用户名: 密码: 验证码:
晶体生长中基于CH…O弱氢键导向堆积的二级结构的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子聚集体多级结构的理性设计与构筑是当前化学研究的重要前沿方向与难题,如何精确设计并利用分子间的弱相互作用力来获得特定的具有高级结构的分子组装体系是极富挑战性的研究课题,主要因为晶体在生长过程中分子结构的多样性会导致分子堆积形态的多样性,从而使人们还无法根据单个分子结构来准确预测它在晶体结构中的堆积形态。显然在自组装形成的分级结构中,如果一系列拥有多样性取代基的组装子在自组装过程中出现具有重复性的组装区域结构,表达出可预测性的基元组装模式,那么我们在导向合成预期结构的分子堆积体时就有规律可循,也为高级堆积结构的理性设计与合成建立理论指导提供基础。
     本论文系统综述了近些年来固相中CH…O弱氢键的研究状况。我们以甘脲构筑的一系列拥有多样性取代基的分子夹为研究对象,开展了以CH…O弱氢键为主要驱动力导向堆积的二级结构的研究,主要内容如下:
     以酯基甘脲为基本模块,设计合成了13个不同芳环取代基团(H,OMe,NO_2,Me,Br)的对称及不对称的分子夹,并得到了其中12个化合物的晶体结构。首次得到了一个结构多样性,而二级结构的堆积态一致性的组装体系,即1,4-位的甲氧基芳环选择性的堆积在一起的基元组装模式,这为高级结构的理性设计与合成提供了很大的启发和借鉴意义。
     此外,为了考察基于不同取代基甘脲构筑的分子夹在晶体生长过程中高级结构形成的规律,我们设计合成了11种甘脲化合物并根据这些甘脲化合物合成了9个不同取代基甘脲的分子夹,得到5个化合物的晶体结构。晶体结构分析显示取代基团的多样性导致了组装结构的多样性。如化合物Ⅲ-2a(R=H)可以得到高级结构,而当H原子被其它基团取代后,破坏了这种组装形式,没有高级结构形成。同时我们还讨论了同质多晶体中溶剂在晶体堆积中的作用。
     另外,新颖人工受体的合成也是超分子化学研究的热点之一,我们还以廉价易得的苯基甘脲为构筑板块,首次采用一锅合成法就能够得到重要的中间体化合物IV-1,这个方法的优点是温和的反应条件,产物单一,较高的收率和不需要分离中间体。我们还进行了立体大环化合物的合成探索,为获得一类新型的人工受体合成方法提供了实验基础。同时我们还获得了6个苯基甘脲分子夹化合物的晶体结构,探讨了晶体生长过程中高级结构形成的规律。尤其值得注意的是在对映异构体Ⅳ-(±)8和Ⅳ-(±)11的晶体结构中,都可以得到中心对称的消旋的二聚体组装模式,这也是一种由CH...O弱氢键为主要驱动力导向的选择性的组装模式。
The rational design and construction of molecular aggregates possessing multi-level structure is an important frontier research in chemistry. And how to accurately design and utilize intermolecular weak interaction forces to obtain particular molecular assemble system with high-level structures is a research item full of challenge, because the diversity of molecular structure could cause multiple molecular stacking models during the course of crystal growth. So it is difficult to predict molecular stacking model based on a single molecular structure. Obviously, if a series of assemble units with multiple substituted groups show the same assemble area in the self-assemble course, and conveys anticipated base assemble model, we can use it to synthesize molecular aggregation with anticipated stacking models, which provides a foundation of building theory and guidance for high-level structure's rational design and synthesis.
     In this thesis, the research works on weak CH...O hydrogen bond in solid phase was systematically reviewed. We used a series of molecular clips based on glycoluril having various substituted groups as research objects, and studied the rule of formation of secondary structure using weak CH...O hydrogen bond as main driven forces. The research results were summarized below:
     Thirteen symmetrical and asymmetrical molecular clips based on diethoxycarbonyl glycoluril with different substituted groups of aromatic rings (H, OMe, NO_2, Me, Br) were designed and synthesized, and crystal structures of twelve compounds were obtained. We firstly attained a system that various structures can assemble the same secondary structure using weak CH...O hydrogen bond as main driven forces, in which p-dimethoxy-o-xylylene rings are in the interior of the dimeric molecular clips. Then it will provide much great enlightenment and reference meaning for the rational design and synthesis of more high-level structures.
     Furthermore, in order to investigate the high-level structure formation rule of molecular clips constructed by glycoluril with different substituted groups during crystal growth, eleven kinds of glycoluril compounds and nine molecular clips based on these glycoluril compounds were synthesized, and crystal structure of five molecular clips were also obtained. After analysis of these crystal structures, it can conclude that various structure of substituted group can cause variety of stacking models. Such as high-level structure of compound III-2a (R = H) can be obtained, but this high-level structure will disappear when H atom is displaced by other groups, these substituted groups destroyed this assemble model. We also described the function of solvent molecule in polymorphs about crystal packing.
     Besides, synthesis of novel artificial acceptors is also a hotspot of supramolecular chemistry. The major intermediate compound FV-1 was synthesized firstly using one-pot method with cheap diphenylglycoluril as building block. The advantage of this method is mild condition, single product formation, good yield, and no need for separating intermediates. Meantime, synthesis exploration of steric macrocyclic compound was also proceeded, which provided experiment foundation for gaining synthesis method of a novel kind of artificial acceptor. And 6 crystal structure of molecular clips based on diphenylglycoluril were also obtained, and formation rule of high-level structure during crystal growth was conferred. It is especially taking care that the assemble model of racemic dimmers with center symmetry can be obtained in crystal structure of enantiomers IV-(±)8 and IV-(±)11, which is also a kind of selective assemble model driven by weak CH... O hydrogen bond.
引文
[1] Lehn, J. M. Supramolecular chemistry-scope and perspective, molecules, supramolecules, and molecular devices. Angew. Chem. Int. Ed. 1988, 27, 89-112.
    [2] Nemst, W. Z. Phys. Chem. 1592, 8, 110.
    [3] Werner, A. Liebigs Ann. Chem. 1902, 322, 261.
    [4] Hantzsch, A. Berichte 1910, 43, 3049-3076.
    [5] Pfeiffer, P. Berichte 1914, 47, 1580-1595.
    [6] Moore, T. S.; Winmill, T. F. Transfer of oxygen from a 4a-hydroperoxyflavin anion to a phenolate ion. A flavin-catalyzed dioxygenation reaction. J. Am. Chem. Soc. 1979, 101, 1635-1676.
    [7] Latimer, W. M.; Rodebush, W. S. Polarity and ionzation from the standpoint of the lewis theory of valence. J. Am. Chem. Soc. 1920, 42, 1419-1433.
    [8] Bernal, J. D.; Megaw, H. D. Proc. Roy. Soc.(London) 1935, 151A, 384-410.
    [9] Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 1935, 57, 2680-2684.
    [10] Huggins, M. L. Hydrogen bridges in ice and liquid water. J. Phys. Chem. 1936, 40, 723-731.
    [11] Huggins, M. L. Hydrogen bridges in organic compounds. J. Org. Chem. 1936, 1, 405-456.
    [12] Pauling, L. The nature of the chemical bond. Ithaca, NY: Cornell University Press, 1939.
    [13] Pimental, G. C., McClellan, A. L. The hydrogen bond. San Francisco: freeman, 1960.
    [14] Hamilton, W. C., Ibers, J. A. Hydrogen bonding in solids. New York: Benjamin, 1968.
    [15] Desiraju, G. R. Acc. Chem. Res. Hydrogen bridges in crystal engineering: interactions without borders. 2002, 35, 565-753.
    [16] Jeffrey, G. A. An introdution to hydrogen bonding, Oxford University Press, Oxford, 1997.
    [17] Pauling, L. The shared-electron chemical bond. Proc. Natl. Acad. Sci. USA 1928, 14, 359-362.
    [18] Coulson, C. A., Danielsson, U. Ark. Fys. 1954, 8, 205, 239-244.
    [19] Tsubomura, H. The nature of the hydrogen-bond. I. The delocalization energy in the hydrogenbond as calculated by the atomic-orbital method. Bull. Chem. Soc. Jpn. 1954, 27, 445-450.
