用户名: 密码: 验证码:
金纳米棒的表面修饰及其生物识别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物分子与球形金纳米颗粒结合的杂化体系在生物分析和生物技术应用中都有着广泛的应用。DNA、抗原或抗体等生物分子功能化的金纳米颗粒在许多不同的生物传感体系中作为活性单元。球形纳米金颗粒能够被广泛应用在于它的表面可以简便有效的进行修饰,进而与生物分子偶联。
     近年来,各向异性(非球形)的金纳米颗粒,如金纳米棒,受到了人们的广泛关注。金纳米棒具有独特的可调控光学性质和几何结构,在生物分析中有着潜在的应用。但事实上,对金纳米棒与生物分子的杂化体系在生物分析中的应用没有得到广泛的研究,主要原因在于:
     (1)在合成金纳米棒过程中使用大量的表面活性剂,十六烷基三甲基溴化铵(CTAB),且CTAB分子在金纳米棒表面吸附,生物分子很难与金纳米棒偶联,从而限制了在生物分析中的应用;
     (2)金纳米棒溶液中游离的大量CTAB分子对蛋白分子有毒性。
     基于以上两点,对金纳米棒进行表面修饰是其应用于生物标记必须解决的问题。此外,金纳米棒是很好的模板,可以构筑其它形状的金纳米结构。本论文主要从以下几个方面开展工作:
     (1)以不同比率金纳米棒做为晶种,通过改变反应介质的pH值可以很好的控制金纳米颗粒的形状。我们合成了长方形,“狗骨头”形,花生形,到粗糙表面的枝状金纳米结构。金纳米颗粒形状的改变直接影响它们的光学性质。
     (2)根据改进St?ber方法,可在不同比率棒状及狗骨头外形的具有各向异性的金纳米颗粒表面包覆二氧化硅外壳(Au_(rod)@SiO_2)。这种二氧化硅包金的复合纳米颗粒的二氧化硅外壳可以直接快速的组装到由聚4-乙烯吡啶(PVP)功能化的石英片表面。通过紫外可见光谱测定和肉眼观察,这种自组装膜在空气中干燥和重新浸湿反复循环过程中体现了高度可逆的光学变化和颜色变化特征。
     (3)基于Au_(rod)@SiO_2膜对蛋白质分子进行了比色检测。
     (4)在溶液中基于聚苯乙烯磺酸盐(PSS)修饰的金纳米棒生物探针的表面离子共振峰变化来快速敏感检测蛋白质。
     (5)制备了二氧化硅包埋金纳米棒的复合粒子(SiO_2@Au_(rod)@SiO_2)。利用SERS活性分子,对巯基苯胺,和SiO_2@Au_(rod)@SiO_2结合制备了一种新型免疫标记物,并且提出了一种结合表面增强拉曼和纳米粒子标记技术进行免疫检测的方法。采用固相抗体?抗原?标记SiO_2@Au_(rod)@SiO_2溶胶的“三明治”结构,借助抗体上标记SERS标签材料上的SERS信号达到单组分生物免疫检测的目的。
Integrated biomolecule-spherical gold nanoparticle hybrid systems are widely used in bioanalysis and biotechnological applications. Spherical gold nanoparticles functionalized with biomolecules such as DNA or antigens (or antibodies) were employed as active units in many different biosensing systems. Because the surfaces of gold nanoparticles are easily and efficiently modified,as well as further conjugation with biomolecules.
     Recently, anisotropic gold nanoparticles (non-spherical shape) such as gold nanorods have attracted much attention. Because of the tunable optical properties and geometry, gold nanorods have promising potentialities in bioanalytical applications. However, in fact, the use of integrated biomolecule-gold nanorods hybrid system in bioaapplications has not been widely pursued. The main reasons exist as follows:
     (1) The presence of cetyltrimethylammonium bromide (CTAB) molecules adsorbed on the gold nanorod surface in addition to its use as a directing agent for gold nanorod synthesis. CTAB molecules are obstructive for displacing by the interest of biomolecules, which limit the further bioapplications;
     (2) The large amount of free CTAB molecules dispersed in the solution displays significant cytotoxicity for proteins.
     On the basis of the above facts, surface modification of gold nanorods is a key in order to label the biomolecules. In addition, gold nanorods can act as good template to construct various shapes of gold nanostructure. All the relative studies are outline as follows.
     (1) Fine control of gold nanoparticle shape can be achieved by varying the pH of the reaction medium in the presence of gold nanorods with different aspect ratio, which acted as seeds. Under various pH (3.6–9.6) values of the reaction medium, different shapes of gold nanostructural architectures, from rectangle-,“dogbone”- and peanut-like outlines to branched multipods with corrugated surface, can be fabricated in high yield. These shape changes of gold nanorods directly influence their opticalproperties.
     (2) Silica-coated anisotropic gold nanoparticles (Au@SiO_2), including rod- and“dogbone”-like outlines with different aspect ratios, have been prepared using an improved St?ber method. The obtained Au@SiO_2 have a pure silica surface for straightforward and rapid self-assembly onto poly(4-vinylpyridine) (PVP) functionalized quartz substrates. The assemblies exhibit highly reversible optical changes that can be observed spectroscopically or with the naked eye when repeatedly cycled between a dry and wet process.
     (3) The colorimetric detection of protein has been achieved based on Au@SiO_2 film.
     (4) The surface of gold nanorods with functionalized by poly(styrenesulfonate) (PSS) for the attachment of protein yielded gold nanorod molecular probes, which exhibited the rapid and sensitive detection of protein by localized surface plasmon absorption (LSPR).
     (5) Gold nanorods embedded into silica paricles (SiO_2@Au_(rod)@SiO_2) have been prepared. We used the comnbination the SERS active molecules, p-aminothiophenol, and SiO_2@Au_(rod)@SiO_2 to prepare a novel immunotag and propose an immunoassay detection method based on the combination of surface-enhanced Raman scattering (SERS) and the nnaoparticle labeling. Antibody immobilized on a glass slide/antigen/reporter-labeled SiO_2@Au_(rod)@SiO_2 sandwich assay was build for SERS measurements by SERS signal of p-aminothiophenol for detection of the single type biospecific species.
引文
[1] M. Can, C. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z. Wang, Single-drystal dendrite nano-pines of magnetic α-Fe2O3 large-scale synthesis, formation mechanism and properties [J]. Angew. Chem. 2005, 44: 4179-4201.
