用户名: 密码: 验证码:
二苯并噻吩单加氧酶催化特性及其催化吲哚合成靛类化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物脱硫的“4S”途径中,有4个酶参与,其中二苯并噻吩单加氧酶(Dibenzothiophene monooxygenase,DszC)是该途径第一个起作用的酶,连续两步氧化二苯并噻吩(Dibenzothiophene,DBT)生成二苯并噻吩砜(Dibenzothiophene sulfone,DBTO_2)。DszC活力的发挥需要NADH∶黄素氧化还原酶(NADH∶flavin oxidoreductase,DszD)为其提供还原黄素。DszC和DszD构成黄素依赖型双组分单加氧酶体系。DszC是该体系的单加氧酶组分,DszD是该体系的还原酶组分。黄素依赖型双组分单加氧酶体系的单加氧酶组分一般是黄素专一性的,一些酶专一性利用FMNH_2,另外一些酶则是专一性利用FADH_2。既能够利用FMNH_2又利用FADH_2的单加氧酶组分是非常稀少的,目前只有两个单加氧酶组分报道有此能力。一个是Acinetobacter baumannii的p-羟基苯乙酸羟化酶(p-Hydroxyphenylacetate hydroxylase)的C_2组分,另一个是Streptomycesviridifacienshave MG456-hF10的异丁胺N-羟基化酶(IsobutylamineN-hydroxylase)。DszC利用黄素的专一性尚未明确,该酶是否能利用FADH_2尚无确切结论。此外,黄素依赖型双组分单加氧酶体系也是体内活性氧的重要来源,过量活性氧的存在会对菌体造成毒害,因而抗氧化蛋白的表达对保持细胞内活性氧的平衡和细胞的正常活力有重要意义。目前尚无与“4S”途径脱硫相关的抗氧化蛋白的报道。生物降解和生物催化互相关联,DszC的底物谱不仅限于DBT类化合物,该酶在生物催化领域的应用潜力尚需挖掘。
     本实验室长期从事生物脱有机硫的研究,筛选到多株有价值的脱硫菌株。本文以来自一株嗜热脱硫菌Mycobacterium goodii X7B的DszC为研究对象,详细研究了该单加氧酶对还原黄素利用的特点及黄素对酶活力的影响。考察了多株菌株中脱硫基因的表达与菌体的过氧化氢酶、超氧化物歧化酶表达的关系。探讨了DszC在生物催化吲哚羟基化从而合成靛类化合物中应用的潜力。
     从一株嗜热脱硫菌M.goodii X7B克隆了dszC基因,并在大肠杆菌中大量表达后进行纯化,获得了在SDS-PAGE电泳上表现为单一条带(45 kDa)的纯酶。全波长扫描表明该酶在280 nm处有明显光吸收,在300-700 nm没有光吸收,说明该酶不结合血红素或黄素。通过使用既能催化FMN还原又能催化FAD还原的DszD,证明DszC既能够使用FMNH_2,也能使用FADH_2作为底物催化DBT生成DBTO_2。DszC的活力受到黄素种类、浓度、DszC与DszD之比的影响。使用FMNH_2时的DszC比活力比使用FADH_2时的比活力高,无论向DszCD的耦联体系中添加FMN或FAD,低浓度的黄素都会增强酶活力,但是高浓度的黄素强烈抑制DszC的活力。在DszCD耦联体系发挥作用时,还原态的黄素需要从DszD传递到DszC,在这个传递过程中,还原态黄素容易被自氧化,自氧化的发生削弱了流向DszC的还原态黄素,同时还原态黄素自氧化产生的大量过氧化氢会使DszC和DszD失活,造成活力下降。提高黄素的浓度会加强这种自氧化作用,提高DszC的比例在一定程度上可以缓解这种自氧化造成的活力下降,通过向DszCD体系中添加过氧化氢酶及时移走过氧化氢,可以将DszC的活力提高一倍。
     研究了原始脱硫菌株和基因工程菌株中脱硫基因表达和超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化氢酶(Catalase)表达之间的关系。分别使用Na_2SO_4、二甲基亚砜(Dimethyl sulfoxide,DMSO)和DBT作为唯一硫源,考察原始脱硫菌中SOD表达图谱的变化。在红平红球菌Rhodococcus erythropolis1awq中,发现了一个和脱硫基因共同表达的超氧化物歧化酶,该诱导型酶在其他几株原始脱硫菌株中不存在。目前,还没有关于和脱硫基因共表达的SOD的报道。测定原始脱硫菌株和基因工程菌中过氧化氢酶活力的变化,发现脱硫基因的异源表达会造成宿主菌自身的过氧化氢酶活力严重下降,但是在原始脱硫菌株中没有这种情况发生。
     最近十年,研究人员已经发现了大量的黄素依赖型单加氧酶。这些单加氧酶可以高效而专一性氧化有机化合物,而且这类氧化反应通常难以用化学方法催化。然而,到目前为止,科研人员只研究了少数几种单加氧酶在催化合成中的应用。造成这种状况的主要原因有两个:单加氧酶难以表达和分离;另一个原因就是这些单加氧酶需要昂贵的NAD(P)H,不能以化学计量添加。为此,从枯草芽孢杆菌168菌株克隆葡萄糖脱氢酶(Glucose dehydrogenase,GDH)基因转入大肠杆菌大量表达。利用从大肠杆菌纯化得到的GDH构建了NADH的再生体系,经证明该体系可以代替NADH的直接加入,为DszCD耦联体系提供源源不断的NADH来催化DBT的氧化。该项结果为DszC用于生物催化奠定了基础。
     DszC可以催化吲哚生成被广泛应用的蓝色染料——靛蓝,该化合物具有重要的工业应用价值。以吲哚作为底物,研究了GDH的加入和DszC的催化活力之间的关系。GDH加入量的提高可以为DszCD体系提供在单位时间内提供更多的NADH,增强DszCD的表观催化能力,但是GDH的加入量仍然需要和DszD的活力保持一个平衡。GDH提供的NADH可以增强DszD的催化能力,体系中产生了更多的FMNH_2,FMNH_2固然可以增加DszC的活力,然而FMNH_2的增加也会导致其自氧化的增强,并最终导致DszCD催化体系活力的下降。该辅因子再生体系的建立为利用黄素依赖型双组分单加氧酶进行体外催化奠定了基础。
     全细胞催化体系可以减少还原黄素自氧化对催化活力的影响,提高催化效率,因此研究了重组大肠杆菌全细胞催化吲哚合成靛蓝的应用潜力。将DszD和DszC共表达可以大大提高细胞催化吲哚羟基化生成靛蓝的能力,但是在此基础上再共表达GDH则会削弱DszCD的表达,从而使细胞的催化能力下降。研究表明,当菌体生长至指数生长中期,加入1 mM IPTG,转入27℃继续培养8 h后收集细胞,可以得到催化能力最高的菌体。转化反应适宜在pH 6-7之间进行,增高pH会降低靛蓝产量,可能是影响了中间体向靛蓝的转化。细胞浓度对于终产物的浓度影响较大,控制装液量为反应器体积的20%时,理想的细胞浓度为OD_(600)在20左右。在1-4 mM范围内增加吲哚的浓度可以提高靛蓝的浓度,但是相对于底物的转化率则在降低,更高浓度的吲哚导致靛蓝浓度降低大幅降低。这可能是吲哚破坏细胞膜造成的,可以考虑使用有机溶剂耐受菌株作为宿主来进行该催化反应。
     在重组大肠杆菌全细胞催化吲哚过程中检测到一个紫红色物质,初步鉴定为靛玉红。靛玉红已被证明是有效的癌症治疗药物,多项研究表明该化合物在诸多疾病的治疗中都能起到作用,因而靛玉红的规模生产具有重要意义,通过取代基的变化,可以制作更适合药用的靛玉红类化合物。实验证明,表达DszC的全细胞也能够以多种5-位取代吲哚作为底物,生成蓝色和红色化合物,推测为相应的靛蓝和靛玉红取代物,说明DszC和表达DszC的全细胞在催化合成靛玉红类化合物中具有很大的应用潜力。
Four enzymes are involved in the biocatalytic desulfurization via the "4S" pathway.Dibenzothiophene monooxygenase initiates the desulfurization by catalyzing dibenzothiophene(DBT) to dibenzothiophene sulfone(DBTO_2) through two consecutive oxidations.DszC requires an independent NADH:flavin oxidoreductase(DszD) to provide reduced flavins to sustain its activity.DszC and DszD consist of a flavin-dependent two component monooxygenase system.DszC is the monooxygenase unit,and DszD is the reductase one.Usually the monooxygenase unit is strictly dependent on FMNH_2 or FADH_2.Until now only two enzymes have been reported to have this unusual ability.One is the C_2 component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, and the other is the isobutylamine N-hydroxylase from Streptomyces viridifacienshave MG456-hF10.However,utilization of FADH_2 by DszC has never been elucidated clearly.Flavin dependent monooxygenase is one of the sources of reactive oxygen species(ROS).Overproduction of ROS would cause damage to the cell.Therefor, antioxidant proteins play an important role in keeping the ROS at proper levels and the cells work well.Any antioxidant protein related to "4S" pathway has never been reported.Biodegradtion and biocatalysis is always related.DszC has broader substrate than DBTs,and it is a potential biocatalyst in synthesis of valuble products.
     Biocatalytic desulfurization has been studied for a long time at our laboratory, and several valuable strains were isolated.In this study,dszC from a thermophilic biodesulfurizing strain Mycobacterium goodii X7B was cloned and expressed in Escherichia coli,and DszC was purified.Preference to reduced flavins by this DszC and factors that affected the DszC activity was discussed.Relationship between desulfurizing enzymes expression and antioxidant proteins expression was studied. Research was also conducted to estimate the potential application of DszC (microorganism containing of) in the biocatalytic synthesis of indigoids.