    [20] Guerra, C. F., Bickelhaupt, F. M., Snijders, J. G., Baerends, E. J. The Nature of the Hydrogen Bond in DNA Base Pairs: The role of charge transfer and resonance assistance. Chem. Eur. J. 1999, 5, 3581-3594.
    [21] Umeyama, H., Morokuma, K. The origin of hydrogen bonding, an energy decomposition study. J. Am. Chem. Soc. 1977, 99, 1316-1332.
    [22] Kroon, J., Kanters, J. A. Non-linearity of hydrogen bonds in molecular crystals. Nature 1974, 248, 667-669.
    [23] Steiner, T. Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study. Acta Cryst. 1998, B54, 456-463.
    [24] Steiner, T., Saenger, W. Covalent bond lengthening in hydroxyl groups involved in three-center and in cooperative hydrogen bonds, analysis of low-temperature neutron diffraction data. J. Am. Chem. Soc. 1992, 114, 7123-7126.
    [25] Olovsson, I., Jonsson, P. -G. The hydrogen bond recent developments in theory and experiment. Vol.2, North Holland, Amsterdam, 1976, 393-456.
    [26] Savage, H. F. J., Finney, J. Repulsive regularities of water structure in ices and crystalline hydrates. Nature 1996, 322, 717-720.
    [27] Braga, D., Grepioni, F., Tedesco, E. XH…π (X=O, N, C) hydrogen bonds in organometallic crystals. Organometallies 1998, 17, 2669-2672.
    [28] Aakeroy, C. B., Evans, T. A., Seddon, K. R., Palinko, I. The C-H…Cl hydrogen bond: does it exist? New J. Chem. 1999, 23, 145-152.
    [29] Thallapally, P. K., Nangia, A. Crystallization from hydrochloric acid affords the solid-state structure of croconic acid(175 years after its discovery) and a novel hydrogen-bonded network. CrystEngComm. 2001, 27-29.
    [30] Thalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. Desiraju, G. R. C-H…F interactions in the crystal structures of some fluorobenzenes, J. Am. Chem. Soc. 1998, 120, 8702-8710.
    [31] Kroon, T.; Desiraju, G. R. Distinction between the weak hydrogen bond and the van der waals interaction. Chem. Commun. 1998, 891-892.
    [32] Allen, F. H.; Bird, C. M.; Rowland, R. S.; Raithby, P. R. Resonance-induced hydrogen bonding at sulfur acceptors in R_1R_2C=S and R_1CS_2 systems. Acta Cryst. 1997, B53, 680-695.
    [33] Steiner, T.; Kanters, J. A.; Kroon, J. Acceptor directionality of sterically unhindered C-H…O=C hydrogen bonds donated by acidic C-H groups. Chem. Commun. 1996, 1277-1278.
    [34] Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structure chemistry and biology, Oxford University Press, Oxford, 1999.
    [35] Kroon, J.; Kanters, J. A.; van Duijneveldt-van de Rijdt J. C. G. M.; Van Duijneveidt, F. B.; Vliegenthart, J. A. O-H…O Hydrogen bonds in molecular crystals a statistical and quantum-chemical analysis J. Mol. Struct. 1975, 24, 109-129.
    [36] Llamas-Saiz, A. L.; Foces-Foces, C.; Yanez, O. Mo. M.; Elguero, J. Nature of the hydrogen bond: crystallographic versus theoretical description of the O-H…N(sp~2) hydrogen bond. Acta Cryst. 1992, B48, 700-713.
    [37] Yap, G.; Rheingold, A. L.; Das, P.; Crabtree, R. H. A Three-center hydrogen bond in 2, 6-dipbenylpyridinium tetrachloroaurate. Inorg. Chem. 1995, 34, 3474-3476.
    [38] Aullon, G.; Bellamy, D.; Brammer, L.; Bruton, E.; Orpen, A. G.. Metal-bound chlorine often accepts hydrogen bonds. Chem. Commun. 1998, 653-654.
    [39] Brammer, L.; Bruton, E. A.; Sherwood, P. Fluoride ligands exhibit marked departures from the hydrogen bond acceptor behavior of their heavier halogen congeners. New J. Chem. 1999. 23, 965-968.
    [40] Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J. Am. Chem. Soc. 2000, 122, 3746-3753.
    [41] Malone, J. F.; Murray, C. M.; Charlton, M. H.; Docberty, R.; Lavery, A. J. XH…π (pbenyl) interactions theoretical and crystallographic observations. J. Chem. Soc. Faraday Trans. 1997, 93, 3429-3436.
    [42] Worth, G. A.; Wade, R. C. Aromatic-(i+2) amine interaction in peptides. J. Phy. Chem. 1995, 99, 17473-17482.
    [43] Suzuki, S.; Green, P. G.; Bumgarner, R. E.; Dasgupta, S.; Goddard Ⅲ, W. A.; Blake, G. A. Benzene forms hydrogen bonds with water. Science 1992, 257, 942-945.
    [44] Steiner, T.; Schreurs, A. M. M.; Lutz, M.; Kroon, J. Making very short O-H…Ph hydrogen bonds: the example of tetraphenylborate salts. New J. Chem. 2001. 25, 174-178.
    [45] Steiner, T,; Masaon, S.; Tamm, M. M. Neutron diffraction study of aromatic hydrogen bonds: neutron diffraction study of aromatic hydrogen bonds: 5-ethynyl-5H-dibenzo[a, d]-cyclohepten5-ol at 20K. Acta Cryst. 1997, B53, 843-848.
    [46] Steiner, T. Unrolling the hydrogen bond properties of C-H…O interactions. Chem. Commun. 1997, 727-734.
    [47] Steiner, T. Donor and acceptor strengths in C-H…O hydrogen bonds quantified from crystallographic data of small solvent molecules. New J. Chem. 1998, 22, 1099-1103.
    [48] Umezawa, Y.; Tsuboyama, S.; Honda, K.; Uzawa, J.; Nishio, M. CH/π interaction in the crystal structure of organic compounds. A database study. Bull. Chem. Soc. Jpn. 1998, 71, 1207-1213.
    [49] Hadzi, D.; Bratos, S. The hydrogen bond. recent developments in theory and experiment Vol 2, 1976, 565-612.
    [50] Hobza, P.; Havlas, Z. Blue-shifting hydrogen bonds. Chem. Rev. 2000, 100, 4253-4264.
    [51] Novak, A. Struct. Bonding 1974, 18, 177-216.
    [52] Libowitzky, E. Monatsh. Chem. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. 1999, 130, 1047-1059.
    [53] Gilli, G.; Gilli, P. Towards an unified hydrogen-bond theory, J. Mol. Struct. 2000, 552, 1-15.
    [54] Desiraju, G. R.; Murty, B. N. Correlation between crystallographic and spectroscopic properties for C-HO bonds in terminal acetylenes. Chem. Phys. Lett. 1957, 139, 360-361.
    [55 Lutz, B.; van der Maas, J. H.; Kanters, J. A. Spectroscopic evidence for≡C-H…interaction in crystalline steroids and reference compounds, J. Mol. Struct. 1994, 325, 203-214.
    [56] Borycka, S.; Rozenberg, M.; Schreurs, A. M. M.; Kroon, J.; Starikov, E. B.; Steiner, T. A Short C-H…N Hydrogen Bond with a very strong IR spectroscopic effect. New J. Chem. 2001, 25, 1111-1113.
    [57] Lutz, B.; Kanters, J. A. van der Maas, J. H.; Kroon, J.; Steiner, T. Spectroscopic and structural evidence for the hydrogen bond nature of C≡C-H…C=C contacts in ethynyl steroids, J. Mol. Struct. 1998, 440, 81-87.
    [58] Rozenberg, M.; Loewenschuss, A.; Marcus, Y. An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys. Chem. Chem. Phys. 2000, 2, 2699-2702.
    [59] Lutz, B.; Jacob, J.; van der Maas, J. H. Vib. Spectrosc. 1996, 12, 197-206.
    [60] Iogansen, A. V. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides. Spectrochim. Acta 1999, A55, 1585-1612.