    [2] H. Ohde, F. Hunt, C. M. Wai, Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion [J]. Chem. Mater. 2001, 13: 4130-4135.
    [3] S. Xu, H. Zhou, J. Xu, Y. Li, Synthesis of size-tunable silver iodide nanowires in reverse micelles [J.] Langmuir 2002, 18: 10503-10504.
    [4] M. Cao, Changwen Hu, Enbo Wang, The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers [J]. J. Am. Chem. Soc. 2003, 125: 11196-11197.
    [5] B. Dubertret, M. Calame, A. J. Libchaber, Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nature Biotech. 2001, 19: 365-370.
    [6] H.Imahori, S.Fukuzumi, Porphyrin, monolayer-modified gold clusters as photoactive materials [J]. Adv.Mater. 2001, 13: 1197-1199.
    [7] S. Wwiss, Fluorescence spectroscopy of single biomolecules [J]. Science, 1999, 283: 1676-1683.
    [8] S. Nie, S. R. Eniory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275: 1102-1106.
    [9] J. L. Zhang, J. M. Du, B. X. Han, Z. M. Liu, T. Jiang, Z. F. Zhang, Sonochemical formation of single-crystalline gold nanobelts [J]. Angew. Chem. Int. Ed. 2006, 45: 1116-1119.
    [10] C. C. Li, K. L. S., Q. H. Park, W. P. Cai, Yu. Li, E. J. Lee, S. O. Cho, High-yield synthesis of single-crystalline gold nano-octahedra [J]. Angew. Chem. Int. Ed. 2007, 46: 1-6.
    [11] J. Chen, F. Saeki, B. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Lett. 2005, 5(3): 473-477.
    [12] K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox,;Keating, C. D., M. D. Musick, M. J. Natan, Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal Surfaces [J]. Langmuir 1996, 12: 2353-2561.
    [13] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298: 2176-2179.
    [14] Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. J. Am. Chem. Soc. 2004, 126: 3892-3901.
    [15] N. R. Jana, L. Gearheart, C. J. Murphy, Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir 2001, 17: 6782-6786.
    [16] C. C. Li, K. L. Shuford, Q. H. Park, W. P. Cai, Y. Li, E. J. Lee, S. O. Cho, High-yield synthesis of single-crystalline gold Nano-octahedra [J]. Angew. Chem. Int. Ed. 2007, ASAP.
    [17] T. K. Sau, C. J. Murphy, J. Am. Chem. Soc. 2004, 126, 8648. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution J. Am. Chem. Soc. 2004, 126: 8648-8649.
    [18] K. Kwon,K. Y. Lee, M. J. Kim, Y. W. Lee, J. H. Heo, S. J. Ahn, S. W. Han, High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced Raman scattering activity [J]. Chem. Phys. Letters 2006, ASAP.
    [19] C. A. Foss Jr., G. L. Hornyak, J. A. Stockert, C. R. Martin, Optical properties of composite membranes containing arrays of nanoscopic gold cylinders [J]. J. Phys.Chem. 1992, 96: 7497-7499.
    [20] C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach [J]. Science, 1994, 266: 1961-1965.
    [21] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties [J]. J. Phys. Chem. B 1997, 101: 6661-6664.
    [22] S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, The shape transition of gold nanorods [J]. Langmuir 1999, 15: 701-709.
    [23] F. Kim, J. H. Song. P. D. Yang, Photochemical synthesis of gold nanorods [J]. J. Am. Chem. Soc. 2002, 124: 14316-14317.
    [24] N. R. Jana, L. Gearheart. C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B 2001, 105: 4065-4067.
    [25] N. R. Jana, L. Gearheart, C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Adv. Mater. 2001, 13: 1389-1393.
    [26] M. Z. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods [J]. J. Phys. Chem. B 2004, 108: 5882-5888.
    [27] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem. Commun. 2001, 617-618.
    [28] C. J. Murphy, N. R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Adv. Mater. 2002, 14: 80-82.
    [29] C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis [J]. J. Mater. Chem. 2002, 12: 1765-1770.
    [30] B. D. Busbee, S. O. Obare, C. J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods [J]. Adv. Mater. 2003, 15: 414-416.
    [31] J. Gao, C. M. Bender, C. J. Murphy, Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution [J]. Langmuir 2003, 19: 9065-9070.
    [32] K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, P. V. Kamat, Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods [J]. J. Phys. Chem. B,2004, 108:13066-13068.
    [33] T. K. Sau, C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution [J]. Langmuir 2004, 20: 6414-6420.
    [34] Z. Q. Wei, F. P. Zamborini, Directly monitoring the growth of gold nanoparticle seeds into gold nanorods [J]. Langmuir, 2004, 20: 4322-4326.
    [35] A. Gole, C. J. Murphy, Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed [J]. Chem. Mater. 2004, 16(19): 3633-3640.
    [36] C. J. Murphy, T. K. Sau, A. Gole, C. J. Orendorff, Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures [J]. MRS Bull. 2005, 30, 349-355.
    [37] L. Gou, C. J. Murphy, Fine-tuning the shape of gold nanorods [J]. Chem. Mater. 2005, 17: 3668-3672.
    [38] K. K. Caswell, C. M. Bender, C. J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires [J]. Nano Lett. 2003, 3: 667-669.
    [39] B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater. 2003, 15: 1957-1962.
    [40] M. Iqbal, G. Tae, Unstable Reshaping of Gold Nanorods Prepared by aWet Chemical Method in the Presence of Silver Nitrate [J]. J. Nanosci. Nanotech. 2006, 6: 3355-3359.
    [41] D. A. Zweifel, A. Wei, Sulfide-arrested growth of gold nanorods [J]. Chem. Mater., 2005, 17: 4256-4261.
    [42] H.Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, M. H. Huang, Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid [J]. Chem. Mater. 2005, 17: 6447-6451.
    [43] H. Y. Wu, W. L. Huang, M. H. Huang, Direct synthesis of high aspect ratio gold nanorods [J]. Crystal Growth & Design 2007, ASAP.
    [44] Jorge Pérez-juste, M. A. Correa-Duarte, L. M. Liz-Marzán, Silica Gels with Tailored, Gold Nanorod-Driven Optical Functionalities [J]. Appl. Surf. Sci. 2004, 226: 137-143.
    [45] Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes [J]. Chem. Commun. 2003, 2376-2377.