     Purified DszC showed a single band of about 45 kDa on the SDS-PAGE. Wavescan of the enzyme showed that DszC had strong absorbance at 280 nm,but no specific absorbtion in the range of 300-700 nm,indicating that no heine or flavin was bounded.As a monooxygenase unit of the flavin-dependent two-component monooxygenase,DszC activity is significantly dependent on the reduced flavins provided by DszD.Using a DszD that reduced either FMN or FAD,DszC was proved to be able to utilize FADH_2 as well as FMNH_2 to catalyze DBT to DBTO_2. DszC activity is dependent on the type and concentration of the flavin,and the ratio of DszC to DszD.DszC was much more active with FMNH_2 than that with FADH_2. Either flavin at low concentration stimulates the DszC activity but at high concentrations inhibits the activity of DszC due to the autocatalytic oxidation of reduced flavins.Autooxidation depressed the flow of reduced flavin to DszC,and hydrogen peroxide formed due to the autooxidation,which caused the inactivation of DszC and DszD and led to the decrease in DszC activity.The autooxidation was enhanced when flavins concentration increased,and released by the increase of DszC amount in the DszCD system.Addition of catalase destructed H_2O_2 as soon as it formed and thus increased the activity of DszC.
     Relationships between expressions of desulfurizing enzymes and the antioxidant proteins were investigated in both wild types of desulfurizing strains and engineering strains.Using undenaturing gel electrophoresis and active staining,a superoxide dismutase(SOD) induced by DBT or dimethyl sulfoxide was for the first time discovered in Rhodococcus erythropolis 1 awq.Expression of desulfurizing genes in heterogeneous engineering strains would cause a serious decrease in catalase activity; such phenomenon was not observed in the wild strains.
     Although more and more flavin dependent monooxygenase have been discovered in the past decade,seldom of them was applied in the biocatalytic synthesis of valuable compounds that were hard to obtain with traditionally chemical catalysts.Two obstacles exist on the way to explore scaled-up production by the flavin dependent monooxygenase.First,monooxygenase is usually difficult to express and purify,and second,expensive cofactors of NAD(P)H is required to drive the reaction,and stoichemsitroic addition of these cofactors are not economical. Glucose dehydrogenase(GDH) gene was cloned from Bacillus subtilis subsp,subtilis str.168 and transferred to E.coli for overexpression.Using GDH purified from the engineered E.coli,a system for regeneration of NADH was constructed.It could provide NADH continuously to the DszCD coupling reaction to catalyze DBT to DBTO_2.Effect of GDH on the DszC activity was investigated with indole as the substrate of DszC.Increase of DszC provided more NADH to DszCD,hence DszCD activity was enhanced.However,GDH should be kept at a proper ratio to DszD.DszD activity can be elevated by NADH supply,and thus more FMNH_2 is formed.As described previously,excessive FMNH_2 would inevitably lead to decrease of DszCD activity.
     Yield of indigo from indole was improved when whole cells of recombinant E. coli were used instead of isolated enzymes,in which case the autooxdiation of reduced flavins was depressed greatly.Co-expression of DszD and DszC significantly increased the activity of the biocatalysts,but further co-expression of GDH led to a decrease in the yield of indigo.It could be attributed to that the over expression of GDH made a sharp decrease in the expression of DszC and DszD. When the cells grew to the exponential phase,1 mM IPTG was added and the cells were further induced at 27℃for 8 h.The biotransformtion was carried out at pH 6-7;higher pH would reduce the indigo production.Cell density had an obvious effect on the production;an optimized cell density was OD_(600) at about 20 when the reaction volume was one fifth of the total volume.In the range of 1-4 mM,increase of indole concentration led to indigo production increase,but the yield of product to substrate decreased.Higher indole concentration than 4 mM decreased the final concentration of indigo,which was possibly due to the cell toxicity of indole.
     A pink compound was primarily identified as inirubin,which was proved as an effective anti cancer drug,and might be applied in the therapeutics of several diseases. Whole cells expressing DszC also could catalyze various substituted indole at the C-5 site to form the blue and pink compounds,assumed to be derivatives of indigo and indirbin.It suggested that DszC(whole microorganism containing of) had great potential in the production of various valuable indigoids.
引文
1.Alfieri A,Fersini F,Ruangchan N,Prongjit M,Chaiyen P,Mattevi A(2007)Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.Proc Natl Acad Sci USA 104:1177-1182.
    2.Bae GW,Chung CS,Kim KI,Park CH,Lee HJ,Chae YA,Chung IS(1998)Improved indirubin production in a two-phase suspension culture of Polygonum tinctorium using dimethylpolysiloxane.Biotechnol Techniq 12:843-845
    3.Bae KW;Chung IS(1999) Process for producing natural indirubin using two-phase high density cell culture of Polygonum tinctoria.KR Patent:KR 189,199
    4.Ballou DP,Entsch B,Cole LJ(2005) Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.Biochem Biophys Res Comm 338:590-598
    5.Berry A,Dodge TC,Pepsin M,Weyler W(2002) Application of metabolic engineering to improve both the production and use of biotech indigo.J Ind Microbiol Biotechnol 28:127-133
    6.Bhushan B,Samanta SK,Jain RK(2000) Indigo production by naphthalene-degrading bacteria.Lett Appl Microbiol 31:5-9
    7.Blanc V,Lagneaux D,Didier P.Gil P.Lacroix P,Crouzet J(1995) Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin II_B to pristinamycin II_A (PII_a): PII_A synthase and NADH:riboflavin 5'-phosphate oxidoreductase. J Bacteriol 177:5206-5214
    
