用户名: 密码: 验证码:
化学发光成像分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学发光(Chemiluminescence,CL)分析因其具有仪器设备简单、检出限低和线性范围宽等优点,已被应用于环境科学、临床医学、药学、生命科学、材料科学等领域。伴随着CL分析的发展,CL信号的检测技术取得明显进步,既可以利用传统的光电倍增管(Photomultiplier,PMT)测CL信号,也可以利用具有高灵敏度、高分辨率的CL成像装置检测发光信号,利用CL成像技术可对低至单光子水平的光进行定位及定量检测。当发光信号的空间分布体现了重要的分析信息时,成像检测技术更有优势。
     本论文的研究工作主要由化学发光阵列成像平台的建立;化学发光免疫成像分析和自发电池激发的电化学发光成像分析三大部分构成。
     1化学发光阵列成像平台的建立
     CL成像分析主要包括微孔版、微阵列及微型化装置中的定量检测;基于酶、免疫组织化学和原位杂交反应的显微成像分析;生物体的发光成像分析等。然而,CL成像不同于荧光成像,在进行荧光成像时,在一定波长光的激发下,产生稳定的光信号,光信号不随时间而变化,我们可在任一段时间内积分,获得荧光强度,然而,CL信号是时间的函数,CL强度随时间而改变。大多数CL反应是快反应,发光在数秒内便完成,因为反应的引发与数据采集间存在延迟时间,利用传统的的CL成像方法不能检测这样的快反应。因而现有的CL成像分析只能够检测一些慢CL反应,或者将快发光反应转化为慢发光反应才能进行成像。例如辣根过氧化物酶(horseradish peroxidase,HRP)催化的鲁米诺与H_2O_2间的CL反应是快发光反应,不适合成像分析,通常要加入对碘苯酚等增强剂增强发光强度并延长发光时间。然而,很难将多数快CL反应转变为慢反应。即使将一些慢发光反应用于成像分析,最大发光强度仍然不能被CCD捕获到。例如,加入增强剂的鲁米诺/H_2O_2/HRP体系,在几十秒内,发光强度迅速增加并达到最大值,随后缓慢的降到与背景值相当的数值。然而,在几十秒内,操作者很难将所有CL试剂手动地加入到96孔、384孔酶标板或微阵列系统中,CL反应过程的信号不能全部被记录下来,在已开始反应的孔中,最大发光信号将被错过。这将导致检测发光信号的灵敏度相对较差。并且,如果采用手动加样方式将CL试剂加到微孔板或微阵列中,由于CL反不能在同一时间被引发,将导致CL信号的重现性较差。即使采用自动加样系统,反应的引发及信号采集之间的延迟时间仍然存在,这是传统CL成像方法存在的问题。
     我们利用鲁米诺/血红蛋白/对碘苯酚CL反应体系作为模型,建立了一种新的在线调控的CL阵列成像平台,解决上述问题。众所周知,在碱性介质中,鲁米诺能产生很强的CL信号,而在酸性条件下,不能产生CL信号。所以,我们设想可以通过控制反应的pH值引发并控制CL反应。最终的实验结果表明利用本方法提高了检测的灵敏度。这种反应可控的CL成像分析平台的建立,将使快CL反应的成像检测成为可能。
     (1)反应可控的化学发光成像分析的设计及应用
     设计了反应可控的CL成像分析方法。本方法通过控制反应的pH值引发CL反应,并获得了很高的灵敏度。反应的pH值由在线产生的氨气调节,氨气由NaOH溶液与NH_4Cl溶液反应产生,氨气的量可以通过改变NaOH溶液的浓度,进样时间及流速来调节,也可以通过改变NH_4Cl溶液的浓度来控制。96孔酶标板各孔中的CL试剂吸收氨气后,pH值从相同的起始值持续增加,相对CL强度随pH值增加而增加。基于以上的设计,96孔酶标板上的CL反应在同一时间被引发,每孔中整个CL反应过程的信号可以被记录下来。从而获得高的灵敏度及良好的重现性。试验了鲁米诺/H_2O_2CL体系,用于测定血红蛋白(Hb)。CL强度与Hb浓度在1.0×10~(-9)~1.0×10~(-7)mol/L范围内呈线性,检出限为3.0×10~(-10)mol/L(3s),对1.0×10~(-8) mol/L的Hb进行11次平行测定,相对标准偏差(R.S.D.)为2.7%。
     2化学发光免疫成像分析
     本论文的第二部分的研究工作主要由两部分内容构成:基于鲁米诺增强化学发光(ECL)体系的免疫成像分析和基于草酰酯CL反应的免疫成像分析。并应用到重组人肿瘤坏死因子a(rhTNF-a),金黄色葡萄球菌肠毒素C_1(SEC_1),白介素6(rHuIL-6)和β-人绒毛膜促性腺激素(β-HCG)的检测。
     (1)化学发光成像分析法检测人血清中的肿瘤坏死因子a
     设计了一种简单、灵敏、高通量的分析方法用于重组人肿瘤坏死因子(recombinant human tumor necrosis factor-a,rh TNF-a)的检测。本法具有酶联免疫吸附(enzyme-linked immunosorbent assays,ELISA)法的特异性、增强化学发光法(ECL)的高灵敏度及CL成像分析高样品通量等优点。透明的96孔板被用做固相载体。基于ELISA分析法中双抗体夹心法的原理,将对rh TNF-a抗原具有特异结合能力的一种抗体作为包被抗体,另一被辣根过氧化物酶(HRP)标记的抗体作为酶标抗体。一台带有低温冷却装置的CCD成像系统被用于检测CL信号。CL强度值与rh TNF-a浓度在9.0~312.0 pg/mL范围内呈良好线性关系,检出限为1 pg/mL(3s)。本法已被成功地用于人血清中的rh TNF-a的检测,对78.0 pg/mL rh TNF-a 8次平行测定结果的R.S.D.为4.7%,利用标准加入法所得回收率结果为94.0~108.2%,实验结果表明本方法具有实际应用的可行性。
     (2)化学发光免疫成像分析法测定牛奶和水中的金黄色葡萄球菌肠毒素C_1
     设计了一种灵敏、简单、快速及高通量的方法测定金黄色葡萄球菌肠毒素C_1(staphylococcalenterotoxin C_1,SEC_1),本方法具有ELIsA法的特异性,增强化学发光分析法(ECL)的高灵敏度,及成像分析法高通量检测的优势。基于双抗体夹心法的免疫反应原理,以96孔酶标板作为固定化载体。用一台商品化的带有低温冷却装置的CCD成像系统检测CL信号。在最佳实验条件下,发光强度值与SEC_1浓度在8.0~125.0 ng/mL范围内呈良好线性关系(r~2=0.9976),检出限为0.5 ng/mL(3s),对25.0 ng/ml SEC_18次测定结果的R.S.D.为6.0%。将本方法用于检测牛奶和水中SEC_1含量,测定结果与ELISA法相吻合。
     (3)以纳米金为载体的化学发光免疫成像分析的研究及应用
     以微孔板为载体的ELISA分析因其具有的高灵敏度和好的特异性被广泛应用于免疫分析。聚苯乙烯因其具有光学透明性并且表面性质可改变,成为应用最为广泛的固定相载体。未修饰的聚苯乙烯表面带有长的碳氢链,会排斥水及亲水性分子,吸引疏水性分子。大的亲水性分子一般都带有疏水链,会使分子吸附在聚苯乙烯表面。但需要很长的孵育时间、较高的物质分子浓度和严格的控制温度等条件,以防止物质分子从聚苯乙烯表面被洗脱下来。因此,亟需建立更好的的固定化方法以满足免疫分析的需求。纳米金因其比表面积大、生物兼容性好及表面自由能高,已在生物试剂的固定化及免疫分析等领域得到广泛应用。
     本文设计了一种以纳米金为载体固定蛋白质的新方法。纳米金和蛋白质形成的生物复合材料被成功地固定在聚甲基丙烯酸甲酯(PMMA)片和聚苯乙烯微孔板上。蛋白质可被高密度地固定在固相载体上并较好地保留生物活性。基于以上设计,建立了利用CL成像检测H_2O_2及重组人白介素-6(rHu IL-6)的分析方法。本方法的线性范围和包被效率与直接固定蛋白的CL成像分析相比,都有显著提高。在选定的实验条件下,CL强度与H_2O_2浓度在1.0×10~(-6)~1.0×10~(-4)mol/L呈线性关系,与rHu IL-6浓度在2.0~312.0 pg/mL呈线性关系,检测H_2O_2的检出限为2.0×10~(-7)mol/L(3s),rHu IL-6的检出限为0.5pg/mL,对3.0×10~(-5) mol/L的H_2O_26次测定结果的R.S.D.为3.8%,对39.0 pg/mLrHu IL-6 6次测定结果的R.S.D.为4.4%。将本方法用于人血清中rHuIL-6的检测,结果令人满意。
     (4)化学发光成像分析法检测人血清中的自介素6(rHuIL-6)
     众所周知,鲁米诺CL体系的发光量子产率不超过5%,而双[2,4,6-三氯苯基】草酰酯(TCPO)=H_2O_2-荧光剂CL体系具有较高的发光量子产率,通常可达30%。本文建立了一种新的化学发光免疫分析(CUA)方法,结合了传统ELISA方法和双[2,4,6-三氯苯基]草酰酯(TCPO)-H_2O_2CL体系的优点。邻苯二胺(OPDA)与H_2O_2在HRP催化下反应生成荧光物质2,3-二氨基吩嗪(DAPN)。DAPN被TCPO和H_2O_2反应的中间产物激发产生CL信号,本文研究了所产生的CL信号强度与抗原浓度间的关系。作为方法的分析应用,将本方法用于检测rHuIL-6.在最优化的实验条件下,CL强度与rHu IL-6浓度在4.0~625.0 pg/mL呈线性关系,检测rHu IL-6的检出限为0.5 pg/mL,检测78.0 pr/mL rHu IL-6的R.S.D.为2.3%,将本方法用于测定人血清中rHu IL-6,结果令人满意。
     (5)化学发光成像分析法检测β-人绒毛膜促性腺激素(β-HCG)
     本文采用一种灵敏、简单的方法,可实现对β-HCG的高通量检测。本法具有ELISA方法的特异性、双[2,4,6-三氯苯基]草酰酯(TCPO)-H_2O_2 CL体系的高灵敏度及CL成像分析高样品通量等优点。邻苯二胺(OPDA)与H_2O_2在HRP催化下反应生成荧光物质2,3-二氨基吩嗪(DAPN)。DAPN被TCPO和H_2O_2反应的中间产物激发产生CL信号,本文研究了所产生的CL信号强度与抗原浓度间的关系。作为方法的分析应用,将本方法用于检测β-HCG。在最优化的实验条件下,CL强度与β-HCG浓度在12.5~400.0 mIU/mL呈线性关系,检测β-HCG的检出限为3 mIU/mL,对50.0 mIU/mLβ-HCG 9次平行测定结果的R.S.D.为3.9%。将本方法用于测定尿液中β-HCG的含量,结果令人满意。