    [46] N. Taub, O. Krichevski, G. Markovich, Growth of gold nanorods on surfaces [J]. J. Phys. Chem. B 2003, 107: 11579-11582.
    [47] Z. Wei, A.J. Mieszawska, F.P. Zamborini, Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces [J]. Langmuir 2004, 20: 4322-4326.
    [48] Jorge Pérez-juste, L. M. Liz-Marzán, S. Carnie, Derek Y. C. Chan, P. Mulvaney, Electric-field-directed growth of gold nanorods in aqueous surfactant solutions [J]. Adv. Funct. Mater. 2004, 14: 571-579.
    [49] M. Liu, P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids [J]. J. Phys. Chem. B 2005, 109: 22192-22200.
    [50] C. J. Orendorff, C. J. Murphy, Quantitation of metal content in the silver-assisted growth of gold nanorods [J]. J. Phys. Chem. B 2006, 110: 3990-3994.
    [51] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer-Verlag: Berlin, 1995.
    [52] Amim Henglein, Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition [J]. J. Phys. Chem. 1993, 97: 547-5471.
    [53] R. Gans, Uber die Form ultramikroskopischer Goldteilchen, Ann. Phys., 1912, 37:881-900.
    [54] L. M. Liz-Marzán, Tailoring surface plasmons through the morphology and assembly of metal nanoparticles [J]. Langmuir 2006, 22: 32-41.
    [55] S.Eustis, M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metalsurface plasmon resonance and its enhancement of the radiative andnonradiative properties of nanocrystals of different shapes [J]. Chem. Soc. Rev. 2006, 35: 209-217.
    [56] B. P. Khanal, E. R. Zubarev, Rings of nanorods [J]. Angew. Chem. Int. Ed. 2007, 46: 2195-2198.
    [57] M. A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, L. M. Liz-Marzán, Aligning Au nanorods by using carbon nanotubes as templates [J]. Angew. Chem. Int. Ed. 2005, 44: 4375-4378.
    [58] A. Gole, C. J. Murphy, Polyelectrolyte –coated gold nanorods: synthesis, characterization and immobilization [J]. Chem. Mater. 2005, 17: 1325-1330.
    [59] A. Gole, C. J. Orendorff, C. J. Murphy, Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions [J]. Langmuir 2004, 20: 7117-7122.
    [60] A. Gole, C. J. Murphy, Biotin-streptavidin-induced aggregation of gold nanorods:tuning rod-rod orientation [J]. Langmuir 2005, 21: 10756-10762.
    [61] C. J. Orendorff, P. Hankins, C. J. Murphy, pH-Triggered assembly of gold nanorods [J]. Langmuir 2005, 21: 2022-2026.
    [62] Y. Xiang, X. Wu, D. Liu, X. Jiang, W. Chu, Z. Li, Y. Ma, W. Zhou, S. Xie, Formation of rectangularly shaped Pd/Au bimetallic nanorods: evidence for competing growth of the Pd shell between the {110} and {100} side facets of Au nanorods [J]. Nano Lett. 2006, 6: 2290-2294.
    [63] M. Liu and P. Guyot-Sionnest, Preparation and optical properties of silver chalcogenide coated gold nanorods [J]. J. Mater. Chem. 2006, 16: 3942-3945.
    [64] C. C. Huang, Z. Yang, H. T. Chang, Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions [J]. Langmuir 2004, 20: 6089-6092.
    [65] Z. Yang, Y. W. Lin, W. L. Tseng, H. T. Chang, Impacts that PH and metal ion concentration have on the synthesis of bimetallic and trimetallic nanorods from gold seeds [J]. J. Mater. Chem. 2005, 15: 2450-2454.
    [66] J. H. Song, F. Kim, D. Kim, P. D. Yang, Crystal overgrowth on gold nanorods: tuning the shape, and composition of the nanorods [J]. Chem. Eur. J. 2005, 11: 910-916.
    [67] Sherine O. Obare, Nikhil R. Jana, Catherine J. Murphy,Preparation of polystyreneand silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes [J]. Nano Lett. 2001, 1: 601-603.
    [68] I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-Marzan, Silica-coating and hydrophobation of CTAB-stabilized gold nanorods [J]. Chem. Mater. 2006, 18: 2465-2467.
    [69] Vikas Berry, Anand Gole, Subrata Kundu, Catherine J. Murphy, Ravi F. Saraf, Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems [J]. J. Am. Chem. Soc. 2005, 127: 17600-17601.
    [70] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J]. Small 2005, 1: 325-327.
    [71] K. K. Caswell, J. N. Wilson, U. H. F. Bunz, C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J]. J. Am. Chem. Soc. 2003, 125: 13914-13915.
    [72] J. Y. Chang, H. Wu, H. Chen, Y. C. Ling, W. H. Tan, Oriented assembly of Au nanorods using biorecognition system [J]. Chem. Commun. 2005, 1092-1094.
    [73] E. Dujardin, L. B. Hsin, C. R. C. Wang, S. Mann, DNA-driven self-assembly of gold nanorods [J]. Chem. Commun. 2001, 1264-1265.
    [74] J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, D. F. Kelley, Photoluminescence from nanosize gold clusters [J]. J. Chem. Phys. 1998, 108: 9137-9143.
    [75] M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal [J]. Chem. Phys. Lett. 2000, 317, 517-523.
    [76] C. Z. Li, K. B. Male, S. Hrapovic, J. H. T. Luong, Fluorescence properties of gold nanorods and their application for DNA biosensing [J]. Chem. Commun. 2005, 3924-3926.
    [77] H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J. X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods [J]. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15752-15756.
    [78] P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Au nanoparticles target cancer [J]. Nanotoday, 2007, 1, 18-29.
    [79] X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. J. Am. Chem.Soc. 2006, 128: 2115-2120.
    [80] P. C. Li, C.W. Wei, C. K. Liao, C. D. Chen, K. C. Pao, C. R. C. Wang, Y. N. Wu, D. B. Shieh, Multiple targeting in photoacoustic imaging using bioconjugated gold nanorods [J]. Proc. SPIE 2006, 6068, 60860M-1- 60860M-10.
    [81] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. B. Yakar, Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods [J]. Nano Lett. 2007, ASAP.
    [82] H. Petrova, J. Pérez-Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, P. Mulvaney, Optical properties of metal nnaoparticles coated silica spheres: a simple effective medium approach [J]. Phys. Chem. Chem. Phys. 2006, 8: 814-818.