    8. Boyd DR, Sharma ND, Bowers NI, Brannigan IN, Groocock MR, Malone JF,McConville G, Allen CCR (2005) Biocatalytic asymmetric dihydroxylation of conjugated mono-and poly-alkenes to yield enantiopure cyclic cis-diols. Adv Synth Catal 347:1081-1089
    
    9. Bressler DC, Fedorak PM, Pickard MA (2000) Oxidation of carbazole,N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol Lett 22:1119-1125
    
    10. Celik A, Speight RE, Turner NJ (2005) Identification of broad specificity P450CAM variants by primary screening against indole as substrate. Chem Commun (Camb).29:3652-3654
    
    11. Chang HK, Mohseni P, Zylstra GJ (2003) Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1.J Bacteriol 185:5871-5881
    
    12. Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT (2000) Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368.Appl Environ Microbiol 66:3850-3855
    
    13. Chen H, Zhang WJ, Cai YB, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Biores Techno 199:6928—6933
    
    14. Chen HZ, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433-1441
    
    15. Choi HS, Kim JK, Cho EH, Kim YC, Kim JI, Kima SW (2003) A novel flavin-contraining monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Bioch Biophys Res Comm 306:930-936
    
    16. Constanti M, Giralt J, Bordons A (1994) Desulfurization of dibenzothiophene by bacteria. World J Microbiol Biotechnol 10:510-516
    
    17. Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O'Donnell JP (2002) Biotransformation of five-membered aromatic heterocyclic rings. Chem Res Toxicol 15:269-299
    
    18. Dandie CE, Thomas SM, Bentham RH, McClure NC (2004) Physiological characterization of Mycobacterium sp. strain IB isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J Appl Microbiol 97:246-255
    
    19. Deller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, Gubitz G.M, Macheroux P (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083-7091
    
    20. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, al-Hawari J,Grossman MJ, Sankey BM, Lau PC (1997) Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Appl Environ Microbiol 63:2915-2919
    