    [61] Eckert, H.; Yesinowski, J. P.; Sliver, L. A.; Stolper, E. M. Water in silicate glasses: quantitation and structural studies by proton solid echo and magic angle spinning NMR methods, J. Phys. Chem. 1988, 92, 2055-2064.
    [62] Bertloasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Intramolecular O-H…O hydrogen bonds assisted by resonance, correlation between crystallographic data and ~1H NMR chemical shifts J. Chem. Soc. Perkin Trans. 2 1997, 945-952.
    [63] Harris, T. K.; Zhao, Q.; Mildvan, A. S. NMR studies of strong hydrogen bonds in enzymes and in a model compound. J. Mol. Struct. 2000, 552, 97-109.
    [64] Smirnov, S. N.; Golubez, N. S.; Denisov, G. S.; Benedict, H.; Schah-Mohammedi, P.; Limbach, H. -H. Hydrogen/deuterium isotope effects on the NMR chemical shills and geometries of intermolecular low-barrier hydrogen-bonded complexes. J. Am. Chem. Soc. 1996, 118, 4094-4101.
    [65] Dingley, A. J.; Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide~2 J_(nn) couplings. J. Am. Chem. Soc. 1998, 120, 8293-8297.
    [66] Maruta, G.; Takeda, S.; Imachi, R.; Ishida, T.; Nogami, T.; Yamaguchi, K. Solid-state high-resolution ~1H and ~2D NMR study of the electron spin density distribution of the hydrogen-bonded organic ferromagnetic compound 4-Hydroxyirnino-TEMPO. J. Am. Chem. Soc. 1999, 121, 424-431.
    [67] Majumdar, A.; Patel, D. J. Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc. Chem. Res. 2002, 35, 1-11.
    [68] Viragh, C.; Harris, T. K.; Reddy, P. M.; Massiah, M. A.; Mildvan, A. S.; Kovach, I. M. NMR evidence for a short, strong hydrogen bond at the active site of a cholinesterase. Biochemistry 2000, 39, 16200-16205.
    [69] Russell, K. C.; Leize, E.; van Dorsselaer, A.; Lehn, J. -M. Investigation of self-assembled supramolecular species in solution by IL-ESMS, a new mass spectrometric technique. Angew. Chem. Int. Ed. 1995, 34, 209-213.
    [70] Wang, K.; Schall, O. F.; Gokel, G. W. Supramol. Chem. 1996, 7, 85-90.
    [71] Cheng, X.; Gao, Q.; Smith, R. D.; Simanek, E. E.; Mammen, M.; Whitesides, G. M. Characterization of hydrogen-bonded aggregates in chloroform by electrospray ionization mass spectrometry. J. Org. Chem. 1996, 61, 2204-2206.
    [72] Cheng, X.; Gao, Q.; Smith, R. D.; Simanek, E. E.; Mammen, M.; Whitesides, G. M. Detection of hydrogen-bonded supramolecular complexes using electrospray ionization from chloroform. Rapid Commun. Mass Spectrom. 1995, 9, 312-316.
    [73] Scherer, M.; Sessler, J. L.; Monini, M.; Gebauer, A.; Lynch, V. Self-Assembly of pyrrole-ferrocene hybrids, determined inter alia by a new chemically induced electrospray mass spectrometry technique. Chem. Eur. J. 1998, 4, 152-158.
    [74] Schalley, C. A.; Castellano, R. K.; Brody, M. S.; Rudkevich, D. M.; Siuzdak, G.; Jr. Rebel J. Investigating molecular recognition by mass spectrometry: characterization of calixarene-based self-assembling capsule hosts with charged guests. J. Am. Chem. Soc. 1999, 121, 4568-4579.
    [75] Schalley, C. A.; Martin, T.; Obst, U.; Jr. Rebel J. Characterization of self-assembling encapsulation complexes in the gas phase and solution. J. Am. Chem. Soc. 1999, 121, 2133-2138.
    [76] Schalley, C. A.; Rivera, J. M.; Martin, T.; Santamaria, J.; Siuzdak, G. Jr. Rebek, J. Structural examination of supramolecular architectures by electrospray ionization mass spectrometry. Eur. J. Org. Chem. 1999, 64, 1325-1331.
    [77] Jolliffe, K. A.; Calama, M. C.; Fokkens, R. H.; Nibbering, N. M. M.; Timmerman, P.; Reinhoudt, D. N. Characterization of hydrogen-bonded supramolecular assemblies by MALDI-TOF mass spectrometry after Ag~+ labeling. Angew. Chem. Int. Ed. 1998, 37, 1247-1251.
    [78] Bayer, E.; Gfrorer, P.; Rentel, C. Coordination-ionspray-MS(CIS-MS), a universal detection and characterization method for direct coupling with separation techniques. Angew. Chem. Int. Ed. 1999, 38, 992-995.
    [79] Timmerman, P.; Jolliffe, K. A.; Calama, M. C.; Weidmann, J. -L.; Prins, L. J.; Cardullo, F.; Snellink-Ruel, B. H. M.; Fokkens, R.; Nibbering, N. M. M.; Shinkai, S.; Reinhoudt, D. N. Ag~+ Labeling: a convenient new tool for the characterization of hydrogen-bonded supramolecular assemblies by MALD1-TOF mass spectrometry. Chem. Eur. J. 2000, 6, 4104-4115.
    [80] Scheiner, S. Hydrogen bonding: A theoretical perspective. Oxford University Press, New York, 1997.
    [81] Fulton, R. L.; Perhaes, P. Sharing of electrons in molecules: characterization of hydrogen bonds. J. Phys. Chem. A 1998, 102, 9001-9020.
    [82] Glasstones, S. Trans. Faraday Soc. 1937, 33, 200-214.
    [83] Frederick, J.; Dippy, J. The dissociation constants of monocarboxylic acids; their measurement and their significance in theoretical organic chemistry. Chem. Rev. 1939, 25, 151-211.
    [84] Allerhand, A.; von Rague Schleyer, P. A survey of C-H groups as proton donors in hydrogen bonding. J. Am. Chem. Soc. 1963, 85, 1715-1723.
    [85] Stuor, D. J. The C-H…O hydrogen bond in crystals. Nature 1962, 195, 68-69.
    [86] Stuor, D. J. Evidence for the existence of C-H…O hydrogen bonds in crystals. J. Chem. Soc. 1963, 1105-1110.
    [87] Taylor, R.; Kennard, O. Crystallographic Evidence for the existence of C-H…O, C-H…N, and C-H…Cl hydrogen bonds. J. Am. Chem. Soc. 1982, 104, 5063-5070.
    [88] Green, R. D. Hydrogen bonding by C-H groups. Wiley Interscience, New York, 1974.
    [89] Steiner, T.; Saenger, W. Role of C-H...O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1993, 115, 4540-4547.
    [90] Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 2002, 35, 565-573
    [91] Kroon, J.; Kanters, J. A. non-linearity of hydrogen bonds in molecular crystals. Nature 1974, 248, 667-669.
    [92] Steiner, T.; Saenger, W. Geometry of C-H…O hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1992, 114, 10146-10154.
    [93] Taylor, R.; Kennard, O.; Versichel, W. Geometry of the imino-carbonyl (N-H…O=C) hydrogen bond. 1. Lone-pair directionality. J. Am. Chem. Soc. 1983, 105, 5761-5766.
    [94] Murray-Rust, P.; Glusker, J. P. Directional hydrogen bonding to sp~2 and sp~3 hybridized oxygen atoms and its relevance to ligand-macromoleeule interactions. J. Am. Chem. Soc. 1984, 106, 1018-1025.
    [95] Kroon, C.; Kanters, J. A.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveidt, F. B.; Vliegenthart, J. A. O-H…O Hydrogen bonds in molecular crystals a statistical and quantum-chemical analysis. J. Mol. Struct. 1975, 24, 109-129.
    [96] Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R. Desiraju, G. R. Hydrogen bonding in organometallic crystals. 2. C-H…O hydrogen bonds in bridged and terminal first-row metal carbonyls. J. Am. Chem. Soc. 1995, 117, 3156.
    [97] Jeffrey, G. A.; Saenger, W. Hydrogen bonding in biological structures, Springer-Verlag, New York, 1991.
    [98] Desiraju, G. R.; Steiner, T. The weak hydrogen in structural chemistry and biology. New York, Oxford University Press, 1999.