    [83] H. Takahashi, Y. Niidome, S. Yamada, Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light [J]. Chem. Commun. 2005, 2247-2249.
    [84] H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, S.Yamada, Photothermal reshaping of gold nanorods prevents further cell death [J]. Nanotechnology 2006, 17, 4431-4435.
    [85] C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, Y. C. Wu, DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation [J]. J. Am. Chem. Soc. 2006, 128: 3709-3715.
    [1] C. Burda, X.B. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev. 2005, 105: 1025-1102.
    [2] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev. 2004, 104: 293-346.
    [3] Y. Wu, B. Messer, P. Wang, Superconducting MgB2 n anowires [J]. Adv. Mater. 2001, 13: 1487-1489.
    [4] C. Salzemann, I. Lisieck, A. Brioude, J. Urban, M. P. Pileni, Collections of Copper Nanocrystals Characterized by Different Sizes and Shapes: Optical Response of These Nanoobjects [J]. J. Phys. Chem. B 2004, 108: 13242-13248.
    [5] N. R. Jana, L. Gearhert, S. O. Oboue, C. J. Murphy, Anisotropic chemical reactivity of gold spheroids and nanorods [J]. Langmuir 2002, 18: 922-927.
    [6] C. J. Orendroff, A. Gole, T. K. Sau, C. J. Murphy, Surface-enhanced Raman spectroscopy of self-Assembled monolayers: sandwich architecture and nanoparticle shape dependence [J]. Anal.Chem. 2005, 77: 3261-3266.
    [7] B. Nikoobakht, J. Wang, M. A. El-Sayed, Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition [J]. Chem. Phys. Lett. 2002, 366: 17-23.
    [8] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B 2001, 105: 4065-4067.
    [9] C. S?nnichsen, A. P. Alivisatos, Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy [J]. Nano Lett. 2005, 5: 301-304.
    [10] P. K. Sudeep, S. T. Shibu Joseph, K. G. Thomas, Selective detection of cysteine and glutathione using gold nanorods [J]. J. Am.Chem. Soc. 2005, 127: 6516-6517.
    [11] A. K. Salem, P. C. Searson, K.W. Leong, Multifunctional nanorods for gene delivery [J]. Nat. Mater. 2003, 2: 668-671.
    [12] C. C. Huang, Z. S. Yang, H. T. Chang, Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions [J]. Langmuir 2004, 20: 6089-6092.
    [13] D. G. Georrganopoulou, S. Park, C. A. Mirkin, Seed-mediated growth of bimetallic prisms [J]. Adv.Mater. 2005, 17: 1027-1031.
    [14] R. M. Hernandez, L. Richter, S. Semancik, S. Stranick, T. E. Mallouk, Template fabrication of protein-functionalized gold-polypyrrole-gold segmented nanowires [J]. Chem. Mater. 2004, 16: 3431-3438.
    [15] S. Obare, N. R. Jana, C. J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes [J]. Nano Lett. 2001, 1: 601-603.
    [16] M. Z. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods [J]. J. Phys. Chem. B 2004, 108: 5882-5888.
    [17] L. F. Gou, C. J. Murphy, Fine-tuning the shape of gold nanorods [J]. Chem. Mater. 2005, 17: 3668-3672.
    [18] Y. Xia, P. Yang, Chemistry and physics of nanowires, Adv. Mater. 2003, 15: 351-352.
    [19] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15: 353-389.
    [20] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176-2179.
    [21] Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc, 2004, 126: 3892-3901.
    [22] Y. Sun, Y. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem, 2002, 74: 5297-5305.
    [23] Y. Sun, B. Mayers, Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano. Lett., 2003, 3: 675-679.
    [24] Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2: 165-168.
    [25] Y. Sun, B. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step to the large-scale synthesis of metal nanostrutures with hollow interiors. Nano Lett., 2002, 2: 481-485.
    [26] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14: 4736-4745.
    [27] C. A. Foss, G. L. Hornyak, J. A. Stockert, C. R. Martin, Optical properties of composite membranes containing arrays of nanoscopic gold cylinders [J]. J. Phys. Chem. 1992, 96: 7497-7499.
    [28] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. Wang, Gold nanorods: electrochemical synthesis and optical properties [J]. J. Phys.Chem. B 1997, 101: 6661-6664.
    [29] S. S. Chang, C. W. Shi, C. D. Chen, W. C. C. Lai, R. C. Wang, The shape transition of gold nanorods [J]. Langmuir 1999, 15: 701-709.
    [30] F. Kim, J. H. Song, P. D.Yang, Photochemical synthesis of gold nanorods [J]. J. Am. Chem. Soc. 2002, 124: 14316-14317.
    [31] Y. Niidome, K. Nishioka, H. Kawasaki, S. Yamada, Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes [J]. Chem. Commun. 2003, 2376-2377.
    [32] Y. J. Zhu, X. L. Hu, Microwave-polyol preparation of single-crystalline gold nanorods and nanowires [J]. Chem. Lett. 2003, 32: 1140-1141.
    [33] M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Synthesis of gold nanorods and nanowires by a microwave–polyol method [J]. Mater.Lett. 2004, 58: 2326-2330.
    [34] J. M. Cao, X. J. Ma, M. B. Zheng, J. S. Liu, H. M. Ji, Solvothermal preparation of single-crystalline gold nanorods in novel nonaqueous microemulsions [J]. Chem.Lett. 2005, 34: 730-731.
    [35] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem.B 2001, 105: 4065-4067.
    [36] N. R. Jana, L. A Gearheart, S. O. Obare, C. J. Johnson, J. K. Edler, S. Mann, C. J. Murphy, Liquid crystalline assemblies of ordered gold nanorods [J]. J. Mater. Chem. 2002, 12: 2909-2912.
    [37] J. X. Gao, C. M. Bender, C. J. Murphy, Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution [J]. Langmuir 2003, 19: 9065-9070.
    [38] B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-Mediated growth method [J]. Chem. Mater. 2003, 15: 1957-1962.
    [39] T. K. Sau, C. J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. J. Am. Chem. Soc. 2004, 126: 8648-8649.
    [40] S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals [J]. J. Am. Chem. Soc. 2003, 125: 16186-16187.
    [41] E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, S. Li, Synthesis and optical properties of "Branched" gold nanocrystals [J]. NanoLett. 2004, 4: 327-330.