    21. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707-6716
    
    22. Denome SA. Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837-2843
    
    23. Diaz E, Ferrandez A, Prieto MA, Garcia J (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523-569
    
    24. Ding YHR, Ferry JG (2004) Flavin mononucleotide-binding flavoprotein family in the domain Archaea. J Bacteriol 186:90-97
    
    25. Doukyu N Nakano T, Okuyama Y, Aono R (2002) Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Appl Microbiol Biotechnol 58:543-546
    
    26. Drewlo S, Bramer CO, Madkour M, Mayer F, Steinbuchel A (2001) Cloning and expression of a Ralstonia eutropha HF39 gene mediating indigo formation in Escherichia coli. Appl Environ Microbiol 67:1964-1969
    
    27. Duetz et al. (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis
    
    28. Eichhorn E, Davey CA, Sargent DF, Leisinger T. Richmond TJ (2002) Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J Mol Biol 324:457-468
    
    29. Eichhorn E, van der Ploeg JR, Leisinger T (1999) Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274:26639-26646
    
    30. Elsayed and Sausville (2001) Selected novel anticancer treatments targeting cell signaling proteins. Oncologist 6:517-537
    
    31. Elsayed YA, Sausville EA (2001) Selected novel anticancer treatments targeting cell signaling proteins. Oncologist 6:517-537
    
    32. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibbson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167-169
    
    33. Filisetti L, Fontecave M, Niviere V (2003) Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor. J Biol Chem 278:296-303
    
    34. Folsom BR, Schieche DR, Digrazia PM (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis 1-19. Appl Environ Microbiol 65:4967-4972
    
    35. Furuya T, Takahashi S, Ishii Y, Kino K, Kirimura K (2004) Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication.Biochem Biophys Res Commun 313:570-575
    
    36. Galan B, Diaz E, Preto MA, Garcia JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily. J Bacteriol 182:627-636
    
    37. Gallagher, JR, Olson ES, Stanley DC (1993) Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway. FEMS Microbiol Lett 107:31-36
    
    38. Garre V, Muller U, Tudzynski P (1998) Cloning, characterization, and targeted disruption of cpcatl, coding for an in planta secreted catalase of Claviveps purpurea. Mol Plant - Microbe Interact 11:772-783
    
    39. Gaudu P, Touati D, Niviere V, Fontecave M (1994) The NAD(P)H:Flavin Oxidoreductase from Escherichia coli as a source of superoxide radical. J Biol Chem 269:8182-8188
    
    40. Gerhard E, Kirchhoffstrasse G (2000) Indigoid bisindole dereivatives.International Patent: WO 00/61555
    
    41. Gillam EM, Notley LM, Cai H, De Voss JJ, Guengerich FP () Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39:13817-13824
    
    42. Gillam EMJ, Notley LM, Cai H, De Voss JJ, Guengerich FP (2000) Oxidation of indole by cytochrome P450 enzymes. Biochemsitry 39:13817-13824
    
    43. Gillam et al. Pigment production by cells expressing cytochrome P450 transgene.International Patent WO 2000-AU966
    
    44. Gray PMM (1928) The formation of indigotin from indole by soil bacteria. Proc R Soc Lond Ser B 102:2263-2279
    
    45. Groger H, Chamouleau F.Orologas N, Rollmann C, Drauz K, Hummel W,Weckbecker A, May O (2006) Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols. Angew Chem Int Ed 45:5677-5681
    
    46. Guengerich FP, Sorrells JL. Schmitt S, Krauser JA, Aryal P, Meijer L (2004) Generation of new protein kinase inhibitors utilizing cytochrome P450 mutant enzymes for indigoid synthesis. J Med Chem 47:3236-3241
    
    47. Gundlach, ER, Boehm PD, Marchand M. Atlas RM, Ward DM, Wolfe DA (1983) The fate of Amoco Cadiz oil. Science 221:122-129
    
    48. Hauer et al. Bacillus cytochrome P450 monooxygenase mutants and their use for oxidizing organic compounds. International Patent WO 2000-EP7253
    49. Hofstetter K, Lutz J, Irene L, Witholt B, Andreas S (2004) Coupling of biocatalytic asymmetric epoxidationwith NADH regeneration in organic-aqueous emulsions.
    
    50. Hojati Z, Milne C, Harvey B, Gordon L, Borg M, Flett F, Wilkinson B,Sidebottom PJ, Rudd BAM, Hayes MA, Smith CP, Micklefield J (2002) Structure,biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9:1175-1187
    
    51. Holland JH (1910) Indigo. Bull Miscell Inform 1910:283-286
    
    52. Ishige T, Honda K, Shimuizu S (2005) Whole orgianism biocatalysis. Curr Opin Chem Biol 9:174-180
    
    53. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160-1164
    
    54. Izumi Y, Ohshiro T (2001) Purification and characterization of enzymes involved in desulfurization of dibezothiophene in fossil fuels. J Mol Catal B: Enzymatic 11:1061-1064
    
    55. Jautelat R, Brumy T, Schafer M, Briem H, Eisenbrand G, Schwahn S, Kruger M,Lucking U, Prien O, Siemeister G (2005) From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. ChemBioChem 6:531-540
    
    56. Kahl S, Hofer B (2003) A genetic system for the rapid isolation of aromatic-ring-hydroxylating dioxygenase activities. Microbiology. 149:1475-81
    
    57. Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, MICHAEL Kertesz A (2000) The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 182:2869-2878
    
    58. Keil H, Saint CM, Williams PA (1987) Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product.J Bacteriol 169:764-770
    
    59. Kendrew GS, Harding SE, Hopwood DA, Marsh ENG (1995) Identification of a flavin:NADH oxidoreductase involved in the biosynthesis of actinorhodin.Purification and characterization of the recombinant enzyme. J Biol Chem 270:17339-17343
    60. Kertesz MA, Schmidt-Larbig K, Wuest T (1999) A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J Bacteriol.181:1464-1473
    
