst. Growth Des.,2010,10,895-902.
    [2]Haiyan He, Daqiang Yuan, Huiqing Ma, Daofeng Sun, Guoqing Zhang and Hong-Cai Zhou, Control over Interpenetration in Lanthanide-Organic Frameworks: Synthetic Strategy and Gas-Adsorption Properties, Inorg. Chem.,2010,49,7605-7607.
    [3]Shiyong Zhang, Jingbo Lan, Zhihua Mao, Rugang Xie and Jingsong You, Crystal Water of Cadmium Acetate-Dependent Formation of One-Dimensional Channel Structure Based on 4,4'-bis(1-Imidazolyl)biphenyl, Cryst. Growth Des.,2008,8, 3134-3136.
    [4]Chun-Long Chen, Andrea M. Goforth, Mark D. Smith, Cheng-Yong Su and Hans-Conrad zur Loye, Non-Interpenetrated Square-Grid Coordination Polymers Synthesized Using an Extremely Long N,N'-Type Ligand, Inorg. Chem.,2005,44, 8762-8769.
    [5]Li-Li Wen, Feng Wang, Juan Feng, Kang-Le Lv, Cheng-Gang Wang and Dong-Feng Li, Structures, Photoluminescence, and Photocatalytic Properties of Six New Metal-Organic Frameworks Based on Aromatic Polycarboxylate Acids and Rigid Imidazole-Based Synthons, Cryst. Growth Des.,2009,9,3581-3589.
    [6]Lai-Ping Zhang, Jian-Fang Ma, Jin Yang, Ying-Ying Liu and Guo-Hua Wei, 1D, 2D, and 3D Metal-Organic Frameworks Based on Bis(imidazole)Ligands and Polycarboxylates:Syntheses, Structures, and Photoluminescent Properties, Cryst. Growth Des.,2009,9,4660-4673.
    [7]Guan-Cheng Xu, Yu-Jie Ding, Taka-aki Okamura, Yong-Qing Huang, Zheng-Shuai Bai, Qing Hua, Guang-Xiang Liu, Wei-Yin Sun and Norikazu Ueyama, Coordination Polymers with Varied Metal Centers and Flexible Tripodal Ligand 1,3,5-Tris(imidazol-l-ylmethyl)benzene:Synthesis, Structure, and Reversible Anion Exchange Property, Cryst. Growth Des.,2009,9,395-403.
    [8]A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem.,1964,68,441-451.
    [9]Sota Sato, Yoshitaka Ishido and Makoto Fujita, Remarkable Stabilization of M12L24 Spherical Frameworks through the Cooperation of 48 Pd(II)-Pyridine Interactions, J. Am. Chem. Soc.,2009,131,6064-6065.
    [10]R. Robson, Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs):a personal view, Dalton. Trans.,2008,5113
    [11]Jian-Rong Li, Daren J. Timmons and Hong-Cai Zhou, Interconversion between Molecular Polyhedra and Metal-Organic Frameworks, J. Am. Chem. Soc.,2009,131, 6368-6369.
    [12]Chullikkattil P. Pradeep and Leroy Cronin, Supramolecular coordination chemistry, Annu. Rep. Prog. Chem., Sect. A:Inorg. Chem.,2007,103,287-332.
    [13]C. N. R. Rao, Srinivasan Natarajan and R. Vaidhyanathan, Metal Carboxylates with Open Architectures, Angew. Chem. Int. Ed.,2004,43,1466-1496.
    [14]Shengqian Ma, Daofeng Sun, Paul M. Forster, Daqiang Yuan, Wenjuan Zhuang, Yu-Sheng Chen, John B. Parise and Hong-Cai Zhou, A Three-Dimensional Porous Metal-Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features, Inorg. Chem.,2009,48,4616-4618.
    [15]Xin-Long Wang, Chao Qin, En-Bo Wang, Yang-Guang Li, Zhong-Min Su, Lin Xu and Lucia Carlucci, Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting, Angew. Chem. Int. Ed.,2005,44, 5824-5827.
    [16]Stuart R. Batten, Glorious uncertainty—challenges for network design, J. Solid State Chem.,2005,178,2475-2479.
    [17]Stefano Banfi, Lucia Carlucci, Enrico Caruso, Gianfranco Ciani and Davide M. Proserpio, Using long bis(4-pyridyl) ligands designed for the self-assembly of coordination frameworks and architectures, J. Chem. Soc., Dalton Trans.,2002,2714-2721.
    [18]Eun Young Lee and Myunghyun Paik Suh, A Robust Porous Material Constructed of Linear Coordination Polymer Chains:Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration, Angew. Chem. Int. Ed.,2004,43,2798-2801.
    [19]Shun-Li Li, Ya-Qian Lan, Jian-Fang Ma, Yao-Mei Fu, Jin Yang, Guang-Ju Ping, Jie Liu and Zhong-Min Su, Structures and Luminescent Properties of a Series of Zinc(II) and Cadmium(II) 4,4'-Oxydiphthalate Coordination Polymers with Various Ligands Based on Bis(pyridyl imidazole) under Hydrothermal Conditions, Cryst. Growth Des.,2008,8,1610-1616.
    [20]Kai-Ju Wei, Jia Ni, Jian Gao, Yangzhong Liu and Qing-Liang Liu, Self-Assembly of Silver(I) Coordination Polymers from AgX (X=BF4-, ClO4-CF3COO-, and SO3CF3-) and a Rigid Bent 3,6-Dicyano-9-phenylcarbazole Ligand: The Templating Effect of Anions, Eur. J. Inorg. Chem.,2007,3868-3880.