    [42] B. Nikoobakht, M .A. El-Sayed, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods [J]. Langmuir 2001, 17: 6368-6374.
    [43] T. K. Sau, C. J. Murphy, Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir 2005, 21: 2923-2929.
    [44] S. H. Chen, Z. Y. Fan, D. L. Carroll, Silver nanodisks: synthesis, characterization, and self-assembly [J]. J. Phys. Chem. B 2002, 106: 10777-10781.
    [1] A. N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications [J]. Chem. Phys. Chem. 2000, 1: 18-52.
    [2] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics - a route to nanoscale optical devices [J]. Adv. Mater. 2001, 13: 1501-1505.
    [3] T. Pellegrino, S. Kudera, T. Liedl, A. Munoz Javier, L. Manna, W. J. Parak, On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications [J]. Small 2005, 1: 48-63.
    [4] D. J. Maxwell, J. R. Taylor, S. M. Nie, Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. J. Am. Chem. Soc. 2002, 124: 9606-9612.
    [5] D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz, Metallic colloid wavelength-ratiometric scattering sensors [J]. Anal. Chem. 2003, 75: 3440-3445.
    [6] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature 1996, 382, 607-609.
    [7] B. F. Pan, L. M. Ao, F. Gao, H. Y. Tian, R. He, D. X. Cui, End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization [J]. Nanotechnology 2005, 16: 1776-1780.
    [8] R. G. Freeman, Self-assembled metal colloid monolayers: an approach to SERS substrates [J]. Science 1995, 267: 1629-1632.
    [9] H. Wang, C. S. Levin, N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates [J]. J. Am. Chem. Soc. 2005, 127: 14992-14993.
    [10] L. H. Lu, I. Randjelovic, R. Capek, N. Gaponik, J. H. Yang, H. J. Zhang, A. Eychmüller, Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy [J]. Chem. Mater. 2005, 17: 5731-5736.
    [11] G. Chumanov, K. Sokolov, B. W. Gregory, T. M. Cotton, Colloidal metal films as a substrate for surface-enhanced spectroscopy [J]. J. Phys. Chem. 1995, 99: 9466-9471.
    [12] J. P. Novak, D. L. Feldheim, Assembly of phenylacetylene-bridged silver and gold nanoparticle array [J]. J. Am. Chem. Soc. 2000, 122: 3979-3980.
    [13] Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles [J]. Science 2002, 298: 2176-2179.
    [14] T. K. Sau, C. J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. J. Am. Chem. Soc. 2004, 126: 8648-8649.
    [15] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles [J]. Science 1996, 272: 1924-1925.
    [16] K. Aslan, J. R. Lakowicz, C. D. Geddes, Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence [J]. J. Phys. Chem. B. 2005, 109: 6247-6251.
    [17] K. Aslan, Z. Leonenko, J. R. Lakowicz, C. D. Geddes, Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence [J]. J. Phys. Chem. B. 2005, 109: 3157-3162.
    [18] A. Gole, C. J. Murphy, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization [J]. Chem. Mater. 2005, 17: 1325-1330.
    [19] C. Xue, Z. Li, C. A. Mirkin, Large-scale assembly of single-crystal silver nanoprism monolayers [J]. Small 2005, 1(5): 513-516.
    [20] R. G. Freeman, K. C. Grabar, K. J. Allison, Self-assembled metal colloid monolayers: an approach to SERS substrates [J]. Science 1995, 267:1629-1632.
    [21] X. G. Hu, W. L. Cheng, T. Wang, Y. L.Wang, E. K. Wang, S. J. Dong, Fabrication, Characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films [J]. J. Phys. Chem. B 2005, 109, 19385-19389.
    [22] S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant [J]. J. Phys. Chem. B 1999, 103: 3073-3077.
    [23] B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, C, Schonenberger, Colloidal dispersions of gold rods: synthesis and optical properties [J]. Langmuir 2000, 16: 451-458.
    [24] Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties [J]. J. Phys. Chem. B 1997, 101: 6661-6664.
    [25] B. Nikoobakht, J. P. Wang, M. A. El-Sayed, Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition [J]. Chem. Phys. Lett. 2002, 366: 17-23.
    [26] B. Nikoobakht, M. A. El-Sayed, Surface-enhanced Raman scattering studies on aggregated gold nanorods [J]. J. Phys. Chem. A 2003, 107: 3372-3378.
    [27] M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, The ‘lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal [J]. Chem. Phys. Lett. 2000, 317: 517-523.
    [28] N. R. Jana, L. Gearheart, S. O. Obare, C. J. Murphy, Anisotropic chemical reactivity of gold spheroids and nanorods [J]. Langmuir 2002, 18: 922-927.
    [29] B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater. 2003, 15: 1957-1962.
    [30] C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence [J]. Anal. Chem. 2005, 77: 3261-3266.
    [31] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. F. Gou, S. E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications [J]. J. Phys. Chem. B 2005, 109: 13857-13870.
    [32] C. Z. Li, K. B. Male, S. Hrapovic, J. H. T. Luong, Fluorescence properties of gold nanorods and their application for DNA biosensing [J]. Chem.Commun. 2005, 3924 – 3926.
    [33] B. Nikoobakht, Z. L. Wang, M. A. El-Sayed, Self-assembly of gold nanorods [J]. J. Phys. Chem. B 2000, 104: 8635-8640.
    [34] A. Gole, C. J. Orendorff, C. J. Murphy, Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions [J]. Langmuir 2004, 20: 7117-7122.
    [35] X. G. Hu, W. L. Cheng, T. Wang, Y. L. Wang, E. K. Wang, S. J. Dong, Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films [J]. J. Phys. Chem. B 2005, 109: 19385-19389.
    [36] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J]. Small 2005, 1: 325-327.
    [37] R. Cortesi, E. Esposito, E. Menegatti, R. Gambari, C. Nastruzzi, Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA [J]. Int. J. Pharm. 1996, 139: 69-78.
    [38] D. Mirska, K. Schirmer, S. S. Funari, A. Langner, B. Dobner, G. Brezesinski, Biophysical and biochemical properties of a binary lipid mixture for DNA transfection [J]. Colloids Surf. B 2005, 40: 51-59.
    [39] S. Malynych, I. Luzinov, G. Chumanov, Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles [J]. J. Phys. Chem. B 2002, 106: 1280-1285.