    61. Kertesz, MA, Wirtek C (2001) Desulfurization and desulfonation: application of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol 57:460-466
    
    62. Kim Conversion of indoles to indirubins by Polygonum tinctorium. KR Patent 1995-36616
    
    63. Kobayashi M, Onaka T, Ishii Y, Konishi J, Takaki M, Okada H, Ohta Y, Koizumi K, Suzuki M (2000) Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol Lett 187:123-126
    
    64. Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45-50
    
    65. Kodama, K, Nakatini S, Umehara K. Shimizu K, Minoda Y, Yamada K (1970) Microbial conversion of petro-sulfur compounds. PartⅢ. Isolation and identification of products from dibenzothiophene. Agric Biol Chem 34:1320-1324
    
    66. Konishi, J, Onaka T, Ishii Y, Suzuki M (2000) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurization dibenzothiophene.FEMS Microbiol Lett 187:151-154
    
    67. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M,Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM,Choi SK, Codani JJ, Connerton IF, Danchin A, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 6657:249-256
    
    68. Leclere S, Gamier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J,Wu Y-Z,Mandelkow E-M,Eisenbrand G,Meijer L(2001) Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25,two protein kinase involved in abnormal tau phosphorylation in Alzheimer's disease.J Biol Chem 276:251-260
    69.Lee J,Simurdiak M,Zhao H(2005) Reconstitution and characterization of aminopyrrolnitrin oxygenase,a Rieske N-oxygenase that catalyzes unusual arylamine oxidation.J Biol Chem 280:36719-36728
    70.Lei B,Tu SC(1996) Gene overexpression,purification,and identification of a desulfurization enzyme from Rhodococcus sp.strain IGTS8 as a Sulfide/Sulfoxide Monooxygenase.J Bacteriol 178:5699-5705
    71.Lei BF,Liu MY,Huang SQ,Tu S-C(1994)Vibrio harveyi NADPH-flavin oxidoreductase:cloning,sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.J Bacteriol 176:3552-3558
    72.Lei,B.F.,H.Wang H,Y.M.Yu YM.,and Tu S.-C.Tu.(2005).Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase.Biochemistry 44:261-267.
    73.Li X,Chow DC,Tu S-C(2006) Thermodynamic analysis of the binding of oxidized and reduced FMN cofactor to Vibrio harveyi NADPH-FMN oxidoreductase FRP apoenzyme.Biochemistry 45:14781-14787
    74.Lim HK,Chung EJ,Kim JC,Choi GJ,Jang KS,Chung YR,Cho KY,Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli.Appl Environ Microbiol 71:7768-7777
    75.Louie TM,Yang H,Karnchanaphanurach P,Xie XS,Xun LY(2002) FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.J Biol Chem 277:39450-39455
    76.Luo MF,Xing JM,Gou ZX,Li S,Liu HZ,Chen JV(2003) Desulfurization of dibenzothiophene by lyopholized cells of Pseudomonas delafieldii R-8 in the presence of dodecane.Biochem Eng J 13:1-6
    77. Martinez A, Castro A, Dorronosro I, Alonso M (2002) Glycogen synthase kinase (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration,cancer and inflammation. Med Res Rev 22:373-384
    
    78. Martinez-Costa OH, Martin-Triana AJ, Martinez E, Fernandez-Moreno MA,Malpartida F (1999) An additional regulatory gene for actinorhodin production in Streptomyces lividans involves a LysR-type transcnptional regulator. J Bacteriol 181:4353-4364
    
    79. McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476-5483
    
    80. Mermod N, Harayamal S, Timmis KN (1986) New route to bacterial production of indigo. Nature Biotechnol 4:321-324
    
    81. Meyer A, Wursten M, Schmid A, Kohler H-PE, Witholt B (2002) Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. J Biol Chem 277:34161-34167
    
    82. Monticello DJ (1998) Riding the fossil fuel biodesulfurization wave. Chemtech 28:38-45
    
    83. Muller YA, Schulz GE (1993) Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Science 259:965-967
    
    84. Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, Hippe F, Vatter S, Merz K-H, Eisenbrand G, Jove R (2005) Indirubin derivatives inhibit Stat3 sigaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102:5998-6003
    
    85. Niviere V, Fieschi F, Decout JL, Fontecave M (1999) The NAD(P)H:Flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides. J Biol Chem 274:18252-18260
    
    86. Nojiri, H, Nam J, Kosaka M, Morii K, Takemura T, Furihata K, Yamane H,Omori T (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181:3105-3113
    
    87. Nordberg J, Arner ESJ (2001) Reactive oxygene Species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287-1312
    
    88. O'Connor K, Dobson ADW, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287-4291
    
    89. O'Connor K, Hartmans S (1998) Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnol Lett 20:219-223
    
    90. Ohshiro T, Kanbayashi Y, Hine Y, Izumi Y (1995) Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythropolis D-1. Biosci Biotech Biochem 59:1349-1351
    
    91. Okada H, Nomura N, Nakahara T, Saitoh K, Uchiyama H, Maruhashi K (2003) Analyses of microbial desulfurization reaction of alkylated dibenzothiophenes dissolved in oil phase. Biotechnol Bioeng 83:489-497
    
    92. Oldfield, C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:2961-2973
    
    93. Omori T, Monna LY, Kodama T (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl Environ Microbiol 58:911-915
    
    94. Oriet PJ, Kim IC (1998) Method for production of indigo and indirubin dyes. US Patent:5,834,297
    
    95. Panke S, Wubbolts M (2005) Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9:188-194
    
    96. Parry RJ, Li WY (1997) An NADPH : FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. cloning, analysis, and overexpression. J Biol Chem 272:23303-23311
    