    [99] Derewenda, Z. S.; Derewenda, U.; Kobos, P. M. (His)C-H…O=C Hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 1994, 241, 83-93.
    [100] Derewenda, Z. S.; Lee, L.; Derewenda, U. The occurence of C-H…O hydrogen bonds in proteins. J. Mol. Biol. 1995, 252, 248-262.
    [101] Bella, J.; Berman, H. M. Crystallograhic evidence for C-H…O hydrogen bonds in collagen triple helix. J. Mol. Biol. 1996, 264, 734-742.
    [102] Wahl, M. C.; Sundaralingam, M. C-H…O hydrogen bonding in biology. Trends Biochem. Sci. 1997, 22, 97-102.
    [103] Fabiola, G. F.; Krishnaswamy, S.; Nagarajan, V.; Pattabhi, V. C-H…O hydrogen bonds in β sheets. Acta Cryst. 1997, D53, 316-320.
    [104] Leonard, G.; Mcauley-Hecht, K.; Brown, T.; Hunter, W. N. Do C-H…O hydrogen bond contribute to the stability of nucleic acid base pairs? Acta Cryst. 1995, D51, 136-139.
    [105] Egli, M.; Gessner, R. V. Stereoelectronic effects of deoxyribose 04' on DNA conformation. Proc. Natl. Acad. Sci. USA 1995, 92, 180-184.
    [106] Chakrabarti, P.; Chakrabarti, S. C-H…O hydrogen bond involving proline residues in α-helices. J. Mol. Biol. 1998, 284, 867-873.
    [107] Musah, R. A.; Jensen, G. M.; Rosenfeld, R. J.; Meree, D. E.; Goodin, D. B. Variation strength of an unconventional C-H to O hydrogen bond in an engineered protein cavity. J. Am. Chem. Soc. 1997, 119, 9083-9084.
    [108] Aravinda, S.; Shamala, N.; Pramanik, A.; Das, C.; Balaram, P. An unusual C-H…O hydrogen bond mediated reversal plypeptide chain direction in a synthetic peptide helix. Biochem. and Biophy. Res. Commun. 2000, 273, 933-936.
    [109] Jiang, L.; Lai, L. C-H…O hydrogen bonds at the protein-protein interfaces, J. Biol. Chem. 2002, 277, 37732-37740.
    [110] Babu, M. M.; Singh, S. K.; Balaram, P. A C-H…O hydrogen bond stabilized polypeptide chain reversal motif at the C terminus of helices in proteins. J. Mol. Biol. 2002, 322, 871-880.
    [111] Pierce, A. C.; Sandretto, K. L.; Bemis, G. W. Kinase inhibitors and the case for C-H…O hydrogen bonds in protein-ligand binding. Proteins 2002, 49, 567-576.
    [112] Lee, K. M.; Chang, H.-C.; Jiang, J.-C.; Chen, J. C. C.; Kao. H.-E.; Lin, S. H.; Lin, I. J. B. C-H…O hydrogen bonds in β-sheetlike networks: combined X-ray crystallography and high-pressure infrared study. J. Am. Chem. Soc. 2003, 125, 12358-12364.
    [113] Sarkhel, S.; Desiraju, G. R. N-H…O, O-H…O, and C-H…O Hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular ecognition. Proteins 2004, 54, 247-259.
    [114] Desiraju, G. R.; Steiner, T. The weak hydrogen bond. Oxford University Press. Oxford, 1999.
    [115] Bednoxitz, A. L.; Post, B. Direct determination of the crystal structure of β-fumaric acid. Acta Cryst.1966, 21,566-571.
    [116] Brown, C. J. The crystal structure of fumaric acid. Acta Cryst. 1966, 21, 1-5.
    [117] Ladell, J.; McDonald, T. R. R.; Schmidt, G. M. J. The crystal structure of α-trans-cinnamie acid. Acta Cryst. 1956, 9, 195.
    [118] Glusker, J. P.; Zacharias, D. E.; Carrell, H. L. Structure refinement and molecular packing of ρ-chloro-trans-einnamic acid and β-(ρ-chlorophenyl)propionic acid. J. Chem. Soc. Perkin Trans 2 1975, 2, 68-74.
    [119] Rabinovitch, D.; Schmidt, G. M. J. Topoehemistry. Part XIX. The crystal structure of monomethyl trans, trans-muconate. J. Chem. Soc. B 1967, 286-289.
    [120] Berkovitch-Yellin, Z.; Leiserowitz, L. Atom-atom potential analysis of the packing characteristics of carboxylic acids. A study based on experimental electron density distributions. J. Am. Chem. Soc. 1982, 104, 4052-4064.
    [121] Trotter, J. A three-dimensional analysis of the crystal structure of ρ-benzoquinone. Acta. Cryst. 1960, 13, 86-95.
    [122] Berkovitch-Yellin, Z.; Leiserowitz, L. The role played by C-H…O and C-H…N interactions in determining molecular packing and conformation. Acta. Cryst. 1984, B40, 159-165.
    [123] Keegstra, E. M. D.; Spek, A. L.; Zwikker, J. W.; lenneskens, L. W. The crystal structure of 2-methoxy-1, 4-benzoquinone: molecular recognition involving intermolecular dipole-dipole and C-H…O hydrogen bond interactions. J. Chem. Soc. Chem. Commun. 1994, 1633-1634.
    [124] Müller, G.; Lutz, M.; Harder, S. Methyl group conformation-determining intermolecular C-H…O hydrogen bonds: structure of N-methyl-2-pyrrolidone. Acta Cryst. 1996, B52, 1014-1022.
    [125] Desiraju, G. R.; Kashino, S.; Coombs, M. M.; Glusker, J. P. C-H…O packing motifs in some cyclopenta[a] phenanthrenes. Acta. Cryst. 1993, B49, 880-892.
    [126] Kuduva, S. S.; Craig, D. C.; Nangia, A.; Desiraju, G. R. Cubanecarboxylic Acids. Crystal Engineering considerations and the role of C-H...O hydrogen bonds in determining O-H…O networks. J. Am. Chem. Soc. 1999, 121, 1936-1944.
    [127] Harris, C. D.; Holder, A. J. Natural bond orbital evaluation of AM1-predicted C-H…O hydrogen bonds in dimmers of 1,5,7,11-tetraoxaspiro[5.5]Undecane. Cryst. Growth and Des. 2003, 3, 239-246.
    [128] Benoit, D. M.; Coumbafides, G. S.; Dingjan, M.; Eames, J.; Ghilagaber, S.; Motevalli, M. C-H…O hydrogen bonding induced conformation of (s,s)-1, 3-benzenedisulfonyl bis[(4S)-4-(ethyl ester)-oxazolidin-2-one]. CrystEngComm. 2005, 7, 454-457.
    [129] Steiner, T.; Saenger, W. Role of C-H…O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. J. Am. Chem.. Soc. 1993, 115, 4540-4547.
    [130] Steiner, T.; Saenger, W. Weak polar host-guest interactions stabilizing a molecular cluster in a cyclodexlrin cavity: C-H…O and C-H…π contacts in β-cyclodextdn-But-2-yne-1, 4-diol heptahydrate. J. Chem. Soc. Chem. Commun. 1995, 2087-2088.
    [131] Saenger, W.; Steiner, T. Cyclodextrin inclusion complexes: Host-guest interactions and hydrogen-bonding networks. Acta Cryst. 1998, A54, 798-805.
    [132] Bodige, S. G.; Rogers, R. D.; Blackstock, S. C. Supramolecular networks via pyridine N-oxide CH…O hydrogen bonding in the crystal structures of 2, 2'-dithiobis(pyridine N-oxide) and its complexes with 1, 2, 4, 5-tetracyanobenzene and pyromellitic dianhydride. Chem. Commun. 1997, 1669-1670.
    [133] Meadows, E. S.; De Wall, S. L.; Barbour, L. J.; Fronczek, F. R.; Kim, M. Gokei, G. W. Structural and dynamic evidence for C-H…O hydrogen bonding in lariat ethers: implications for protein structure. J. Am. Chem. Soc. 2000, 122, 3325-3335.