     3自发电池激发的电化学发光成像分析
     电化学发光(Electrogenerated chemiluminescence,ECL)也称电致化学发光,是电化学反应过程中产生的激发态分子返回基态产生的光辐射,已成为分析化学中重要且有价值的检测方法。目前,文献报道的ECL分析都是使用外加的电源来实现ECL的激发,这就限制了ECL检测系统的微型化。及其在微全分析系统中的进一步应用。我们设想能否不使用任何外加电源便可实现ECL的激发?我们曾经设计了微型自发原电池为鲁米诺体系及钙黄绿素的电化学发光提供激发电位。大大的简化了ECL的设备,在ECL系统的微型化方面,迈出了新的步伐。金属Al,Zn,Cr,Cd等可作为阳极,Cu,Ag,Au,Pt及石墨等可作为电池的阴极。最后选择Al作为自发原电池的阳极,Ag作为阴极。可通过改变流动试剂的组成或用其他金属替换Al和Ag电极对调节电池的电位。在后续的工作中,进一步研究了Cu/zn合金形成的自发原电池。Cu/Zn合金自发原电池可以为鲁米诺电化学发光提供稳定的电位,将Cu/zn合金颗粒单独置于96孔板中形成自发电池传感器阵列,并利用鲁米诺/H_2O_2CL,体系验证传感器的性能。
     自发电池传感器阵列具备以下几个优点:首先,不需要为ECL的产生提供外加电源,这有利于仪器的简单化及ECL检测在微阵列中的应用。其次,因为这些传感器利用廉价的仪器很容易制备,可实现传感器的低成本制作。再次,Cu/Zn合金传感器贮备方便,有效使用寿命大于100h。为了形成可任意使用的传感器阵列,使用了酶标板。
     (1)自发电池激发的电化学发光传感器的研究及应用
     研究了一种新型的电化学发光(ECL)成像阵列传感器并将其用于H_2O_2的测定。此传感器基于Cu/zn合金自发电池产生的ECL。在碱性溶液中,Cu/Zn合金由于金属腐蚀效应形成自发电池,此电池可为鲁米诺的ECL的产生提供稳定的电位,产生的弱的ECL信号可被H_2O_2增敏。将Cu/Zn合金的颗粒置于96孔板的微孔中形成自发电池传感器阵列。相对ECL强度与H_2O_2浓度在1.0×10~(-6)~1.0×10~(-4)mol/L范围内呈线性关系,检出限为3.0×10~(-7)mol/L(3s),对1.0×10~(-5)mol/L的H_2O_2进行11次平行测定,相对标准偏差(R.S.D.)为4.0%。
Chemiluminescence (CL) analysis has been widely applied to environmental sciences, clinical medicine, pharmacy, life science and materials science due to its advantages including simple instrumentation, very low detection limits and wide dynamic ranges. Along with the development of CL analysis, significant progress has been made in techniques to measure CL CL signal could be detected by both conventional photomultiplier (PMT)-based luminometers and high resolution imaging detectors. Light emission down to the single-photon level could be localized and quantified by CL imaging techniques. Imaging techniques are advantageously used when the spatial distribution of the luminescence signal represents crucial analytical information.
     The research work of the dissertation is made up of three sections of development of CL micro array based on imaging assay, CL immunoassay based on imaging detectors and galvanic cell generated electrochemiluminescence (ECL) imaging assay. 1. The development of CL microarray based on imaging assay.
     CL imaging assay has been applied to in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reaction; whole-body luminescence imaging in live animals. However, CL imaging is different from fluorescence imaging. In fluorescence imaging assay, an invariance signal could be obtained under certain excitation wavelength, the fluorescence intensity doesn't vary with time, and we can combines the pixel intensities of fluorescence at any time. The emission intensity from a CL reaction varies with time. Most CL reactions have a short-lived signal, complete within a few seconds. Flash-type CL reactions are unsuitable for sensitive and reproducible determinations in CL imaging assay because of lag time between initiation of the reaction and data collection. Therefore, all the well established CL imaging methods use relatively few glow type CL reactions. Fast emitting (flash-type) CL reactions is tuned to furnish a slower-emitting (glow-type) process that is suitable for simple CL imaging. Typically, the CL reaction of luminol-H_2O_2-horseradish peroxidase (HRP) system is a fast emitting reaction and is unsuitable for simple CL imaging assay. The reaction can be tuned to slower-emitting process by using p-iodophenol (p-IP) as enhancer. However, it is difficult to tune most flash-type reactions to glow-type reactions. The maximum CL signal cannot be monitored even some glow-type reactions are used. For example, the kinetics of the enhanced luminol-H_2O_2-HRP system usually shows a rapid increase within 1 min until the maximum value is reached, followed by a slow decrease to the background level. When CL reagents are manually added to 96- (384-) well plates or microarray systems by a pipette, it is a great challenge for the operator to add CL reagents to 96- or 384-wells within 1.0 minute; therefore, the total CL signal cannot be collected and the maximum value will be missed. Moreover, a poor reproducibility of CL signal will be induced because the CL reaction cannot be initiated at the same time when CL reagents are manually added to 96-(384- ) well plates or microarray systems. Automated pipetting systems have been applied to CL imaging assay, however, the lag time between initiation of the reaction and data collection still exists. This was the major problem of current CL imaging assay.