    [40] S. O. Obare, N. R. Jana, C. J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes [J]. Nano Lett. 2001, 1: 601-603.
    [41] S. Kramer, R. R. Fuierer, C. B. Gorman, Scanning probe lithography using self-assembled monolayers [J]. Chem. Rev. 2003, 103: 4367-4418.
    [42] C. L. Haynes, R. P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. J. Phys. Chem. B 2001, 105: 5599-5611.
    [1] a) C. M. Niemeyer, E. Katz, Nanoparticles, proteins, and nucleic Acids: biotechnology meets materials science [J]. Angew. Chem. Int. Ed. 2001, 40(22): 4128-4158.
    b) J.-M. Nam, C. S. Thaxton, C. A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins [J]. Science 2003, 301: 1884-1886.
    c) E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications [J]. Angew. Chem. Int. Ed. 2004, 43(45): 6042-6108.
    d) V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner, Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc. 2004, 126(38): 11768-11769.
    e) N. Rosi, C. A. Mirkin, Nanostructures in biodiagnostics [J]. Chem. Rev. 2005, 105(4): 1547-1562.
    [2] a) A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. G. Schultz, Organization of 'nanocrystal molecules' using DNA [J]. Nature 1996, 382: 609-611.
    b) J. Wang, D. Xu, A. N. Kawde, R. Polsky, Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization [J]. Anal. Chem. 2001, 73(22): 5576-5581.
    [3] a) Z. F. Ma, S. F. Sui, Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro [J]. Angew. Chem. Int. Ed. 2002, 41(12): 2176-2179.
    b) J.Wang, G. D. Liu, B. Munge, L. Lin, Q. Y. Zhu, DNA-based amplified bioelectronic detection and coding of proteins [J]. Angew. Chem. Int. Ed. 2004, 43(16): 2158-2161.
    [4] a) R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science 1997, 277: 1078-1081.
    b) J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes [J]. J. Am. Chem. Soc. 1998, 120(9): 1959-1964.
    c) R. A. Reynolds, C. A. Mirkin, R. L. Letsinger, Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides [J]. J. Am. Chem. Soc. 2000, 122(15): 3795-3796.
    d) G. R. Souza, J. H. Miller, Oligonucleotide detection using angle-dependent light scattering and fractal dimension analysis of gold-DNA aggregates [J]. J. Am. Chem. Soc. 2001,123(27): 6734-6735.
    [5] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J]. Small 2005, 1(3): 325-327.
    [6] a) N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B 2001, 105(19): 4065-4067.
    b) Y. Y. Yu, S. S. Chang. C. L. Lee, C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties [J]. J. Phys. Chem. B 1997, 101(34): 6661-6664.
    c) J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, P. Mulvaney, Gold nanorods: synthesis, characterization and applications [J]. Coord. Chem. Rev. 2005, 249(17-18): 1870-1901. 60
    [7] a) S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant [J]. J. Phys. Chem. B 1999, 103(16): 3073-3077. b) B. Nikoobakht, M. A. El-Sayed, Surface-enhanced Raman scattering studies on aggregated gold nanorods [J]. J. Phys. Chem. A 2003, 107(18): 3372-3378. c) K. Imura, T. Nagahara, H. Okamoto, Plasmon mode imaging of single gold nanorods [J]. J. Am. Chem. Soc. 2004, 126(40): 12730-12731.
    [8] A. D. McFarland, R. P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity [J]. Nano Lett. 2003, 3(8): 1057-1062.
    [9] a) B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater. 2003, 15(10): 1957-1962. b) J. X. Gao, C. M. Bender, C. J. Murphy, Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution [J]. Langmuir 2003, 19(21): 9065-9070. c) L. F. Gou, C. J. Murphy, Fine-tuning the shape of gold nanorods [J]. Chem. Mater. 2005, 17(14): 3668-3672. d) C. G.Wang, T. T. Wang, Z. F. Ma, Z. M. Su, pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios [J]. Nanotechnology 2005, 16: 2555-2560.
    [10] B. Nikoobakht, M. A. El-Sayed, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods [J]. Langmuir 2001, 17(20): 6368-6374.
    [11] R. Cortesi, E. Esposito, E. Menegatti, R. Gambari, C. Nastruzzi, Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA [J]. Int. J. Pharm. 1996, 139(1-2): 69-78.
    [12] D. Mirska, K. Schirmer, S. S. Funari, A. Langner, B. Dobner, G. Brezesinski, Biophysical and biochemical properties of a binary lipid mixture for DNA transfection [J]. Colloids Surf. B 2005, 40(1): 51-59.
    [13] K. K. Caswell, J. N. Wilson, U. H. F. Bunz, C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J]. J. Am. Chem. Soc. 2003, 125(46): 13914-13915.
    [14] a) K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, P. V. Kamat, Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods [J]. J. Phys. Chem. B 2004, 108(35): 13066-13068. b) P. K. Sudeep, S. T. S. Joseph, K. G. Thomas, Selective detection of cysteine and glutathione using gold nanorods [J]. J. Am. Chem. Soc. 2005, 127(18): 6516-6517.
    [15] J. Y. Chang, H. Wu, H. Chen, Y.-C. Ling, W. Tan, Oriented assembly of Au nanorods using biorecognition system [J]. Chem. Commun. 2005, 1092-1094.
    [16] H. W. Liao, J. H. Hafner, Gold nanorod bioconjugates [J]. Chem. Mater. 2005, 17(18): 4636-4641.
    [17] H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity [J]. Langmuir 2006, 22(1): 2-5.
    [18] S. O. Obare, N. R. Jana, C. J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes [J]. Nano Lett.2001, 1(11): 601-603.
    [19] a) S. H. Liu, M. Y. Han, Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes [J]. Adv. Funct. Mater. 2005, 15(6): 961-967. b) S. H.Liu, Z. H. Zhang, M. Y. Han, Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection [J]. Anal. Chem. 2005, 77(8): 2595-2600.
    [20] W. St?ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interf. Sci. 1968, 26(1): 62-69.
    [21] J. Pérez-Juste, M. A. Correa-Duarte, L. M. Liz-Marzán, P. Mulvaney, Silica gels with tailored, gold nanorod-driven optical functionalities [J]. Appl. Surf. Sci. 2004, 226(1-3): 137-143.
    [22] C. Xue, Z. Li, C. A. Mirkin, Large-scale assembly of single-crystal silver nanoprism monolayers [J]. Small 2005, 1(5): 513-516.