    [134] Houk, K. N.; Menzer, S.; Newton, S. P.; Raymo, F. M.; Stoddart, J. F. ; Williams, D. J. [C-H…O] interactions as a control element in supramolecular complexes: Experimental and theoretical evaluation of receptor affinities for the binding of bipyfidinium-based guests by catenated hosts. J. Am. Chem. Soc. 1999, 121, 1479-1487.
    [135] Raymo, F.; Bartbergcr, M. D.; Houk, K. N.; Stoddart, J. F. The magnitude of [C-H…O] hydrogen bonding in molecular and supramolecular assemblies. J. Am. Chem. Soc. 2001, 123, 9264-9267.
    [136] Apel, S.; Lennartz, M.; Nassimbeni, L. R.; Weber, E. Weak hydrogen bonding as a basis for concentration-dependent guest selectivity by a cyclophane host. Chem. Eur. J. 2002, 8, 3678-3686.
    [137] Vishweshwar, P.; Nangia, A.; Lynch, V. M. Recurrence of carboxylic acid-pyridine supramolecular synthon in the crystal structures of some pyrazinecarboxylic acids. J. Org. Chem. 2002, 67, 556-565.
    [138] Baurcs, P. W.; Rush, J. R.; Schroeder, S. D.; Beatty, A. M. Directed intermolecular association complementary molecular edges in 6-methoxycoumarin. Cryst. Growth and Des. 2002, 2, 107-110.
    [139] Kumar, V. S. S.; Pigge, F. C.; Rath, N. P. C-H...O hydrogen bonding induced guest inclusion and supramolecular isomerism in 1, 3, 5-Tris(4-cyanobenzoyl)benzcnc. Cryst. Growth and Des. 2004, 4, 651-653.
    [140] Zhang, X.-L.; Chen, X.-M. Supramolecular architectures and helical water chains in cocrystals of melamine and aromatic carboxylic acids. Cryst. Growth and Des. 2005, 5, 617-622.
    [141] Du, M.; Zhang, Z.-H.; Zhao, X.-J. Cocrystallization of bent dipyridyl type compounds with aromatic dicarboxylic acids: Effect of the geometries of building blocks on hydrogen-bonding supramolecular patterns. Cryst. Growth and Des. 2005, 5, 1199-1208.
    [142] Guo, W.-S.; Guo, F.; Wu, X.-D.; Tong, J.; Wang, Z.-H. Role of CH/π, CH/O weak hydrogen bonds in constructing inclusion compounds of 2,6-Bis(α-phenylbenzyl)-1, 5-naphthalenediol. Acta Chimica Sinica 2005, 63, 1525-1530.
    [143] May, E.; Destro, R.; Gatti, C. The unexpected and large enhancement of the dipole moment in the 3,4-Bis(dimethylamino)-3-cyclobutene-1,2-dionc (DMACB) molecule upon crystallization: a new role of the intermolccular CH…O interactions. J. Am. Chem. Soc. 2001, 123, 12245-12254.
    [144] Gil, B.; Forniés, J.; Gómez, J.; Lalinde, E.; Martin, A.; Morcno, M. T. Influence of solvent and weak C-H...O contacts in the self-assembled [Pt2M4{CtC(3-OMe)C6H4}8] (M)=Cu, Ag) clusters and their role in the luminescence behavior. Inorg. Chem. 2006, 45, 7788-7798.
    [145] Desiraju, G. R. Crystal engineering. The design of organic solids; Elsevier: Amsterdam, 1989; 142-164.
    [146] Xu, X.-J.; Tang, Y.-Q. Crystal engineering and its application in chemistry. Chin. J. Inorg. Chem. 2000, 16, 157-166.
    [147] Schmidt, M. J. Pure Appl. Chem. 1971, 27, 647-678.
    [148] Desiraju, G. R. Supramlecular synthons in crystal engineering-a new organic synthesis. Angew Chem., Int. Ed. 1995, 34, 2311-2327.
    [149] Desiraju, G. R. The C-H...O hydrogen bond: structure implications and supramolecular design. Acc. Chem. Res. 1996, 29, 441-449.
    [150] Sharma, C. V. K.; Panneerselvam, K.; Pilati, T.; Dessiraju, G. R. Molecular recognition via C-H...O hydrogen bonding. Crystal structure of the 1 : 1 Complex 4-Nitrobenzoie Acid-4-(N, N-Dimethylamino)benzoic acid. J. Chem. Soc. Chem. Commun. 1992, 832-833.
    [151] Biradha, K.; Sharma, C. V. K.; Panneerselvam, K.; Shimoni, L.; Carreil, H. L.; Zachafias, D. E.; Desiraju, G. R. Solid-state supramolecular assembly via C-H...O hydrogen bonds: crystal structures of the complexes of 1,3,5=Trinitrobenzene with Dibenzylideneaeetone and 2, 5-Dibenzylidenecyclopentanone. J. Chem. Soc., Chem. Commun. 1993, 1473-1475.
    [152] Reddy, D. S.; Goud, B. S.; Panneerselvam, K.; Desiraju, G. R. C-H...N mediated hexagonal network in the crystal structure of the 1 : 1 molecular complex 1,3,5-tricyanobenzene-hexamethylbenzene. J. Chem. Soc., Chem. Commun. 1993, 663-664.
    [153] Reddy, D. S.; Parmeerselvam, K.; Desiraju, G. R.; Carrell, C. J.; Carrell, H. L. 1,3,5-Tricyanobenzene. Acta Cryst. 1995, C51, 2352-2354.
    [154] Thalladi, V. R.; Panneerselvam, K.; Carrell, C. J.; Carrell, H. L.; Desiraju, G. R. Hexagonal supramoleeular networks in the crystal structure of the 1:1 molecular complex trimethylisoeyanurate-1,3,5-trinitrobenzene. J. Chem. Soc., Chem. Commun. 1995, 341-342.
    [155] Thalladi, V. R.; Brasselet, S.; Blaser, D.; Boese, R.; Zyss, J.; Nangia, A.: Desiraju, G. R. Engineering of an octupolar non-linear optical crystal: tribenzyl isocyanurate. Chem. Commun. 1997, 1841-1842.
    [156] Nangia, A.; Desiraju, G. R. Supramolecular structures-reason and imagination. Acta Cryst. 1998, A54, 934-944.
    [157] Davidson, M. G.; Goeta, A. E.; Howard, J. A. K.; Lamb, S.; Mason, S. A. The shortest C-H…O hydrogen bonds yet determined by single crystal neutron diffraction: a structural study of two phosphonium aryloxides. New J. Chem. 2000, 24, 477-479.
    [158] Davidson, M. G.; Dillon, K. B.; Howard, J. A. K.; Lamb, S.; Roden, M. D. The fast synthesis, isolation and X-ray structure of a phosphonium phosphide, (Ph_3PMe)~+{[C_6H_2(CF_3)_3-2,4,6]_2P}~(-1). J. Organomet. Chem. 1998, 550, 481-484.
    [159] Davidson, M. G.; Lamb, S. The first structural characterization of a phosphonium amide: synthesis, isolation and molecular structure of (Ph_3PEt)~+(NPh_2)~-. Polyhedron 1997, 16, 4393-4395.
    [160] Davidson, M. G. Protonation of an ylide leads to a unique C-H…O hydrogen-bonded dimer: the first synthesis, isolation and X-ray structural characterisation of a phosphonium aryloxide. J. Chem. Soc., Chem. Commun. 1995, 919-920.
    [161] Broder, C. K.; Davidson, M. G.; Forsyth, V. T.; Howard, J. A. K.; Lanb, S.; Mason, S. A. On the reliability of C-H…O interactions in crystal engineering: synthesis and structure of two hydrogen bonded phosphonium Bis(aryloxide) Salts. Cryst. Growth and Des. 2002, 2, 163-169.
    [162] Moorthy, J. N.; Venkatakrishnan, P. ; Mal, P.; Venugopalan, P. Solid-state diphotocyclization of iso-and terephthalaldehydes via dihalogen substitution. J. Org. Chem. 2003, 68, 327-330.
    [163] Moorthy, J. N.; Venkatakrishnan, P.; Mal, P.; Venugopalan, P. Crystal engineering: identification of a unique supramolecular synthon based on C=O…X Interaction in halogensubstituted aromatic carboxaldehydes. Cryst. Growth and Des. 2003, 3, 581-585.