     A luminol/hemoglobin/p-iodophenol CL system was chosen as model, and a novel on line reaction-controlled CL array based on imaging analysis was designed by our group to solve above problem. It is well known that luminol emits strong CL signal in alkaline medium, no CL signal was observed under the acidic conditions. We assumed that CL reactions could be initiated and controlled by controlling pH. Experimental results showed that high sensitivity could be obtained by using reaction-controlled design. The most important thing is the reaction-controlled CL imaging method was expected to monitor fast-emitting CL reaction directly. (1) A design of reaction controlled chemiluminescence imaging and its application
     A reaction-controlled CL imaging analysis was designed. The design was based on controlling pH to initiate CL reaction and obtain high sensitivity. The pH value of CL reaction was controlled by ammonia, which was produced by injecting NaOH solution to NH_4Cl solution, and the amount of ammonia could be adjusted by varying concentration, pumping time, and flow rate of NaOH solution or varying concentration of NH_4Cl solution. The pH of CL reagents in 96 well microtiter plates increased continuously from the same initial value due to the absorbance of ammonia, and the relative CL intensity increased with the increasing pH. Based on above reaction-controlled design, the CL reaction in 96 wells could be initiated at the same time, and the total CL signal of each well could be monitored. As results of above operation, a high sensitivity and better reproducibility could be obtained. A luminol, H_2O_2 CL system for determination of hemoglobin (Hb) was selected to validate the presented design. The CL intensity was proportional with the concentration of Hb in the range of 1.0×10~(-9) to 1.0×10~(-7) mol/L and the detection limit was 3.0×10~(-10) mol/L (3s), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0×10~(-8) mol/L Hb was 2.7%.
     2. CL immunoassay based on imaging detectors
     In the second part of the dissertation, the research work was made up of two sections of immunoassay based on luminol enhanced chemiluminescence (ECL) imaging system, and immunoassay based on peroxyoxalate CL imaging system. These two different CL systems have been successfully applied to determination of recombinant human tumor necrosis factor-a (rh TNF-a), staphylococcal enterotoxin C_1 (SEC_1), recombinant human interleukin 6 (rHu IL-6) andβ-human chorionic gonadotropin (β- HCG).
     The major contents in second part are described as follows: (1) Determination of recombinant human tumor necrosis factor-a in serum by CL imaging
     A simple, sensitive and high throughput CL imaging method was described for the determination of recombinant human tumor necrosis factor-a (rh TNF-a). The proposed method has the advantage of showing the specificity of enzyme-linked immunosorbent assays (ELISA), sensitivity of enhanced chemiluminescence (ECL), and high throughput of CL imaging method. In this system, 96 well transparent microtiter plates were used as solid phase materials. The method was based on the use of two monoclonal antibodies against rh TNF-a, one "capture" antibody and one labeled with horseradish peroxidase (HRP), in a "sandwich" ELISA format. A cooled CCD camera has been applied to image the weak chemiluminescence from the ECL The CL intensity was proportional with the concentration of rh TNF-a in the range of 9.0 to 312.0 pg/mL and the detection limit was 1 pg/mL The proposed method has been successfully applied to the determination of rh TNF-a in human serum, the reliability of the assay method was established by parallel determination and by standard-addition method. (R.S.D. = 4.7%, recoveries=94.0 -108.2%).
     (2) Chemiluminescent imaging detection of staphylococcal enterotoxin C_1 in milk and water samples
     A sensitive, simple and rapid technique for high throughput simultaneous detection of staphylococcal enterotoxin C_1 (SEC_1) has been developed. The proposed method has the advantage of showing the specificity of enzyme-linked immunosorbent assays (ELISA), sensitivity of enhanced chemiluminescence (ECL), and high throughput of CL imaging. It was based on a standard sandwich immunoassay format; 96-well ELISA plates were used as solid phase material. A commercial high-sensitivity cooled CCD camera has been applied to image the weak CL from the ECL Under the optimum conditions, the increased CL intensity was proportional with the concentration of SEC_1 in the range of 8.0 to 125.0 ng/mL and the detection limit was 0.5 ng/mL(3s). The R.S.D. for eight parallel measurements of 25.0 ng/mL SEC_1 was 6.0%. The proposed method has been successfully applied to the determination of SEC_1 in milk and water samples. The results obtained compared well with those by ELISA.
     (3) Development of a gold nanoparticles based chemiluminescence imaging assay and its application
     The enzyme-linked immunosorbent assay (ELISA) typically carried out in microtiter plates have been widely used in immunoassay with respect to its specificity and sensitivity. The most commonly utilized solid support is polystyrene because of its optical clarity and range of surface properties. As a long chain hydrocarbon, non-modified polystyrene tends to repel water and hydrophilic molecules and attract hydrophobic molecules. Large bimolecular considered hydrophilic will inevitably have stretches of hydrophobic regions that allow the molecule to adsorb to the polystyrene surface. But to enable stable binding of hydrophilic molecules, assay conditions such as high molecule concentration, long incubation time and critical temperature conditions might be required to prevent the molecule from washing off the polystyrene surface. Therefore, the use of alternative methods of immobilization is attractive. Gold nanoparticles have been intensively studied in bio-reagents immobilization via the large specific interface area, desirable biocompatibility and high surface free energy of nanosized particles, and have been widely used in immunoassay. in this paper, a novel gold nanoparticles based protein immobilization method was designed. Bio-composites of gold nanoparticles and proteins were successfully coated on poly (methyl methacrylate) (PMMA) plates and polystyrene microtiter plates. The proteins could be immobilized on solid materials with high density and better bioactivity. Based on above design, CL imaging assay for determination of H_2O_2 and rHu IL-6 was developed. The linear range and the loading capability were greatly improved when compared with imaging assay performed with direct proteins immobilization. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentration of H_2O_2 in the range of 1.0×10~(-6) to 1.0×10~(-4) mol/L, and rHu IL-6 in the range of 2.0 to 312.0 pg/mL. The detection limits were 2×10~(-1) mol/L (3s) for H_2O_2 and 0.5 pg/mL for rHu IL-6 with R.S.D. of 3.8% for 3.0×10~(-5) mol/L H_2O_2, and 4.4% for 39.0 pg/mL rHu IL-6. This method has been applied to the determination of rHu IL-6 in human serum with satisfactory results.