    [23] a) A. N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications [J]. ChemPhysChem 2000, 1(1): 18-52. b) S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, Plasmonics - a route to nanoscale optical devices [J]. Adv. Mater. 2001, 13(19): 1501-1505. c) T. Pellegrino,S. Kudera, T. Liedl, A. Mu?oz Javier, L. Manna, W. J. Parak, On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications [J]. Small 2005, 1(1): 48-63. d) D. J. Maxwell, J. R. Taylor, S. M. Nie, Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. J. Am. Chem. Soc. 2002, 124(32): 9606-9612. e) C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature 1996, 382, 607-609.
    [24] a) S. Kramer, R. P. Fuierer, C. B. Gorman, Scanning probe lithography using self-assembled monolayers [J]. Chem. Rev. 2003, 103(11): 4367-4418. b) C. L. Haynes, R. P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J]. J. Phys. Chem. B 2001, 105(24): 5599-5611.
    [25] S. Malynych, I. Luzinov, G. Chumanov, Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles [J]. J. Phys. Chem. B 2002, 106(6): 1280-1285.
    [26] F. Frederix, J.-M. Friedt, K.-H.Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Biosensing based on light absorption of nanoscaled gold and silver particles [J]. Anal. Chem. 2003, 75(24): 6894-6900.
    [1] M. A. El-Sayed, Some interesting properties of metal confined in time and nanometer space of different shapes [J]. Acc. Chem. Res. 2001, 34: 257-264.
    [2] E. Hutter, M. P. Pileni, Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy [J]. J. Phys. Chem. B 2003, 107: 6497-6499.
    [3] I. Tokareva, S. Minko, J. H. Fendler, E. Hutter, Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy [J]. J. Am. Chem. Soc. 2004, 126: 15950-15951.
    [4] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature 1996, 382: 607-609.
    [5] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold Nanoparticle probes [J]. J. Am. Chem. Soc. 1998, 120: 1959-1964.
    [6] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distancedependent optical properties of gold nanoparticles [J]. Science, 1997, 277:1078-1081.
    [7] A. P. Alivisatos, The Use of Nanocrystals in Biological Detection [J]. Nat Biotechnol, 2004, 22(1): 47-52.
    [8] A. K. Salem, P. C. Searson, K. W. Leong, Multifunctional nanorods for gene delivery [J]. Nat. Mater. 2003, 2: 668-671.
    [9] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy [J]. Nano Lett. 2005, 5: 709-711
    [10] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance [J]. Proc. Natl. Acad. Sci. U.S.A, 2003, 100, 13549-13554.
    [11] I. H. El-Sayed, X. Huang, M. A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer [J]. Nano. Lett. 2005, 5: 829-834.
    [12] A. Gole, C. J. Murphy, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization [J]. Chem. Mater. 2005, 17: 1325-1330.
    [13] S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant [J]. J. Phys. Chem. B, 1999, 103: 3073-3077.
    [14] J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, P. Mulvaney, Gold nanorods: synthesis, characterization and applications [J]. Coordination Chem. Rev. 2005, 249: 1870-1901.
    [15] C. J.Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. F. Gou, S. E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications [J]. J. Phys. Chem. B 2005, 109, 13857-13870
    [16] P. K. Sudeep, S. T. S. Joseph, K. G. Thomas, Selective detection of cysteine and glutathione using gold nanorods [J]. J. Am. Chem. Soc. 2005, 127: 6516-6517.
    [17] K. K. Caswell, J. N. Wilson, U. H. F. Bunz, C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J]. J. Am. Chem. Soc. 2003, 125: 13914-13915.
    [18] J. Y. Chang, H. Wu, H. Chen, Y. C. Ling, W. H. Tan, Oriented assembly of Au nanorods using biorecognition system [J]. Chem. Commun. 2005, 1092-1094.
    [19] K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, P. V. Kamat, Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods [J]. J. Phys. Chem. B 2004, 106: 13066-13068.
    [20] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, M. D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J]. Small 2005, 1: 325-327.
    [21] R. Cortesi, E. Esposito, E. Menegatti, R. Gambari, C. Nastruzzi, Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA [J]. Int. J. Pharm. 1996, 139: 69-78.
    [22] D. Mirska, K. Schirmer, S. S. Funari, A. Langner, B. Dobner, G. Brezesinski, Biophysical and biochemical properties of a binary lipid mixture for DNA transfection [J]. Colloids Surf. B 2005, 40: 51-59.
    [23] H. Liao, J. H. Hafner, Gold nanorod bioconjugates [J]. Chem. Mater. 2005, 17: 4636-4641.
    [24] X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy [J]. J. Am. Chem. Soc. 2006, 126: 15950-15951.
    [25] C. Z. Li, K. B. Male, S. Hrapovic, J. H. T. Luong, Fluorescence properties of gold nanorods and their application for DNA biosensing [J]. Chem. Commun. 2005, 3924-3926.
    [26] H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity [J]. Langmuir 2006, 22: 2-5.
    [27] C. G. Wang, Z. F. Ma, T. T. Wang, Z. M. Su, Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing [J]. Adv. Funct. Mater. 2006, 16: 1673-1678.
    [28] M. A. Hayat, Immunogold-silver staining: principles, methods and applications [M]. Academic Press: New York, 1995, p. 92.
    [29] P. Eliades, E. Karagouni, I. Stergiaton, K. Kiras, A simple method for the serodiagnosis of human hydatid disease based on a protein A/colloidal dye conjugate [J]. J. Immunol. Methods 1998, 218: 123-132.
    [30] G. Mayer, R. D. Leone, J. F. Hainfeld, M. Bendayan, Introduction of a novel HRP substrate–nanogold probe for signal amplification in immunocytochemistry [J]. Histochem. J. Cytochem. 2000, 48: 461-470.
    [31] M. G. Sumi, A. Mathai, C. Sarada, V. V. Radhakrishnan, Rapid diagnosis of tuberculous meningitis by a dot immunobinding assay to detect mycobacterial antigen in cerebrospinal fluid specimens [J]. J. Clin. Microbiol. 1999, 37: 3925-3927.
    [32] B. Nikoobakht, M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater. 2003, 15: 1957-1962.
    [33] M. Gluodenis, C. A. Foss, The effect of mutual orientation on the spectra of metal nanoparticle rod-rod and rod-sphere pairs [J]. J. Phys. Chem. B 2002, 106: 9484-9489.