    [164] Moorthy, J. N.; Natarajan, R.; Venugopalan, P. Identification of a new supramolecular ynthon in o-anisaldehydes: molecular self-assembly into tapes and staircases, J. Mol. Struct. 2005, 741, 107-114.
    [165] Thaimattam, R.; Xue, F.; Sarma, J. A. R. P.; Mak, T. C. W.; Desiraju, G. R. Inclusion compounds of Tetrakis(4-nitrophenyl)methane: C-H…O networks, pseudopolymorphism, and structural transformations. J. Am. Chem. Soc. 2001, 123, 4432-4445.
    [166] Desiraju, G. R. C-H…O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chem. Commun. 2005, 2995-3001.
    [167] Banerjee, R.; Bhatt, P. M.; Desiraju, G. R. Solvates of sildenafil saccharinate. A new host material. Cryst. Growth and Des. 2006, 6, 1468-1478.
    [168] Kishan, K. V. R.; Desiraju, G. R. Crystal engineering a solid-state Diels-Alder reaction. J. Org. Chem. 1987, 52, 4640-4641.
    [169] Desiraju, G. R.; Kamala, R.; Kumari, B. H.; Sarma, J. A. R. P. Crystal engineering via nonbonded interactions involving oxygen. X-Ray crystal structures of 3,4-methylenedioxycinnamic acid and 3,4-dimethoxycinnamic acid. J. Chem. Soc. Perkin. Trans. 2. 1984, 181-189.
    [170] Corey, E. J.; Rohde, J. J.; Fischer, A.; Azimioara, M. D. A hypothesis for conformational restriction in complexes of formyl compounds with boron lewis acids. Experimental evidence for formyl C-H…O and C-H…F hydrogen bonds. Tetrahedron Lett. 1997, 38, 33-36.
    [171] Corey, E. J.; Rohde, J. J. The application of the formyl C-H…O hydrogen bond postulate to the understanding of enantioselective reactions involving chiral boron lewis acids and aldehydes. Tetrahedron Lett. 1997, 38, 37-40.
    [172] Corey, E. J.; Bames-Seeman, D.; Lee, T. W. The formyl C-H…O hydrogen bond as a key to transition-state organization in enantioselective ailylation, aldol and Dieis-Alder reactions catalyzed by chiral lewis acids. Tetrahedron Lett. 1997, 38, 1699-1702.
    [173] Corey, E. J.; Bames-Seeman, D.; Lee, T. W. The Formyl C-H…O hydrogen bond as a critical factor in enantioselective reactions of aldehydes, Part 4. aldol, ethylation, hydrocyanation and Diels- Alder Reactions catalyzed by chiral B, Ti and Al lewis acids. Tetrahedron Lett. 1997, 38, 4351-4354.
    [174] Corey, E. J. Catalytic enantioselective Diels-Alder reactions: methods, mechanistic fundamentals, Pathways, and applications. Angew. Chem. Int. Ed. 2002, 41, 1650-1667.
    [175] Solà, J.; Riera, A.; Verdaguer, X.; Maestro, M. A. Phosphine-substrate recognition through the C-H…O hydrogen bond: application to the asymmetric Pauson-Khand reaction. J. Am. Chem. Soc. 2005, 127, 13629-13633. J. Am. Chem. Soc. 2006, 128, 13312.
    [176] Desiraju, G. D. Current opinion in solid state and materials science, Vol 2, Elsevier Science 1997.
    [177] Sharma, C. V. K.; Rogers, R. D. Mater. Today 1998, 1, 27.
    [178] Reinhoudt, D. N. Perspectives in supramolecular chemistry, supramolecular materials and technologies, Vol 4, Wiley, Chichester, 1999.
    [179] Hillmyer, M. A.; Moore, J. S. Special issue on materials for the 21st century, J. Phys. Org. Chem. 2000, 13, 765-767.
    [180] Desiraju, G. D. Crystal engineering, from molecules to materials. J. Mol. Struc. 2003, 656, 5-15.
    [181] Keegstra, E. M. D.; Van der Mieden, V.; Zwikker, J. W.; Jenneskens, L. W.; Schouten, A.; Kooijman, H.; Veldman, N.; Spek, A. L. Self-organization of 2,5-Di-n-Alkoxy-1,4-benzoquinones in the solid state: molecular recognition involving intermolecular dipole-dipole, weak C-H…O=C hydrogen bond and van der Waals interactions. Chem. Mater. 1996, 8, 1092-1105.
    [182] Thalladi, V. R.; Brasselet, S.; Weiss, H.-C.; Blalser, D.; Katz, A. K.; Carrell, H. L. ; Boese, R.; Zyss, J.; Nangia, A.; Desiraju, G. R. Crystal engineering of some 2,4,6-Triaryloxy-1,3,5-triazines: octupolar nonlinear materials. J. Am. Chem. Soc. 1998, 120, 2563-2577.
    [183] Thallapall, P. K.; Desiraju, G. R.; Bagieu-Beucher, M.; Masse, R.; Bourgogne, C.; Nicoud, J.-F. 1, 3-Dibromo-2,4,6-trinitrobenzene (DBTNB). Crystal engineering and perfect polar alignment of two-dimensional hyperpolarizable chromophores. Chem. Commun. 2002, 1052-1953.
    [184] Zyss, J.; Ledoux-Rak, I.; Weiss, H.-C.; Blaser, D.; Boese, R.; Thallapally, P. K.; Thalladi, V. R.; Desiraju, G. R. Coupling octupoles in crystals: the case of the 1,3,5-Trinitrobenzenetriphenylene 1:1 molecular co-crystal. Chem. Mater. 2003, 15, 3063-3073.
    [185] Muthuraman, M.; Masse, R.; Nicoud, J.-F.; Gautam R. Desiraju, G. R. Molecular complexation as a design tool in the crystal engineering of noncentrosymmetric structures. Ideal orientation of chromophores linked by O-H…O and C-H…O hydrogen bonds for nonlinear optics. Chem. Mater. 2001, 13, 1473-1479.
    [186] Klaholz, B. P.; Moras, D. C-H…O hydrogen bonds in the nuclear receptor RARγ-a potential tool for drug selectivity. Structure 2002, 10, 1197-1204.
    [187] Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002, 277, 46265-46272.
    [188] Aparna, V.; Rambabu, G.; Panigrahi, S. K.; Sarma, J. A. R. P.; Desiraju, G. R. Virtual screening of 4-anilinoquinazoline analogues as EGFR kinase inhibitors: importance of hydrogen bonds in the evaluation of poses and scoring functions. J. Chem. Inf. Model. 2005, 45, 725-738.
    [1] Schiff, H. Liebigs Ann. Chem. 1877, 189, 157.
    [2] Freeman, W. A.; Mock, W. L.; Shih, N.-Y. Cucuribituril. J. Am. Chem. Soc. 1981, 103, 7367-7368.
    [3] Mock, W. L. Supramolecular chemistry II-host design and molecular recognition. Top. Curr. Chem. 1995, 175, 1-24.
    [4] Smeets, J. W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spek, A. L.;Smeets, W. J. J.; Nolte, R. J. M. Novel concave building block for the synthesis of organic hosts. J. Am. Chem. Soc. 1987, 109, 928-929.
    [5] Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Molecular and supramolecular objects from glycoluril. Acc. Chem. Res. 1999, 32, 995-1006.
    [6] Wyler, R.; de Mendoza, J.; Rebel J. Jr. A synthetic cavity assembles throughself-complementary hydrogen bonds. Angew. Chem. Int. Ed. 1993, 32, 1699-1701.
    [7] Kang, J.; Rebel J. Jr. Acceleration of a Diels-Alder reaction by a self-assembled molecular capsule. Nature 1997, 385, 50-52.
    [8] Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr. Molecular encapsulation. Angew. Chem. Int. Ed. 2002, 41, 1488-1508.
    [9] Isaacs, L.; Witt, D. Enantiomeric self-recognition of a facial amphiphile triggered by [{Pd(ONO2)(en)}2]. Angew. Chem. Int. Ed. 2002, 41, 1905-1907.