     (4) Chemiluminescent imaging detection of recombinant human interleukin 6 (rHu IL-6) in human serum
     It is well known that the quantum yield of luminol does not exceed 5%. The TCPO-H_2O_2-fluorophore chemiluminescent reaction has a quantum yield higher than that observed for most of the chemiluminescent reaction discovered to date. This reaction requires the presence of a suitable fluorophore and has a quantum yield of 30%. The paper presented a novel CL immunoassay method, the proposed method combines the advantages of traditional enzyme-linked immunosorbent assays (ELISA) and bis (2, 4, 6-trichlorophenyl) oxalate (TCPO) - H_2O_2 CL detection system. A fluorescent product 2, 3-diaminophenazine (DAPN) was produced by reaction between o-phenylenediamine (OPDA, 1, 2-diaminobenzene) and H_2O_2 catalyzed by horseradish peroxidase (HRP). DAPN was excited by the reactive intermediate of TCPO-H_2O_2 chemiluminescent reaction, and led to CL The dependence of the CL intensity on the concentrations of antigen was studied. As analytical application, the proposed method was used for determination of rHu IL-6. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentration of rHu IL-6 in the range of 4.0 to 625.0 pg/mL. The detection limit was 0.5 pg/mL for rHu IL-6 with R.S.D. of 2.3% for 78.0 pg/mL rHu IL-6. This method has been applied to the determination of rHu IL-6 in human serum.
     (5) Chemiluminescent imaging detection ofβ- human chorionic gonadotropin(β-HCG)
     A sensitive and simple method has been used for high throughput detection of B human horionic gonadotropin (β-HCG). The proposed method has the advantage of showing the specificity of enzyme linked immunosorbent assays (ELISA), sensitivity of TCPO-H_2O_2CL reactions, and high throughput of chemiluminescence (CL) imaging. A fluorescent product 2, 3-diaminophenazine PAPN) was produced by reaction between o-phenylenediamine (OPDA, 1,2-diaminobenzene) and H_2O_2 catalyzed by horseradish peroxidase (HRP). DAPN was excited by the reactive intermediate of TCPO-H_2O_2 chemiluminescent reaction, and led to CL Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentration ofβ-HCG in the range of 12.5 to 400.0 mIU/mL. The detection limit was 3 mIU/mL forβ-HCG with R.S.D. of 3.9% for 50.0 mlU/mLβ-HCG. This method has been applied to the determination ofβ-HCG in urine with satisfactory results.
     3. Galvanic cell generated electrochemiluminescence imaging assay.
     Electrogenerated chemiluminescence (ECL) also known as electrochemiluminescence is the luminescence generated by relaxation of exited state molecules that are produced during an electrochemically-initiated reaction. ECL has become an important and valuable detection method in analytical chemistry in recent years. Up to now, most of the reference techniques for ECL generation were carried out by employing an external potential supplier. The potential supplier normally used in research work limited the detection instrumentation miniaturization and hampered further application of ECL detection on a microanalysis system. We assumed that ECL could be generated without employing an external potential supplier. A mini galvanic cell has been designed by our group to generate ECL of luminol and calcein blue; we made an important step towards miniaturization of the equipment. Candidate metals such as aluminum, zinc, chromium and cadmium were used as pure metallic anode, copper, silver, gold, platinum, and graphite for cathode of galvanic cell were investigated. At last, aluminum was chosen as anode and silver as cathode, a mini galvanic cell was formed. The potential of the galvamc cell could be adjusted by varying the components of flow reagent or by using different metals to substitute for aluminum or silver. In our further studies, Cu/Zn alloy galvanic cell was studied. The galvanic cell could supply stable potential for ECL generation of luminol in suitable electrolyte. A galvanic cell sensor array was developed by putting Cu/Zn alloy in 96 well microtiter plates separately. The intrinsic performances of this sensor array were evaluated through luminol/H_2O_2 CLsystem.
     The galvanic cell sensor array has several advantages. Firstly, an external potential supplier was not needed for ECL generation, which is benefit for simplification of instrument and application of ECL detection on micro array. Secondly, such devices could lead to the realization of low cost sensors, since the sensors are easily produced using inexpensive instruments. Thirdly, the Cu/Zn alloy sensors can be conveniently stored, and the life time (efficient using time) of described sensors was more than 100 h. Furthermore, in order to form disposable sensor arrays, miao titer plate (MTP) was used.
     (1) Sensors based on galvanic cell generated dectrochemiluminescence and its application
     In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H_2O_2), which was based on Cu/Zn alloy galvanic cell generated ECL In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H_2O_2. The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96 well microtiter plates separately. The relative ECL intensity was proportional with the concentration of H_2O_2 in the range of 1.0×10~(-6) to 1.0×10~(-4) mol/L and the detection limit was 3.0×10~(-7) mol/L (3s), the R.S.D. for 11 parallel measurements of 1.0×10~(-5) mol/L H_2O-2 was 4.0%.
引文
1. Dzgoev A. , Mecklenburg M. , Xie B. , Miyabayashi A. , Larsson P. O. , Danielsson B. , Optimization of a charge coupled device imaging enzyme linked immune sorbent assay and supports for the simultaneous determination of multiple 2, 4-D samples, Anal. Chim. Acta, 1997, 347: 87-93.
    2. Rowe C. A. , Scruggs S. B. , Feldstein M. J. , Golden J. P. , Ligler F. S. , An arrayimmunosensor for simultaneous detection of clinical analytes, Anal. Chem. , 1999, 71: 433-439.
    3. MoNamara P. , Lew W. , Han L. , Fluorescent imaging and analysis with Typhoon 8600, Electrophoresis, 2001, 22: 837-842.
    4. Delehanty J. B. , Ligler F. S. , Immunoassay for simultaneous detection of proteins and bacteria, Anal. Chem. , 2002, 74: 5681-5687.
    5. Chovin A, Garrigue P. , Vinatier P. , Sojio N. , Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: Application to remote electrochemiluminescence imaging, Anal. Chem. , 2004, 76: 357-364.
    6. Hollingshead M. G. , Bonomi C. A. , Borgel S. D. , Carter J. P. , Shoemaker R. , Melillo G. , Sausville E. A. , A potential role for imaging technology in anticancer efficacy evaluations, Eur. J. Cancer, 2004, 40: 890-898.
    7. Navas M. J. , Jimenez A. M. , Chemiluminescent methods in alcoholic beverage, J. Agric. Food Chem. , 1999, 47: 183-189.
    8. Kricka L. J. , Chemiluminescence and bioluminescence, Anal. , 1999, 71: 305R-308R.
    9. Dodeigne C. , Thunus L. , Lejeune R. , Chemiluminescence as diagnostic tool, Talanta, 2000, 51: 415-439.
    10. Kricka L. J. , Clinical applications of chemiluminescence, Anal. Chim. Acta, 2003, 500: 279-286.
    11. Sun C. X. , Yang J. H, Li L. , Wu X. , Liu Y. , Liu S. F. , Advances in the study of luminesoence probes for proteins, J. Chromatogr. B, 2004, 803: 173-190.
    12. Surugiu I, Danielsson B. , Ye L. , Mosbach K. , Haupt K. , Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem. , 2001, 73: 487-491.
    13. Fini F. , Gallinella G. , Girotti S. , Zerbini M. , Musiani M. , Development of a chemiluminescence competitive PCR for the detection and quantification of parvovirus B19 DNA using a microplate luminometer, Clin. Chem. , 199, 45: 1391-1396.
    14. Wing J. , Xing D. , He Y. G. , Hu X. J. , Localization of tumor by chemiluminescence probe during photosensitization action, Cancer Lett. , 2002, 188: 59-65.
    15. Miura K. , Imaging and detection technologies for image analysis in electrophoresis, Electrophoresis, 2001, 22: 801-813.
    16. Panini P. , Musiani M, Russo C. , Valenti P. , Aicardi G. , Crabtree J. E. , Baraldini M. , Roda A. , Chemiluminescence imaging in bioanalysis, J. Pharm. Biomed. Anal. , 1998, 18: 555-564.
    17. Lau C. W. , Lu J. Z. , Yamaguchi T. , Kai M. , Controlled kinetics of non-enzymatic chemiluminescence reactions for simple imaging of DNA and protein, Anal Bioanal Chem. , 2002, 374: 1064-1068.