    97. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468-475
    
    98. Privalle CT, Fridovich I (1987) Induction of superoxide dismutase in Escherichia coli by heat shock. Proc Natl Acad Soc USA 84:2723-2726
    
    99. Robert R, Alonso H, Charles D (2007) Use of indirubin and its derivatives in the treatments of HIV infection and heart failure. International Patent: WO 2007/033208
    100.Rudd BA, Hopwood DA (1980) A pigmented mycelial antibiotic in Streptomyces coelicolor. control by a chromosomal gene cluster. J Gen Microbiol 119:333-340
    101.Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various inigoid compounds. Appl Microbiol Biotechnol 66:422-429
    102.Russell and Kaupp (1969) Oxidation of carbanions. IV. oxidation of indoxyl to indigo in basic solution. J Am Chem Soc 91:3851-3859
    103.Sethi G, Ahn KW, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-κB signaling pathway. J Biol Chem 281:23425-23435
    104.Storz G, Imlay JA(1999) Oxidative stress. Curr Opin Microbiol 2:188-194
    105.Straathof JJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548-556
    106.Sucharitakul, J., Chaiyen, P., Entsch B., Ballou, D.P., 2006. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii. J. Biol. Chem. 281,17044-17053.
    107.Takeo S (2002) Manufacture of indirubin. JP Patent: 2002265445
    108.Thibaut D, Ratet N, Bisch D, Faucher D, Debussche L, Blanche F (1995) Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin II_b during the last step of pristinamycin II_A biosynthesis.J Bacteriol 177:5199-5205
    109.Thotsapora K, Sucharitakul J, Wongratana J, Suadee C, Chaiyen P (2004) Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochim Biophys Act 1680:60-66
    110.Ueda M, Kinoshita H, Maeda SI, Zou W, Tanaka A (2003) Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization,heme binding,and activity expression.Appl Microbiol Biotechnol 61:488-494
    111.Valentine JS,Gralla EB(2008) Introduction:Reactive oxygen species special feature.Pro Natl Acad Sci USA 105:8178
    112.Valton J,Filisetti L,Fontecave M,Niviere V(2004) A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.J Biol Chem 279:44362-44369
    113.van Berkel WJH,Kamerbeek NM,Fraaije MW(2006) Flavoprotein monooxygenases,a diverse class of oxidative biocatalysts.J Biotechnol 124:670-689
    114.van der Donk WA,Zhao H(2003) Recent developments in pyridine nucleotide regeneration.Curr Opin Biotechnol 14:421-426
    115.van Hamme JD,Singh A,Ward OP(2003) Recent advances in petroleum microbiology.Microbiol Mol Biol Rev 67:503-549
    116.Wang MX,Feng GQ(2003) Nitrile biotransformation for highly enantioselective synthesis of 3-substituted 2,2-dimethylcyclopropanecarboxylic acids and amides.J Org Chem 68:621-624
    117.Wang RF,Wennerstrom D,Cao WW,Khan AA,Cerniglia CE(2000) Cloning,expression,and characterization of the katG gene,encoding catalase-peroxidase,from the polycyclic aromatic hydrocarbon-degrading bacterium Mycobacterium sp.strain PYR-1.Appl Environ Microbiol 66:4300-4304
    118.Witschel M,Nagel S,Egli T(1997) Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103.J Bacteriol 179:6937-6943
    119.Wu ZL,Aryal P,Lozach O,Meijer L,Guengerich FP(2005) Biosynthesis of new indigoid inhibitors of protein kinases using recombinant cytochrome P450 2A6Chem Biodiv 2:151-165
    120.Xun L,Sandvik ER(2000) Characterization of 4-hydroxyphenylacetate 3-hydroxylase(HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.Appl Environ Microbiol 66:481-486
    121.Young-Am C,Yu HS,Song JS,Chun HK,Park SU(2000) Indigo production in hairy root cultures of Polygonum tinctorium Lour.Biotechnol Lett 22:1527-1530
    122.Yu B,Xu P,Ski Q,Ma CQ(2006) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain.Appl Environ Microbiol 72:54-58
    123.Zolg JW,Philippi-Schulz S(1994) The superoxide dismutase gene,a target for detection and identification of Mycobacteria by PCR.J Clin Microbiol 32:2801-2812
    124.刘依,韩鲁佳,闫巧娟,刘向阳(2003)板蓝根中靛蓝和靛玉红的提取及其质量分数的测定,中国农业大学学报8:5-8
    125.谢国祥,张立国,邱明丰,贾伟(2006)大青叶中靛玉红的提取分离工艺研究,中成药28:791-793
    1.Alfieri A,Fersini F,Ruangchan N,Prongjit M,Chaiyen P,Mattevi A(2007)Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.Proc Natl Acad Sci USA 104:1177-1182
    2.Arias-Barrau E,Sandoval A,Naharro G,Olivera ER,Luengo JM(2005)A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida.J Biol Chem 280:26435-26447
    3.Bohuslavek J,Payne JW,Liu Y,Bolton HJ,Xun L(2001).Cloning,sequencing,and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1.Appl Environ Microbiol 67:688-695
    4.Bradford MM(1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 72:248-254
    5. Chaiyen P, Suadee C, Wilairat P (2001) A novel two-protein component flavoprotein hydroxylase p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii. Eur J Biochem 268:5550-5561
    
    6. Chaiyen P, Suadee C, Wilairat PA (2001) A novel two-protein component flavoprotein hydroxylase p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii. Eur J Biochem 268:5550-5561.
    