    [1] 陶义训 免疫学与免疫学检验 人民卫生出版社,北京,1997年l0月,第二版,第l篇.
    [2] J. Vuori, S. Rasi, T. Takala, K. Vaananen, Dual-label time-resolved fluoroimmunoassay for simultaneous detection of myoglobin and carbonic anhydrase III in serum [J]. Clin. Chem. 1991, 37: 2087-2092.
    [3] Y. Y. Xu, K. Pettersson, K. Blomberg, I. Hemmila, H. Mikola, T. Lovgren, Simultaneous quadruple-label fluorometric immunoassay of thyroid- stimulating hormone, 17 alpha-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots [J]. Clin. Chem. 1992, 38: 2038-2043.
    [4] C. R. Brown, K. W. Higgins, K. Frazer, L. K. Schoelz, J. W. Dyminski, V. A. Marinkovich, S. P. Miller, J. F. Burd, Simultaneous determination of total IgE and allergen-specific IgE in serum by the MAST chemiluminescent assay system [J]. Clin. Chem. 1985, 31: 1500-1505.
    [5] Butler, J. E. Enzyme-linked immunosorbent assayImmunoassay [J]. 2000, 21: 165-209.
    [6] F. J. Hayes, H. B. Halsall, W. R. Heineman, Simultaneous immunoassay using electrochemical detection of metal ion labels [J]. Anal. Chem. 1994, 66: 1860-1865.
    [7] S. R. Emory, S. M. Nie, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science 1997, 275: 1102-1106.
    [8] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, L. Ltzkan, R. R. Dasari, M. S. Feld, Single molecule detection using surface-enhanced raman scattering (SERS) [J]. Phys. Rev Lett. 1997, 78: 1667-1670.
    [9] J. Jiang, K. Bosnick, M. Maillard, L. Brus,Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals [J]. J. Phys. Chem. B 2003, 107: 9964-9972.
    [10] A. M. Michaels, J. Jiang, L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules [J]. J. Phys. Chem. B 2000, 10: 11965-11971.
    [11] H. X. Xu, J. Aizpurua, M. Kall, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering [J]. Phys. Rev. E 2000, 62: 4318-4324.
    [12] S. P. Mulvaney, M. D. Musick, C. D. Keating, M. J. Natan, Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-Enhanced Raman scattering [J]. Langmuir 2003, 19: 4784-4787.
    [13] C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence [J]. Anal. Chem. 2005, 77: 3261-3266.
    [14] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Ultrasensitive chemical analysis by raman spectroscopy [J]. Chem. Rev. 1999, 99: 2957-2976.
    [15] J. Ni, R. J. Lipert, G. Dawson, M. D. Porter, Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids [J]. Anal. Chem. 1999, 71: 4903-4908.
    [16] S. Link, Z. L. Wang, M. A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition [J]. J. Phys. Chem., B 1999, 103: 3529-3533.
    [17] P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, N. P. Economou, Surface-enhanced raman scattering from microlithographic silver particle surfaces [J]. Chem. Phys. Lett. 1981, 82: 355-359.
    [18] B. Hu, W. Xu, K. Wang, Y. Xie, B. Zhao, Discussion on the Electromagnetic Theory of SERS According to Dielectric Function [J]. Acta Sci. Nat. Univ. Jilin. 2001, 2: 57-61.
    [19] N. H. Kim, S. J. Lee, K. Kim, Isocyanide and biotin-derivatized Ag nanoparticles: an efficient molecular sensing mediator via surface-enhanced Raman spectroscopy [J]. Chem. Commun. 2003, 6: 724-725.
    [20] Z. F. Ma, S. F. Sui, Naked-eye sensitive detection of immunoglubulin G by enlargement of Au nanoparticles in vitro [J]. Angew Chem. Int. Ed. 2002, 41: 2176-2179.
    [21] Y. C. Cao, R. C. Jin, C. A. Mirkin, Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection [J]. Science 2002, 297: 1536-1540.
    [22] J. L. Gong, J. H. Jiang, H. F. Yang, G. L. Shen, R. Q. Yu, Y. Ozaki, Novel dye-embedded core-shell nanoparticles as surface-enhanced Raman scattering tags for immunoassay [J]. Anal. Chim. Acta. 2006, 564: 151-157.
    [23] X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, A.A. Berlin, Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures [J]. Nano Lett. 2005, 5: 49-54.
    [24] S. E. J. Bell, N. M. S. Sirimuthu, Surface-enhanced raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides [J]. J. Am. Chem. Soc. 2006, 128: 15580-15581.
    [25] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, R. A. Tripp, Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver nanorod array SERS substrate [J]. Nano Lett. 2006, 6: 2630-2636.
    [26] D. S. Grubisha, R. J. Lipert; H. Y. Park, J. Driskell, M. D. Porter, Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced raman scattering and immunogold labels [J]. Anal. Chem. 2003, 75: 5936-5943.
    [27] I. Khan, D. Cunningham, R. E. Littleford, D. Graham, W. E. Smith, D. W. McComb, From Micro to Nano: Analysis of surface-enhanced resonance raman spectroscopy active sites via multiscale correlations [J]. Anal. Chem. 2006, 78: 224-230.
    [28] W. St?ber, A. Fink, E.A. Bohn, Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interface Sci. 1968, 26: 62-69.
    [29] B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chem. Mater. 2003, 15: 1957-1962.
    [30] I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach [J]. Phys.Chem Chem.Phys. 2004, 6: 5056-5060.
    [31] A. Correa-Duarte, J. Pérez-Juste, A. Sánchez-Iglesias, M. Giersig, L. M. Liz-Marzán, Aligning Au nanorods by using carbon nanotubes as templates [J]. Angew. Chem. Int. Ed.2005, 44: 4375-4378.
    [32] W. Qian, D. Yao, B. Xu, F. Yu, Z. Lu, W. Knoll, Atomic force microscopic studies of site-directed immobilization of antibodies using their carbohydrate residues [J]. Chem. Mater. 1999, 11: 1399-1401.
    [33] J. Zheng, X. Li, R. Gu, T. Lu, Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode [J]. J. Phys. Chem.B 2002, 106: 1019-1023.
    [34]M. Osawa, N. Matsuda, K. Yoshll, I. Uchida, Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution [J]. J. Phys. Chem. 1994, 98:12702-12707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700