    18. Samsonova J. V. , Rubtsova M. Y. , Kiseleva A. V. , Ezhov A. A. , Egorov A. M. , Chemiluminescent multiassay of pesticides with horseradish peroxidase as a label, Biosens. Bioelectron. , 1999, 14: 273-281.
    19. Kasai S. , Hirano Y. , Motochi N. , Shiku H, Nishizawa M, Matsue T. , Simultaneous detection of uric acid and glucose on a dual-enzyme chip using scanning electrochemical microscopy/scanning chemiluminescence microscopy, Anal. Chim. Acta, 2002, 458: 263-270.
    20. Zhou H. F. , Kasai S. , Matsue T. , Imaging localized horseradish peroxidase on a glass surface with scanning electrochemical/chemiluminescence microscopy, Anal. Biochem., 2001:290 83-88.
    21. Thorpe G H, Kricka L. J., Moseley S. B., Whitehead T. P., Phenols as enhancers of the chemiluminescent horseradish peroxidase- luminol-hydrogen peroxide reaction: application in luminescence- monitored enzyme immunoassays, Clin. Chem., 1985, 31: 1335-1341.
    22. Huang R. P., Huang R. C., Fan Y., Lin Y., Simultaneous ddtection of multiple cytokines from conditioned media and patient's sera by an antibody-based protein array system, Anal. Biochem., 2001, 294: 55-62.
    23. George E. Y., Meixner L., Scheithauer W., Koppi A., Drost S., Wolf H, Danapel C., Feller K. A., Chemiluminescence multichannel immunosenor for biodetection Anal Chim. Acta, 2002, 457: 3-12.
    24. Fall B. L, Eberlein-Konig B., Behrendt H, Niessner R., Ring J., Weller M. G., Microarrays for the screening of allergen-specific IgE in human scum, Anal. Chem., 2003, 75: 556-562.
    25. Knecht B. G., Strasser A., Dietrich R., Martlbauer E., Niessner R., Weller M. G., Automated microarray system for the simultaneons detection of antibiotics in milk, Anal Chem., 2004, 76: 646-654.
    26. Roda A., Pasini P., Musiani M., Girotti S., Baraldini M., Carrea G., Suozzi A., Chemiluminescent low-light imaging of biospecifio reactions on macro- and microsamples using a videocamera-based luminograph, Anal. Chem. 1996, 68: 1073-1080.
    27. Yakovleva J., Davidsson R., Lobanova A., Bengtsson M, Eremin S., Laurell T., Emneus J., microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection, Anal. Chem., 2002, 74: 2994-3004.
    28. Zhang K, Cai R. X., Chen D. H, Mao L. Y., Determination of hemoglobin based on its enzymatic activity for the oxidation of o-phenylenediamine with hydrogen peroxide, Anal. Chim. Acta, 2000, 413: 109-113.
    1. Jones E. Y., Stuart D. L, Walker N. P. C., Structure of tumor necrosis factor, Nature, 1989, 338: 225-228.
    2. Petrovas C., Daskas S. M., Lianidou E. S., Determination of tumor necrosis factor-α (TNF-α) in serum by a highly sensitive enzyme amplified lanthanide luminescence immunoassay, Clin. Biochem., 1999, 32: 241-247.
    3. Jurisic V., Bumbasirevic V., Konjevic G., Djuricic B., Spuzic L, TNF-α induces changes in LDH isotype profile following triggering of apoptosis in PBL of non-Hodgkin's lymphomas, Ann Hematol, 2004, 83: 84-91.
    4. Tracey K. J., Cerami A., A pleiotropio oytokine and therapeutio target, Annual Review of Medicine, Ann. Rev. Med., 1994, 45: 491-503.
    5. Nolan D., Tumour necrosis factor-alpha gene-238G/A promoter polymorphism associated with a more rapid onset of lipodyslrophy, AIDS, 2003, 17: 121-123.
    6. de Kossodo S., Houba V., Grau G. E., J. Immunol. Meth., 1995, 182: 107-114.
    7. Petyovka N., Lyach L., Voitenok N. N., Homologous ELISA for detection of oligomeric human TNF: properties of the assay, J. Immunol. Meth., 1995, 186: 161-170.
    8. Ledur A., Fitting C., David B., Hamberger C., Cavaillon J. M., Variable estimates of oytokine levels produced by commercial ELISA kits: results using international cytokine standards, J. Immunol. Meth., 1995, 186: 171-179.
    9. van der Linden M. W., Huizinga T. W. J., Stoeken D. J., Sturk A., Westendorp R. G. J., Determination of turnout necrosis factor-α and interleukin-10 production in a whole blood stimulation system: assessment of laboratory error and individual variation, J. Immunol. Meth., 1998, 218: 63-71.
    10. Weghofer M., Karlio H, Haslberger A., Quantitative analysis of immune-mediated stimulation of tumor necrosis factor-alpha in macrophages measured at the level of mRNA and protein synthesis, Ann Hematol, 200, 80: 733-736.
    11. Teppo A. M., Maury C. P., Clin. Biochem., 1987, 33: 2024-2027.
    12. Jones L. J., Singer V. L., Fluoresoence microplate-based assay for tumor necrosis factor activity using SYTOX green stein, Anal. Biochem., 2001, 293: 8-15.
    13. Berthier F., Lambert C., Genin C. B., Evaluation of an automated immunoassay method for oytokine measurement using the Immulite Immunoassay system, J. Clin. Chem. Lab. Med. 1999, 37: 593-599.
    14. Ogata A., Tagoh H., Lee T., Kuritani T., Takahara Y., Shimamura T., Ikegami H., Kurimoto M., Yoshizaki K., Kishimoto T., A new highly sensitive immunoassay for cytokines by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), J.Immunol.Meth., 1992, 148: 15-21.
    15. Turpeinen U., Stenman U. H., Determination of human tumour necrosis factor-α (TNF-α) by time-resolved immunofluorometric assay, J. Clin. Lab. Invest, 1994, 54: 475-483.
    16. Evangelista R. A., Pollak A., Templeton E. F. G, Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytioal assays, Anal. Biochem., 1991, 197, 213-224.
    17. Hurst G. B., Buchanan M. V., Foote L. J., Kennel S. J., Analysis for TNF-α using solid-phase affinity capture with radiolabel and MALDI-MS detection, Anal. Chem., 1999, 71: 4727-4733.
    18. Saito K., Kobayashi D., Komatsu M., Yajima T., Yagihashi A., Ishikawa Y., Watanabe R. M. N., A sensitive assay of tumor necrosis factor a in sera from duchenne muscular dystrophy patients, Clin. Chem., 2000, 46: 1703-1704.
    19. Dodeigne C., Thunus L., Lejeune R., Chemiluminescence as diagnostic tool A review, Talanta, 2000, 51: 415-439.
    20. Kricka L. J., Clinical applications of chemiluminescence, Anal Chim. Acta, 2003, 500: 279-286.
    21. Pasini P., Musiani M., Russo C., Valenti P., Aicardi G., Crabtree J. E., Baraldini M., Roda A., Chemiluminescence imaging in bioanalysis, J. Phann. Biomed. Anal,1998, 18: 555-564.
    22. Samsonova J. V., Rubtsova M. Y., Kiseleva A. V., Ezhov A. A., Egorov A. M., Chemiluminescent multiassay of pasticides with horseradish peroxidase as a label, Biosens. Bioelectron., 1999, 14: 273-281.
    23. Rubtsova M. Yu., Kovba G. V., Egorov A. M., Chemiluminescent biosensors based on porous supports with immobilized peroxidase, Biosens. Bioelectron., 1998, 13: 75-85.
    24. Crown R., Jaffe L. E., Chemiluminescence microscopy as a tool in biomedical research, BioTechniques, 2001, 31: 1098-1105.