    7. Chen H, Zhang W, Cai Y, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour Technol 99:6928-6933
    
    8. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) Jpred: a consensus secondary structure prediction server. Bioinformatics 14:892-893
    
    9. Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6706-6716
    
    10. Duffner FM, Kirchner U, Bauer MP, Muller R (2000) Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene 256:215-221
    
    11. Eichhorn E, van der Ploeg JR, Leisinger T (1999) Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274:26639-26646
    
    12. Furuya T, Takahashi S, Iwasaki Y, Ishii Y, Kino K, Kirimura K (2005) Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J Biosci Bioeng 99:577-585
    
    13. Galan B, Diaz E, Garcia JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687-694
    
    14. Galan B, Diaz E, PRIETO MA, Garcia JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily. J Bacteriol 182:627-636
    15. Gibson QH, Hastings JW (1962) The oxidation of reduced flavin mononucleotide by molecular oxygen. Biochem J 83:368-377
    
    16. Gisi MR, Xun L (2000) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH : flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Bacteriol 185:2786-2792
    
    17. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanism of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705-1709
    
    18. Jeffers CE, Nichols JC, Tu SC (2003) Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry 42:529-534
    
    19. Joosten V, van Berkel WJH (2007) Flavoenzymes. Curr Opin Chem Biol 11:195-202
    
    20. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJII (1993) Utilization of organosulphur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123-3129
    
    21. Kayser KJ, Cleveland L, Park HS, Kwak JH, Kolhatkar A, Kilbane JJ (2002) Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl Microbiol Biotechnol 59:737-745
    
    22. Kertesz MA, Wietek C (2001) Desulfurization and desulfurization: applications of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol 57:460-466.
    
    23. Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels.Curr Opin Biotechnol 17:305-314
    
    24. Knobel HR, Egli T, van der Meer JR (1996) Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600. J Bacteriol 178:6123-6132
    
    25. Lei B, Cho KW, Tu S (1994) Mechanism of aldehyde inhibition of Vibrio harveyi luciferase identification of two aldehyde sites and relationship between aldehyde and flavin binding. J Biol Chem 269:5612-5618
    
    26. Lei B, Tu S (1996) Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as sulfide/sulfoxide monooxygenase. J Bacteriol 178:5699-5705
    
    27. Lei B, Tu S (1998) Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry 37:14623-14629
    
    28. Li FL, Xu P, Feng JH, Meng L, Zheng Y, Luo LL, Ma CQ (2005) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71:276-281
    
    29. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223:301-307
    
    30. Li G, Li S, Zhang M, Wang J, Zhu L, Liang F, Liu R, Ma T (2008) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971-976
    
    31. Lin S, Van Lanen SG, Shen B (2008) Characterization of the two-component,FAD-dependent monooxygenase SgcC that requires carrier protein-tethered substrates for the biosynthesis of the enediyne antitumor antibiotic C-1027. J Am Chem Soc 130:6616-6623
    
    32. Louie TM, Webster CM, Xun L (2002a) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184 3492-3500
    
    33. Louie TM, Yang H, Karnchanaphanurach P, Xie XS, Xun L (2002b) FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase. J Biol Chem 277:39450-39455
    
    34. Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene (DBT) degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J Ferm Bioeng 83:233-237
    
    35. Ohshiro T, Yamada H, Shimoda T, Matsubara T, Izumi Y (2004) Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning. Biosci Biotechnol Biochem 68:1712-1721
    
    36. Parry RJ, Li W (1997) Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens Mg456-hF10. Arch Biochem Biophys 339:4754
    
    37. Payne JW, Bolton HJ, Campbell JA, Xun L (1998) Purification and characterization of EDTA monooxygenase from the EDTA-degrading bacterium BNC1. J Bacteriol 180:3823-3827
    
    38. Prieto MA, Garcia JL (1994) Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem 269:22823-22829.
    
    39. Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72-79
    
    40. Seki M, Iida K, Saito M, Nakayama H, Yoshida S (2004) Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol 186:2046-2051
    
    41. Shan G. Xing J, Zhang H., Liu H (2005a) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticle. Appl Environ Microbiol 71:4497-4502
    
    42. Shan G Zhang H, Cai W, Xing J, Liu H (2005b) Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys J 89:L58-60
    
    43. Swank RT, Munkres KD (1971) Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem 39:462-477
    
    44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599
    
    45. Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604-4609
    46.Thompson JD,Gibson TJ,Plewniak F,Jeanmougin F,Higgins DG.(1997) The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res 24:4876-4882
    47.Thotsaporn K,Sucharitakul J,Wongratana J,Suadee C,Chaiyen P(2004)Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii:evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases.Biochim Biophys Acta 1680:60-66
    48.Valton J,Filisetti L,Fontecave M,Viviere V(2004) A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.J Biol Chem 279:44362-44369
    49.van Berkel WJH,Kamerbeek NM,Fraaije MW(2006) Flavoprotein monooxygenases,a diverse class of oxidative biocatalysts.J Biotechnol 124:670-689
    50.Xiong X,Xing J,Bai X,Li W,Li Y,Liu H(2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobins.Appl Environ Microbiol 73:2394-2397
    51.Xu P,Yu B,Li FL,Cai XF,Ma CQ(2006) Microbial degradation of sulfur,nitrogen and oxygen heterocycles.Trends Microbiol 14:398-405
    52.Xun L,Sandvik ER(2000) Characterization of 4-hydroxyphenylacetate 3-hydroxylase(HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.Appl Environ Microbiol 66:481-486
    53.Zdobnov EM,Apweiler R(2001) InterProScan-an integration platform for the signature-recognition methods in InterPro.Bioinformatics 17:847-848
    54.冯进辉.(2007)红平红球菌与古地分枝杆菌的脱硫及表面特性研究.博士学位论文,山东大学,济南
    1. Bebien M, Lagniel G, Garin J, Touati D, Vermeglio A, Labarre J (2002) Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184:556-1564
    
    2. Brioukhanov AL, Netrusov A, Eggen RL (2006) The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barken. Microbiology 152:1671-1677
    
    3. Cruden DL, Wolfram JH, Rogers RD, Gibson DT (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl Environ Microbiol 58:2723-2729
    