    [21]Owen R. Evans and Wenbin Lin, Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks, Acc. Chem. Res.,2002,35,511-522.
    [22]Corey Seward, Jacquelyn Chan, Datong Song and Suning Wang, Anion Dependent Structures of Luminescent Silver(I) Complexes, Inorg. Chem.,2003,42, 1112-1120.
    [1]Danil N. Dybtsev, Maxim P. Yutkin, Denis G Samsonenko, Vladimir P. Fedin, Alexey L. Nuzhdin, Andrey A. Bezrukov, Konstantin P. Bryliakov, Evgeniy P. Talsi, Rodion V. Belosludov, Hiroshi Mizuseki, Yoshiyuki Kawazoe, Oleg S. Subbotin and Vladimir R. Belosludov, Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host-Guest Interactions, Chem. Eur. J.,2010,16,10348-10356.
    [2]Xiang Lin, Irvin Telepeni, Alexander J. Blake, Anne Dailly, Craig M. Brown, Jason M. Simmons, Marco Zoppi, Gavin S. Walker, K. Mark Thomas, Timothy J. Mays, Peter Hubberstey, Neil R. Champness and Martin Schroder, High Capacity Hydrogen Adsorption in Cu(Ⅱ) Tetracarboxylate Framework Materials:The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites, J. Am. Chem. Soc., 2009,131,2159-2171.
    [3]Rongming Wang, Jian Zhang and Lijuan Li, Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks:Structures, Magnetic and Luminescent Properties, Inorg. Chem.,2009, 48,7194-7200.
    [4]Ze Chang, Ai-Shun Zhang, Tong-Liang Hu and Xian-He Bu, ZnⅡ Coordination Poylmers Based on 2,3,6,7-Anthracenetetracarboxylic Acid:Synthesis, Structures, and Luminescence Properties, Cryst. Growth Des.,2009,9,4840-4846.
    [5]Motkuri Radha Kishan, Jian Tian, Praveen K. Thallapally, Carlos A. Fernandez, Scott J. Dalgarno, John E. Warren, B. Peter McGrail and Jerry L. Atwood, Flexible metal-organic supramolecular isomers for gas separation, Chem. Commun.,2010,46, 538-540.
    [6]Guillermo A. Santillan and Carl J. Carrano, Self-Assembly of Silver(Ⅰ) Coordination Polymers Formed through Hydrogen Bonding with Ditopic Heteroscorpionate Ligands, Cryst. Growth Des.,2009,9,1590-1598.
    [7]Zhao-Peng Deng, Li-Hua Huo, Huan-Yu Wang, Shan Gao and Hui Zhao, A series of three-dimensional lanthanide metal-organic frameworks with biphenylethene-4,4'-dicarboxylic acid:Hydrothermal syntheses and structures, CrystEngComm,2010,12, 1526-1535.
    [8]Hailian Li, Charles E. Davis, Thomas L. Groy, Douglas G. Kelley and O. M. Yaghi, Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC=1,4-Benzenedicarboxylate), J. Am. Chem. Soc.,1998, 120,2186-2187.
    [9]Hailian Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework, Nature,1999, 402,276-279.
    [10]D. T. Vodak, M. E. Braun, J. Kim, M. Eddaoudi and O. M. Yaghi, Metal-Organic Frameworks Constructed from Pentagonal Antiprismatic and Cuboctahedral Secondary Building Units, Chem. Commun.,2001,2534-2535.
    [11]R. P. Davies, R. J. Less, P. D. Lickiss, K. Robertson, and A. J. P. White, Tetravalent Silicon Connectors MenSi(p-C6H4CO2H)4-n (n=0,1,2) for the Construction of Metal-Organic Frameworks, Inorg. Chem.,2008,47,9958-9964.
    [12]Joseph B. Lambert, Zhongqiang Liu, and Chunqing Liu, Metal-Organic Frameworks from Silicon- and Germanium-Centered Tetrahedral Ligands, Organometallics,2008,27,1464-1469.
    [13]Zhongqiang Liu, Charlotte L. Stern, and Joseph B. Lambert, Metal-Organic Frameworks from Dipodal and Tripodal Silicon-Centered Tetrahedral Ligands, Organometallics 2009,28,84-93.
    [14]Robert P. Davies, Rob Less, Paul D. Lickiss, Karen Robertson and Andrew J. P.White, Structural Diversity in Metal-Organic Frameworks Built from Rigid Tetrahedral [Si(p-C6H4CO2)4]4- Struts, Cryst. Growth Des.,2010,10,4571-4581.
    [15]Stephanie E. Wenzel, Michael Fischer, Frank Hoffmann and Michael Froba, Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker-A Promising Material for Hydrogen Storage, Inorg. Chem.,2009,48,6559-6565.
    [16]Maaike Wander, Peter J. C. Hausoul, Leo A. J. M. Sliedregt, Bart J. van Steen, Gerard van Koten and Robertus J. M. Klein Gebbink, Synthesis of Polyaryl Rigid-Core Carbosilane Dendrimers for Supported Organic Synthesis, Organometallics,2009,28,4406-4415.
    [17]Xiaoliang Zhao, Haiyan He, Fangna Dai, Daofeng Sun and Yanxiong Ke, Supramolecular Isomerism in Honeycomb Metal-Organic Frameworks Driven by CH…π Interactions:Homochiral Crystallization from an Achiral Ligand through Chiral Inducement, Inorg. Chem.,2009,49,8650-8652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700