    25. Carretero A. S., Fernandez J. R., Bowiea A. R., Worsfold P. J., Acquisition of chemiluminescence spectral profiles using a continuous flow manifold with two dimensional CCD detection, Analyst, 2000, 125: 387-390.
    26. Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001, 73: 487-491.
    27. Huang R., Huang R., Fan Y., Lin Y., Simultaneous detection of multiple cytokines from conditioned media and patient's sera by an antibody-based protein array system, Anal. Biochem., 2001, 294: 55-62.
    28. Navas Diaz A., Garoia Sanchez F., Gonzalez Garcia J. A., Phenol derivatives as enhancers and inhibitors of Luminol-H_2O_2-Horseradish peroxidase chemiluminescence, J Biolumin Chemilumin., 1998, 13:75-84.
    29. Knecht B. G., Strasser A., Dietrich R., Malrtlbauer E., Niessner R., Weller M. G., Automated microarray system for the simultaneous detection of antibiotics in milk, Anal Chem., 2004, 76: 646-654.
    1. Zheng M. Z., Richard J. L., Binder J., A review of rapid methods for the analysis of mycotoxins, Mycopathologia, 2006,16:261-273.
    2. Dodeigne C., Thunus L., Lejeune R., Chemiluminescence as diagnostic tool. A review, Talanta, 2000, 51: 415—439.
    3. Baeyens W. R. G, Schulman S. G, Calokerinos A. C., Zhao Y., Garcia Campana A. M., Nakashima K., Keukeleire D. De, Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays, J Pharmaceut and Biomed, 1998, 17: 941-953.
    4. Morozova V. S., Levashova A. I., Eremin S. A., Determination of pesticides by enzyme immunoassay, J Anal Chem., 2005, 60: 202-217.
    5. Fintschenko Y., Wilson G S., Flow Injection Immunoassays: a Review, Microchim Acta, 1998, 129: 7-18.
    6. Li Z. P., Wang Y. C., Liu C. H., Li Y. K, Developmentof chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay, Anal. Chim. Acta 2005, 551: 85-91.
    7. Surugiu I., Svitel J., Ye L., Haupt K, Danielsson B., Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Anal. Chem., 2001, 73: 4388-4392.
    8. Bolado P. F., Begona M., Garcia G., Garcia A. C., Detectionof leucoindigo in alkaline phosphatase and peroxidase based assays using 3-indoxyl phosphate as substrate, Anal. Chim. Acta, 2005, 534: 231-238.
    9. Botchkareva A. E., Eremin S. A., Montoya A., Manclus J. J., Mickova B., Ranch P., Fini E, Girotti S., Development of chemiluminescent ELISAs to DDT and its metabolites in food and environmental samples, J Immunol Methods, 2003, 283: 45-57.
    10. Marquette C. A., Hezard P., Degiuli A., Blum L. J., Macro-molecular chemiluminescent complex for enhanced immuno-detection onto microtiter plate and protein biochip, Sens. ActuatorsB: Chem., 2006, 113: 664—670.
    11. Kricka L. J., Clinical applications of chemiluminescence, Anal. Chim. Acta, 2003, 500: 279-286.
    12. Pasha A., Karanth N. G. K., Karanth N. G, Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device, Biosens. Bioelectron, 2006, 21: 1264-1271.
    13. Gamiz-Gracia L., Garcia-Campana A. M., Soto-Chinchilla J. J., Huertas-Perez J. F., Gonzalez-Casado A., Analysis of pesticides by chemiluminescence detection in the liquid phase, TRAC-Trend Anal Chem, 2005, 24: 927.
    14. Diaz N., Sanchez F. G., Lovillo J., Gonzalez Garcia J. A., Enhanced chemiluminescence kinetic ELISA of dichlorprop methyl ester, Anal. Claim. Acta 1996, 321: 219-224.
    15. Kamyshny A., Magdassi S., Chemiluminescence immunoassay in microemulsions, Colloid Surfaces B, 1998, 11: 249-254.
    16. Salerno D., Daban J. R., Comparative study of different fluorescent dyes for the detection of proteins on membranes using the peroxyoxalate chemiluminescent reaction, J Chromatogr B, 2003, 793: 75-81.
    17. Shamsipur M., Chaichi M. J., Karami A. R., Sharghi H., Effect of some aminoanthraquinone derivatives as red fluorescers on chemiluminescence systems originating from bis-(2,4,6-trichlorophenyl) oxalate and lucigenin, J Photoch Photobio A, 2005, 174: 23-27.
    18. Mohan A. G., Turro N. J., J Chem Educ., 1974, 51: 528.
    19. Zhang K., Mao L. Y., Cai R. X., Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst, Talanta, 2000, 51: 179-186.
    20. Akhavan-Tafti H., deSilva R., Eickholt R., Handley R., Mazelis M., Sandison M., Characterization of new fluorescent peroxidase substrates, Talanta, 2003, 60: 345-354.
    21. Shamsipur M., Yeganeh-Faal A., Chaichi M. J., Tajbakhsh M., Parach A., A study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate, hydrogen peroxide and an optical brightener 5-(3-anilino-5-chloroanilino)-2-{(E)-2-[4-(3-anilino-5- chloroanilino)-2-sulfophenyl]-1-ethenyl}-1-benzenesulfonic acid, Dyes Pigments, 2007, 72:113-118.
    22. Emteborg M., Ponten E., Irgum K., Influence of imidazole and bis(trichlorophenyl) oxalate in the oxalyldiimidazole peroxyoxalate chemiluminescence reaction, Anal. Chem., 1997, 69: 2109-2114.
    1.方子龙.杨则宜,竞技体育中的兴奋剂使用和控制,生物学通报,1996,31:12-14.
    2.王杉.杨则宜,谢敏,邓静.方子龙,万劲,张长久,国产ELISA试剂盒应用于兴奋剂控制中的hCG检测,中国运动医学杂志,1997,16:280-282.
    3. Silva R. A. G. D., Sherman S. A., Perini F., Bedows E., Keiderling T. A., folding studies on the human chorionio gonadotropin,β-subunit using optical spectroscopy of peptide fragments, J. Am. Chem. Soc., 2000,122: 8623-8630.
    4. Zhang B., Mao Q. G., Zhang X., Jiang T. L., Chen M., Yu F., Fu W. L., A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin, Biosens Bioelectron., 2004, 19: 711-720.
    5. Meiscl M. J., Romer T., Straube W., Meisel P., Antioardiolipin antibodies in ectopic pregnancies, Eur J Obstet Gyn R B., 2001, 99: 97-101.
    6. Lode P. V., Rosenberg J., Pettersson K., Takalo H, A europium chelate for quantitative point-of-care immunoassays using direct surface measurement, Anal. Chem., 2003, 75: 3193-3201.
    7. Santandreu M., Alegret S., Fabregas E., Determination of β-HCG using amperometrio immunosensors based on a conducting immunocomposite, Anal. Chim. Acta, 1999, 396: 181-188.
    8. Bolado P. F., Begona M., Garcia G., Garcia A. C., Detection of leucoindigo in alkaline phosphatase and peroxidase based assays using 3-indoxyl phosphate as substrate, Anal. Chim. Acta, 2005, 534: 231-238.
    9. Botchkareva A. E., Eremin S. A., Montoya A., Manclus J. J., Mickova B., Rauch P., Fini F., Girotti S., Development of chemiluminescent ELISAs to DDT and its metabolites in food and environmental samples, J Immunol Methods, 2003, 283: 45-57.
    10. Marquette C. A., Hezard P., Degiuii A., Blum L. J., Macro-molecular chemiluminescent complex for enhanced immuno-detection onto microtiter plate and protein biochip, Sens. ActuatorsB: Chem., 2006, 113: 664-670.
    11. Kricka L. J., Clinical applications of chemiluminescence, Anal. Chim. Acta, 2003, 500: 279-286.
    12. Pasha A., Karanth N. G. K., Karanth N. G, Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device, Biosens. Bioelectron., 2006, 21: 1264-1271.