    4. Galan B, Diaz E, Garcia JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687-694
    
    5. Gaudu P, Touati D, Niviere V, Fontecave M (1994) The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J Biol Chem 269:8182-8188
    
    6. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanism of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705-1709
    
    7. Kertesz, MA, Wirtek C (2001) Desulfurization and desulfonation: application of sulfur-controlled gene expression in bacteria. Appl Microbiol Biotechnol 57:460-466
    
    8. Nordberg J, Arner ESJ (2001) Reactive oxygene Species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287-1312
    
    9. Parschat K, Overhage J, Strittmatter AW, Henne A, Gottschalk G, Fetzner S (2007) Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Ru61a and transcriptional analysis of genes involved in quinaldine degradation.J Bacteriol 189:3855-3867
    10.Privalle CT,Fridovich I(1987) Induction of superoxide dismutase in Escherichia coli by heat shock.Proc Natl Acad Sci USA 84:2723-2726
    11.Tao F,Yu B,Ma CQ(2006) Biodesulfurization in biphasic systems containing organic solvents.Appl Environ Microbiol 72:4604-4609
    12.Tralau T,Vuilleumier S,Thibault C,Campbell BJ,Hart CA,Kertesz MA(2007)Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa.J Bacteriol 189:6743-6750
    13.Tralau T,Vuilleumier S,Thibault C,Campbell BJ,Hart CA,Kertesz MA(2007)Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa.J Bacteriol 189:6743-6750
    14.van der Ploeg JR,Iwanicka-Nowicka R,Bykowski T,Hryniewicz MM,Leisinger T(1999) The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl.J Biol Chem 274:29358-29365
    15.Vermeij AP,Claudia W,James P,Leisinger T,Kerteszi MA(2000) The ssu locus plays a key role in organosulfur metabolismin Pseudomonas putida S-313.J Bacteriol 182:2869-2878
    16.Woodmansee AN,James AI(2002) Reduced flavins promote oxidative DNA damage in non-respiting Escherichia coli by delivering electrons to intracellular free iron.J Biol Chem 277:34055-34066
    17.冯进辉(2007)红平红球菌与古地分枝杆菌的脱硫及表面特性研究.博士学位论文,山东大学,济南
    18.李建武,萧能*,余瑞元,袁明秀,陈丽蓉,陈雅蕙,陈来同(1994)生物化学实验原理和方法(第二版),北京大学出版社,北京
    1.Kunst F,Ogasawara N,Moszer I,Albertini AM,Alloni G,Azevedo V,Bertero MG,Bessieres P,Bolotin A,Borchert S,Borriss R,Boursier L,Brans A,Braun M,Brignell SC,Bron S,Brouillet S,Bruschi CV,Caldwell B,Capuano V,Carter NM,Choi SK,Codani JJ,Connerton IF,Danchin A,et al.(1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis.Nature 6657:249-256
    2.M(u|¨)ller M(2005) Chemoenzymatic synthesis of building blocks for statin side chains.Angew Chem Int Ed 44:362-36
    1.Bae GW,Chung CS,Kim KI,Park CH,Lee HJ,Chae YA,Chung IS(1998)Improved indirubin production in a twophase suspension culture of Polygonum tinctorium using dimethylpolysiloxane.Biotechnol Techniq 12:843-845
    2.Berry A,Dodge TC,Pepsin M,Weyler W(2002) Application of metabolic engineering to improve both the production and use of biotech indigo.J Ind Microbiol Biotechnol 28:127-133
    3.Garbe TR,Kobayashi M,Yukawa H(2000) Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity.Arch Microbiol 173:78-82
    4.Gillam EMJ,Notley LM,Cai H,De Voss JJ,Guengerich FP(2000) Oxidation of indole by cytochrome P450 enzymes.Biochemsitry 39:13817-13824
    5.Jautelat R,Brumby T,Sch(a|¨)fer M,Briem H,Eisenbrand G,Schwahn S,Kr(u|¨)ger M,Ulrich L(u|¨)cking,Prien O,Siemeister G(2005) From the insoluble dye indirubin towards highly active,soluble CDK2-inhibitors.ChemBioChem 6:531-540
    6.McClay K,Boss C,Keresztes I,Steffan RJ(2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments.Appl Environ Microbiol 71:5476-5483
    7.Meyer A,W(u|¨)rsten M,Schmid A,.Kohle r HE(2002) Witholt B Hydroxylation of indole by laboratory-evolved 2hydroxybiphenyl 3-monooxygenase.J Biol Chem 277:34161-34167
    8.Nam S,Buettner R,Turkson J,Kim D,Cheng JQ,Muehlbeyer S,Hippe F,Vatter S,Merz K-H,Eisenbrand G,Jove R(2005) Indirubin derivatives inhibit Stat3sigaling and induce apoptosis in human cancer cells.Proc Natl Acad Sci USA 102:5998-6003
    9.Ogawa J,Shimizu S(2002) Industrial microbial enzymes:their discovery by screening and use in large-scale production of useful chemicals in Japan.Curr Opin Biotechnol 13:367-375
    10.Oriel PJ,Kim IC(1997) Method for production of indigo and indirubin dyes.US Patent:5,691,171
    11.Puchalska M,Polec-Pawlak K,Zadrozna I,Hryszko H,Jarosz M(2004)Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry.J Mass Spectr 39:1441-1449
    12.Reichmuth DS,Hittle JL,Blanch HW,Keasling JD(2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene.Biotechnol Bioengin 67:72-79
    13.Rui L,Reardon KF,Wood TK(2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds.Appl Microbiol Biotechnol 66:422-429
    14.Schmid A,Dordick JS,Hauer B,Kiener A,Wubbolts M,Witholt B(2001)Industrial biocatalysis today and tomorrow.Nature 409:258-268
    15.花文廷(1991)杂环化学,北京大学出版社,北京

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700