    [10] Wu, A.; Chakraborty, A.; Fettinger, J. C.; Flowers, R. A., II.; lsaacs, L. Molecular clips that undergo heterochiral aggregation and self-sorting. Angew. Chem. Int. Ed. 2002, 41, 4028-4031.
    [11] Wu, A,; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. C.; Fettinger, J. C.; lsaacs, L. Methylene-bridged glyeoluril dimers: synthetic methods. J. Org. Chem. 2002, 67, 5817-5830.
    [12] Lagona, J.; Fettinger, J. C.; lsaacs, L. Cucurbit[n]uril analogues: synthetic and mechanistic studies. J. Org. Chem. 2005, 70, 10381-10392.
    [13] Lee, J. W.; Samal, S.; Selvapaiam, N.; Kim, H.-J.; Kim, K. Cucurbituil homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621-630.
    [14] Liu, S.; Zavalij, P. Y.; Isaacs, L. Cucurbit[10]uril. J. Am. Chem. Soc. 2005, 127, 16798-16799.
    [15] lsaacs, L.; Park, S.-K.; Liu, S.; Ko, Y. H.; Selvapalam, N.; Kim, Y.; Kim, H.; Zavalij, P. Y.; Kim, G.-H.; Lee, H.-S.; Kim, K. The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 2005, 127, 18000-18001.
    [16] Huang, W.-H.; Liu, S.; Zavalij, P. Y.; Isaacs, L. Nor-seco-cucurbit[10]uril exhibits homotropic allostefism. J. Am. Chem. Soc. 2006, 128, 14744-14745.
    [17] Reek, J. N. H.; Engelkamp, H.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Conformational behavior and binding properties of naphthalene-walled clips. Chem. Eur. J. 1998, 4, 716-722.
    [18] Bumett, C. A.; Witt, D.; Fettinger, J. C.; Isaacs, L. Acyclic congener of cucurbituril: Synthesis and recognition properties. J. Org. Chem. 2003, 68, 6184-6191.
    [19] Sijbesma, R. P.; Kentgens, A. P. M.; Lutz, E. T. G.; Maas, J. H. van der; Nolte, R. J. M. Binding features of molecular clips derived from diphenylglycoluril. J. Am. Chem, Soc. 1993, 115, 8999-9005.
    [20] Nunen, J. L. M. van; Folmer, B. F. B.; Nolte, R. J. M. Induction of liquid crystallinity by host-guest interactions. J. Am. Chem. Soc. 1997, 119, 283-291.
    [21] Reek, J. N. H.; Priem, A. H.; Engeikamp, H.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Binding features of molecular clips. Separation of the effects of hydrogen bonding and π-π interactions. J. Am. Chem. Soc. 1997, 119, 9956-9964.
    [22] Sijbesma, R. P.; Wijmenga, S. S.; Nolte, R. J. M. A molecular clip that binds aromatic guests by an induced-fit mechanism. J. Am. Chem. Soc. 1992, 114, 9807-9813.
    [23] Schenning, A. P. H. J.; Bruin, B. de; Feiters, M. C.; Nolte, R. J. M. Molecular golfbalis: Vesicles from bowl-shaped host molecules. Angew. Chem. Int. Ed. 1994, 33, 1662-1663.
    [24] Elemans, J. A. A. W.; Boerakker, M. J.; Holder, S. J.; Rowan, A. E.; Cho, W.-D.; Percec, V.; Noite, R. J. M. Plastic-and liquid-crystalline architectures from dendritic receptor molecules. Proc. Natl. Acad. Sci. 2002, 99, 5093-5098.
    [25] Reek, J. N. H.; Kros, A.; Nolte, R. J. M. Novel water soluble molecular clips. Toward nanostructures with controlled shape. Chem. Commun. 1996, 245-247.
    [26] Elemans, J. A. A. W.; Gelder, R. de; Rowan, A. E.; Nolte, R. J. M. Bipyridine functionalized molecular clips. Self-assembly of their ruthenium complexes in water. Chem. Commun. 1998, 1553-1554.
    [27] Thordarson, P.; Bijsterveld, J. E. A.; Rowan, A. E.; Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 2003, 424, 915-918.
    [28] Martens, C. F.; Blonk, H. L.; Bongers, T.; van der Linden, J. G. M.; Beurskens, G.; Beurskens, P. T.; Smitscand, J. M. M.; Nolte, R. J. M. Synthesis and X-Ray structure of a novel concave tetradentate sulphur ligand system: Electrochemical characterization of a semi-encapsulated [4Fe-4S]~(2+) cluster complex. J. Chem. Soc. Chem. Commun. 1991, 1623-1625.
    [29] Johnson, D. W.; Palmer, L. C.; Hof, F.; lovine, P. M.; Rebek, J. New supramolecular organization for a glycoluril: chiral hydrogen-bonded ribbons. Chem. Commun. 2002, 2228-2229.
    [30] Johnson, D. W.; Hof, F.; Palmer, L. C.; Martin, T.; Obst, U.; Rebel J. Jr. Glycoluril ribbons tethered by complementary hydrogen bonds. Chem. Commun. 2003, 1638-1639.
    [31] Moon, K.; Chen, W.-Z.; Ren, T.; Kaifer, A. E. A unique hydrogen bonding network in the crystal structure of 3α, 6α-diphenylglycoluril. CrystEngComm. 2003, 5, 451-453.
    [32] Wu, A.; Fettinger, J. C.; lsaacs, L. Glycoluril derivatives form hydrogen bonded tapes rather than cucurbit[n]uril congeners. Tetrahedron 2002, 58, 9769-9777.
    [33] Reek, J. N. H.; Elemans, J. A. A. W.; de Gelder, R.; Beurskens, P. T.; Rowan, A. E.; Nolte, R. J. M. Self-association and self-assembly of molecular clips in solution and in the solid state. Tetrahedron 2003, 59, 175-185.
    [34] Burnett, C. A.; Lagona, J.; Wu, A.; Shaw, J. A.; Coady, D.; Fettinger, J. C.; Day. A. I.; Isaacs, L. Preparation of glycoluril monomers for expanded cucurbit[n]uril synthesis. Tetrahedron 2003, 59, 1961-1970.
    [35] Diededch, F.; lonas, U.; Gramlich, V.; Herrmann, A.; Ringsdorf, H.; Thilgen, C. Synthesis of a fullerene derivative of benzo 18crown-6 by Diels-Alder reaction: complexation ability, amphiphilic properties, and X-ray crystal structure of a dimethoxy-1, P(methano[1,2]-benzeneomethano)fullerene-60] benzene clathrate. Heir. Chem. Acta 1993, 76, 2445-2453.
    [36] Shahak, I.; Bergmann, E. D. The masking of carbonyl groups by 1, 2-dimethyl-4,5-di(mercaptomethyl)-benzene. J. Chem. Soc. C 1966, 1005-1009.
    [37] Ardecky, R. J.; Kerdesky, F. A. J.; Cava, M. P. Dienophilic reactions of 3-[(trimethylsilyl)oxy]-3-buten-2-one. J. Org. Chem. 1981, 46, 1483-1485.
    [38] Kang, J.; Hilmersson, G.; Santamaria, J.; Rebek, J. Jr. Diels-Alder reactions through reversible encapsulation. J. Am. Chem. Soc. 1998, 120, 3650-3656.
    [39] Knolker, H. J.; Bauermeister, M.; Pannek, J. B. Transition metal-diene complexes in organic synthesis-13. highly chemo-and stereoselective oxidations of tricarbonyliron-cyclohexadiene complexes: synthesis of 4-deoxycarbazomycin B. Tetrahedron 1993, 49, 841-862.
    [40] Lai, Y.-H.; Yap, A. H.-T. Synthesis and rigid conformers of 14,15-dimethyl-2, 11-dithia[3.3] (1,3)(1,4)cyclophane and 12,13-dimethyl[2.2](1,3)(1,4)cyclophane. J. Chem. Soc., Perkin Trans. 2 1993, 1373-1377.
    [41] Isaacs, L.; Witt, D.; Fettinger, J. C. Design, synthesis and self-association behavior of water soluble self-complementary facial amphiphiles. Chem. Commun. 1999, 2549-2550.
    [42] Witt, D.; Lagona, J.; Damkaci, F.; Fettinger, J. C.; Isaacs, L. Diastereoselective formation of methylene-bridged glycoluril dimers. Org. Lett. 2000, 2, 755-758.