    13. Gamiz-Gracia L., Garcia-Campana A. M., Soto-Chinchilla J. J., Huertas-Perez J. F., Gonzalez-Casado A., Analysis of pesticides by chemiluminescence detection in the liquid phase, TRAC-Trend Anal Chem, 2005, 24: 927.
    14. Diaz N., Sanchez F. G, Lovillo J., Gonzalez Garcia J. A., Enhanced chemiluminescence kinetic ELISA of dichlorprop methyl ester, Anal. Chim. Acta, 1996, 321: 219-224.
    15. Baeyens W. R. G., Schulman S. G., Calokerinos A. C., Zhao Y., Garcia Campana A. M., Nakashima K., Keukeleire D. De., Chemiluminescence-based detection: principles and analytical applications in flowing sueams and in immunoassays, J Pharmaceut and Biomed., 1998, 17: 941-953.
    16. Kamyshny A., Magdassi S., Chemiluminescence immunoassay in microemuisions, Colloid Surfaces B, 1998, 11: 249-254.
    17. Salerno D., Daban J. R., Comparative study of different fluorescent dyes for the detection of proteins on membranes using the peroxyoxalate chemiluminescent reaction, J Chromatogr B, 2003, 793: 75-81.
    18. Shamsipur M., Chaichi M. J., Karami A. R., Sharghi H., Effect of some aminoanthraquinone derivatives as red fluorescers on chemiluminescence systems originating from bis-(2,4,6-trichlorophenyl) oxalate and lucigenin, J Photoch Photobio A, 2005, 174: 23-27.
    19. Mohan A. G., Turro N. J., J, Chem Educ., 1974, 51: 528.
    20. Zhang K., Mao L. Y., Cai R. X., Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst, Talanta, 2000, 51: 179-186.
    21. Akhavan-Tafti H., deSilva R., Eickholt R., Handley R., Mazelis M., Sandison M., Characterization of new fluorescent peroxidase substrates, Talanta, 2003, 60: 345-354.
    22. Shamsipur M., Yeganeh-Faal A., Chaichi M. J., Tajbakhsh M., Parach A., A study of chemiluminescence from reaction of bis(2,4,6-trichlorophenyl)oxalate, hydrogen peroxide and an optical brightener 5-(3-anilino-5-chloroanilino)-2-{(E)-2-[4-(3-anilino-5-chloroanilino)-2-sulfophenyl]-1-ethenyl}-1-benzenesulfonic acid, Dyes Pigments, 200, 72:113-118.
    23. Emteborg M., Ponten E., Irgum K., Influence of Imidazole and Bis(trichlorophenyl) Oxalate in the Oxalyldiimidazole Peroxyoxalate Chemiluminescence Reaction, Anal. Chem., 1997, 69: 2109-2114.
    1. Reshetnyak O. V., Kozlovs'ka Z. E., Koval'chuk E. P., Obushak M. D., Rak J., Blazejowski J, Spectral features of electrochemiluminescence accompanying reduction of aryldiazonium salts on a copper cathode, Electro Commun, 2001, 3: 1-5.
    2. Fahnrich K. A, Pravda M., Guilhault G. G., Recent applications of electrogenerated chemiluminescence in chemical analysis,Talanta, 2001,54:531-559.
    3. Kulmala S., Suomi J., Current status of modern analytical luminescence methods, Anal. Chim. Acta, 2003, 500: 21-69.
    4. Chovin A., Garrigue P., Sojic N., Electrochemilumincscent detection of hydrogen peroxide with an imaging sensor array, Electrochim Acta, 2004, 49:3751-3757.
    5. Koudelka-Hep M., van der Wal P. D., Microelectrode sensors for biomedical and environmental applications, Electrochim Acta, 2000, 45: 2437-2441.
    6. Mayr T., Igel C., Liebsch G., Klimant I., Wolfbeis O. S., Cross-reactive metal ion sensor array in a micro titer plate format, Anal. Chem., 2003, 75, 4389-4396.
    7. Liu Y. H., Dam T. H., Pantano P., A pH-sensitive nanotip array imaging sensor, Anal. Chim. Acta, 2000, 419:215-225.
    8. O'Brien M. J., Perez-Luna V. H., Brueck S.R.J., Lopez G. P., A surface plasmon resonance array biosensor based on spectroscopic imaging, Biosens Bioelectron, 2001, 16: 97-108.
    9. Chovin A., Garrigue P., Vinatier P., Sojic N., Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging, Anal. Chem., 2004, 76: 357-364.
    10. Roda A., Guardigli M., Pasini P., Mirasoli M., Michelini E., Mnsiani M., Bio-and chemiluminescence imaging in analytical chemistry, Anal. Chim. Acta, 2005, 541: 25-36.
    11. Corgier B. P., Marquette C. A., Blum L. J., Screen-printed electrode microarray for electrochemiluminescent measurements, Anal. Chim. Acta, 2005, 538: 1-7.
    12. L'Hostis E., Michel P. E., Fiaccabrino G. C., Strike D J, de Rooij N. F., Koudelka-Hep M., Microreactor and electrochemical detectors fabricated using Si and EPON SU-8, Sensor Actuat B-Chem., 2000, 64: 156-162.
    13. Koudelka-Hep M., van der Wal P. D., Microelectrode sensors for biomedical and environmental applications, Electrochim Acta, 2000, 45: 2437-2441.
    14. Pan C. W., Chou J. C., Sun T. P., Hsiung S. K., Development of the real-time pH sensing system for array sensors, Sensor Actuat B-Chem., 2005, 108:870-876
    15. Revzin A.F., Sirkar K., Simonian A., Pishko M.V., Glucose, lactate, and pyruvatc bioscnsor arrays based on redox polymer/oxidoreductase nanocomposite thin-films deposited on photolithographically patterned gold microelectrodes, Sensor Actuat B-Chem., 2002. 81: 359-368.
    16. Lv J. G., Luo L. R., Zhang Z. J., On line galvanic cell generated electrochemiluminescence determination of acyclovir based on the flow injection sampling, Anal.Chim. Acta, 2004, 510: 35-39.
    17. Lv J. G., Zhang Z. J., Luo L. R., An On,line galvanic cell generated electrocbemiluminescence and flow injection determination of calcium in milk and vegetables, Anal Sci., 2003, 6: 883-886.
    18. Bockris J. O'M, Conway B. E., Yeager E., White R. E. (Eds), Comprehensive Treatise of Electrochemistry, (Electrochemical Materials Science Vol. 4), Plenum press. NewYork AND London, 1981: p142.
    19. Thirsk H. R., Armstrong R. D., Bell M. F., Bowling J. E., Briggs GW D., Brown O. R., Edmondson K., Inman D., Lakshminarayanaiah N., Lovermg D. G., Roberston P. M., West G. D., White S. H. (Eds), Electrochemistry, (The Chemical Society Vol. 4), Burlington Hour. London, 1972: p2.
    20. Janasek D., Spohn U., Beckmann D., Novel chemiluminometric H_2O_2 sensors for the selective flow injection analysis, Sensor Actuat B-Chem., 1998, 51: 107-113.
    21. Yu H. X., Cui H., Comparative studies on the electrochemiluminescence of the luminol system at a copper electrode and a gold electrode under different transient-state electrochemical techniques, Journal of Electroanal Chem., 2005, 580: 1-8.
    1. Palilis L. P., Calokerinos A. C., Analytical applications of chemiluminogenic reactions, Anal. Chim. Acta, 2000, 413: 175-186.
    2.林金明,化学发光基础理论与应用,北京,化学工业出版社,2004:1-2.