    [43] Reek, J. N.; Elemans, J. A. A. W.; Gelder, R.; Gelder, R.; Beurskens, P. T.; Rowan, A. E.; Noite, R. J. M. Self-association and self-assembly of molecular clips in solution and in the solid state. Tetrahedron 2003, 59, 175-185.
    [1] Jansen, R. J.; Rowan, A. E.; Gelder, R.; Scheeren, H. W.; Noite, R. J. M. Synthesis, X-ray and binding properties of molecular clips based on dimethylpropanediurea. Chem. Commun. 1998, 121-122.
    [2] Jansen, R. J.; Rowan, A. E.; Gelder, R.; Scheeren, H. W.; Nolte, R. J. M. Molecular clips based on propanediurea. Exceptionally high binding affinities for resorcinol guests. J. Org. Chem. 2001, 66, 2643-2653.
    [3] Elemans, J. A. A. W.; Gelder, R.; Rowan, A. E.; Nolte, R. J. M. Bipyridine functionalized molecular clips. Self-assembly of their ruthenium complexes in water. Chem. Commun. 1998, 1553-1554.
    [4] Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. Hierarchical self-assembly of amphiphilic metallohosts to give discrete nanostructures. J. Am. Chem. Soc. 2002, 124, 1532-1540.
    [5] Holder, S. J.; Elemans, J. A. A. W.; Barberá J.; Rowan, A. E.; Nolte, R. J. M. Host-guestcomplexes with tuneable solid state structures. Chem. Commun. 2000, 355-356.
    [6] Holder, S. J.; Eiemans, J. A. A. W.; Donners, J. J. J. M.; Gelder, R.; Barberá, J.; Rowan, A. E.; Noite, R. J. M. Lamellar organic thin films through self-assembly and molecular recognition. J. Org. Chem. 2001, 66, 391-399.
    [7] Schalley, C. A.; Rivera, J. M.; Marry, T. Santamary, J.; Siuzdak, G.; Rebek, J. Jr. Structural examination of supramolecular architectures by electrospray ionization mass spectrometry. Eur. J. Org. Chem. 1999, 1325-1331.
    [8] Toknnaga, Y.; Rebek, J. Jr. Chiral capsules. 1. Softballs with asymmetric surfaces bind camphor derivatives. J. Am. Chem. Soc. 1998, 120, 66-69.
    [9] Wu, A,; Chakraborty, A.; Witt, D.; Lagona, J.; Damkaci, F.; Ofori, M. A.; Chiles, J. C.; Fettinger, J. C.; lsaacs, L. Methylene-bridged glycoluril dimers: synthetic methods. J. Org. Chem. 2002, 67, 5817-5830.
    [10] Creaven, B. S.; Gallagher, J. F.; McDonagh, J. P.; McGinley, J.; Murray, B. A.; Whelan, G. S. A new binding motif in molecular clips: 1-D polymeric self-inclusion in a phenol complex of a bis(methoxyphenyl)glycoluril. Tetrahedron 2004, 60, 137-143.
    [11] Himes, V. L.; Hurrard, C. R.; Mighell, A. D. 3a, 6a-Dimethylglycouril {3a, 6a-dihydro-3a, 6a-dimethylimidazole[4,5-d]imidazole-2,5(1H, 6H)-dione}. Acta Cryst. B34, 3102-3104.
    [12] Kutepov, D. F.; Potashnik, A. A.; Khokhlov, D. N.; Tuzhilkina, V. A. J. Gen. Chem. USSR 1959, 29, 840-842.
    [13] Butler, A. R. ; Leitch, E. Mechanistic studies in the chemistry of urea. part 4.1 reactions of urea, 1-methylurea, and 1.3-dimethylurea with benzil in acid solution. J. Chem. Soc., Perkin Trans. 2, 1980, 103-105.
    [14] Reek, J. N. H.; Kros, A.; Nolte, R. J. M..Novel water soluble molecular clips. Towards nanostructures with controlled shape. Chem. Commun. 1996, 245-246.
    [15] W. Paw, R. Eisenberg. Synthesis, characterization, and spectroscopy of dipyridocatecholate complexes of platinum. Inorg. Chem. 1997, 36, 2287-2293.
    [16] Burnett, C. A.; Lagona, J.; Wu, A.; Shaw, J. A.; Coady, D.; Fettinger, J. C.; Day. A. I.; Isaacs, L. Preparation of glycoluril monomers for expanded cucurbit[n]uril synthesis. Tetrahedron 2003, 59, 1961-1970.
    [17] Smeets, J. W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spek, A. L.; Smeets, W. J. J.; Nolte, R. J. M. Novel concave building block for the synthesis of organic hosts. J. Am. Chem. Soc. 1987, 109, 928-929.
    [18] Isaacs, L.; Witt, D.; Fettinger, J. C. Design, synthesis and self-association behavior of water soluble self-complementary facial amphiphiles. Chem. Commun. 1999, 2549-2550.
    [1] Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 1996,35, 1154-1196.
    [2] Cram, D. J. The design of molecular hosts, guests and their complexes. Angew. Chem. Int. Ed. Engl. 1988, 27, 1009-1112.
    [3] Reinhoudt, D. N.; Stoddart, J. F.; Ungaro, R. Supramolecular science, Where it is and where it is going. Chem. Eur. J. 1998, 4, 1349-1351.
    [4] 刘育等,超分子化学,南开大学出版社,大津,2001年12月,第一版。
    [5] Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artifical molecular machines, dngew. Chem. Int. Ed. Engl. 2000, 39, 3348-3391.
    [6] Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418-2422.
    [7] Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621-630.
    [8] Rebek, J. Jr. Reversible encapsulation of disc-shaped guests by a synthetic, self-assembled host, Science 1996, 271,487-489.
    [9] Swiegers, G. F.; Malefetse, T. J. New self-assembled structural motifs in coordination chemistry. Chem. Rev. 2000, 100, 3483-3538.
    [10] Smeets, J. W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spelt, A. L.; Smeets, W. J. J.; Nolte, R. J. M. Novel concave building block for the synthesis of organic hosts. J. Am. Chem. Soc. 1987, 109, 928-929.
    [11] Sijbesma, R. P.; Spek, A. L.; Noite, R. J. M. Synthesis of concave receptors derived from diphenyiglycoluril. Recl. Tray. Chim. Pays-Bas. 1993, 112, 643-647.
    [12] Sijbesma, R. P.; Kentgens, A. P. M.; Lutz, E. T. G. van der Maas, J. H.; Nolte, R. J. M. Binding features of molecular clips derived from diphenyiglycoluril. J. Am. Chem. Soc. 1993, 115, 8999-9005.
    [13] Kang, J.; Hilmersson, G.; Santamaria, J.; Rebek, J. Jr. Diels-alder reactions through reversible encapsulation. J. Am. Chem. Soc. 1998, 120, 3650-3656.
    [14] Gosling, P. A.; Sijbesma, R. P.; Spek, A. L.; Nolte, R. J. M. Synthesis and x-ray structure of a novel cavity-containing dinuclear nickel(II) complex. Recl. Trav. Chim. Pays-Bas. 1993, 112, 404-406.
    [15] Niele, F. G. M.; Nolte, R. J. M. Palladium(II) cage compounds based on diphenylglycoluril. J. Am. Chem. Soc. 1988, 110, 172-177.
    [16] Niele, F. G. M.; Zwikker, J. W.; Nolte, R. J. M. Synthesis and properties of a novel cavityforming ligand-system based on diphenylglycoluril. Tetrahedron Lett. 1986, 27, 243-246.
    [17] Holder, S. J.; Elemans, J. A. A. W.; Donners, J. J. J. M.; Boerakker, M. J.; Gelder, R.; Barberá, J.; Rowan, A. E.; Nolte, R. J. M. Lamellar organic thin Films through sels-assembly and molecular recognition. J. Org. Chem. 2001, 66, 391-399.
    [18] Reek, J. N. H.; Elemans, J. A. A. W.; de Gelder, R.; Beurskens, P. T.; Rowan, A. E.; Nolte, R. J. M. Self-association and Self-assembly of molecular clips in solution and in the solid state. Tetrahedron 2003, 59, 175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700