    3. Navas M. J., Jimenez A. M., Review of chemiluminescent methods in food analysis, Food Chem., 1996, 55: 7-15.
    4. Huang X. J., Fang Z. L., Chemiluminescence detection in capillary electrophoresis, Anal. Chim. Acta, 2000, 414: 1-14.
    5. Liu Y. M., Cheng J, K., Ultrasensitive chemiluminescence detection in capillary electrophoresis, J Chromatogr A, 2002, 959: 1-13.
    6. Yamaguchi M., Yoshida H., Nohta H., Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis, J Chromatogr A, 2002, 950: 1-19.
    7. Ohba Y., Kuroda N., Nakashima K., Liquid chromatography of fatty acids with chemiluminescence detection, Anal. Chim. Acta, 2002, 465:101-109.
    8. Zhang Z. Y., Zhang S. C., Zhang X. R., Recent developments and applications of chemiluminescence sensors, Anal. Chim. Acta, 2005, 541: 37-46
    9. Jobgen W. J. S., Jobgen S. C., Li H., Meininger C. J., Wu G. Y., Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography, J Chromatogr B, In Press.
    10. Teranishi K., Luminescence of imidazo [1, 2-a] pyrazin-3(7H)-one compounds, Bioorg Chem., 2007, 35: 82-111.
    11. Hindson B. J., Barnett N. W., Analytical applications of acidic potassium permanganate as a chemiluminescence reagent, Anal. Chim. Acta, 2001, 445: 1-19.
    12. Sun C. X, Yang J. H., Li L., Wu X., Liu Y., Liu S. F., Advances in the study of luminescence probes for proteins, J Chromatogr B., 2004, 803: 173-190.
    13. Tsunoda M., Imai K., Analytical applications of peroxyoxalate chemiluminescence, Anal. Chim. Acta, 2005, 541:13-23.
    14. Matsumoto M., Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5: 27-53.
    15. Dodeigne C., Thunus L, Lejeune R, Chemiluminescence as diagnostic tool. A review, Talanta, 2000, 51: 415-439.
    16 Kricka L. J., Clinical applications of chemiluminescence, Anal. Chim Acta, 2003, 500, 279-286.
    17. Pelletier M. M., Kleinbongard P., Ringwood L, Hito R., Hunter C J., Schechter A. N., Gladwin M. T., Dejam A., The measurement of blood and plasma nitrite by chemiluminescence: pitfalls and solutions, Free Radical Bio Med., 2006, 41: 541-548.
    18. Stigbrand M., Karlsson A., Irgum K., Direct and selective determination of atmospheric gaseous hydrogen peroxide by diffusion scrubber and l,l'-Oxalyldiimidazole chemiluminescence detection, Anal. Chem., 1996, 68: 3945-3950.
    19. Matsunaga T., Kawasaki M., Yu X., Tsujimura N., Nakamura N., Chemiluminescence enzyme immunoassay using bacterial magnetic particles, Anal. Chem., 1996, 68:3551-3554.
    20. Appelblad P., Jonsson T., Backstrom T., hgum K., Determination of C-21 ketosteroids in serum using trifluoromethanesulfonic acid catalyzed precolumn dansylation and l, l'-Oxalyldiimidazole postcolumn peroxyoxalate chemiluminescence detection, Anal. Chem., 1998, 70: 5002-5009.
    21. Lamberty A., Gardiner P.H.E., Derbyshire M., Optimization of the simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) by ion chromatography with chemiluminescence detection, Anal. Chem., 1999, 71: 4203-4207.
    22. Fujiwara T., Mohammadzai I.U., Murayama K., Kumamaru T., Solvent extraction coupled on-Line to a reversed micella, mediated chemiluminescence detection system for trace-level determination of atropine, Anal. Chem., 2000, 72:1715-171.
    23. Lin J. M., Yamada M., Chemiluminescent reaction of fluorescent organic compounds with KHSO_5 using Cobalt(Ⅱ) as catalyst and its first application to molecular imprinting, Anal. Chem., 2000, 72: 1148-1155.
    24. Tsukagoshi K., Nakamura T., Nakajima R., Batch type chemiluminescence detection cell for sensitization and simplification of capillary electrophoresis, Anal. Chem., 2002, 74:4109-4116.
    25. Morita H., Konishi M., Electrogenerated chemiluminescence derivatization Reagent, 3-isobutyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2, 1-a] isoquinolin-2-ylamine, for carboxylic acid in high-Performance liquid chromatography using tris(2,2'-bipyridine)ruthenium(Ⅱ), Anal. Chem., 2003, 75: 940-946.
    26. Fletcher P. J., Andrew K. N., Forbes S., Worsfoid P.J, Automated flow injection analyzer with on-line solid-phase extraction and chemiluminescence detection for the determination of dodecylamine in diesel fuels, Anal. Chem., 2003, 75: 2618-2625.
    27. Zheng J., Springston S. R., Weinstein-Lloyd J., Quantitative analysis of hydroperoxyl radical using flow injection analysis with chemiluminescence detection, Anal. Chem., 2003, 75: 4696-4700.
    28. ldowu A. D., Dasgupta P. K, Genfa Z., Toda K., Garbarino J. R., A Gas-phase chemiluminescence-based analyzer for waterborne arsenic, Anal. Chem., 2006, 78: 7088-7097.
    29. Wehry E. L., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1980, 52:75R-90 R.
    30. Wehry E. L., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1982, 54: 131R-150R
    31. Wehry E. L., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1984, 56: 156R-173R.
    32. Wehry E. L., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem. 1986, 58: 13R-33R.
    33. Warner I M, McGown L. B., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1988, 60:162R-175R.
    34. McGown L. B., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1990, 62:255 R-267R.
    35. Warner I. M, McGown L. B., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1992, 64: 343R-352R.
    36. Soper S. A., McGown L. B., Warneroit I. M., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem. 1994, 66: 428R-444R.
    37. Warner I. M, Soper S. A, McGown L. B., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem. 1996, 68:73R-91R.
    38. Soper S. A, Warner I. M., McGown L. B., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem. 1998, 70: 477R-494R.
    39. Oldham P. B., McCarroll M. E, McGown L. B, Warner I. M., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 2000, 72: 197R-209R.
    40. Agbaria R. A, Oldham P. B., McCarroll M., McGown L. B., Warner I. M, Molecular fluorescence, phosphorescence, and chemiluminescence spectromctry, Anal. Chem, 2002, 74: 3952-3962
    41. Powe A. M., Fletcher K. A., St. Luce N. N., Lowry M, Neal S., McCarroll M. E., Oldham P. B., McGown L. B., Warner I. M., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 2004, 76: 4614-4634.
    42. Fletcher K. A., Fakayode S. O., Lowry M., Tucker S. A., Neal S. L, Kimaru I. W., McCarroll M E., Patonay G., Oldham P. B., Rusin O., Strongin R. M, Warner I. M., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem.2006, 78: 4047-4068.
    43.章竹君,李保新.郑行望.发光分析,分析试验室,2003,22:95-108.
    44.张成孝,漆红兰,电化学发光分析研究进展,世界科技研究与发展,2004.26:7-13
    45.卢建忠,曹志娟,化学发光技术在蛋白质和DNA分析中的新进展,世界科技研究与发展,2004,26:97-104.
    46.林金明.化学发光色谱柱后检测技术及其应用,色谱,2003,21:324-331.
    47.林金明,活性氧的化学发光测定,环境科学学报,2003,23:230-238.
    48.韩鹤友.何治柯.曾云鹗,羟自由基的分析研究进展,分析科学学报.2001,17:83-87.
    49.汪尔康,21世纪的分析化学,北京,科学出版社,1999:10-12.
    50. Roda A., Pasini P., Musiani M, Girotti S., Baraldini M., Carrea G., Suozzi A., Chemilumincscent low-light imaging of biospecific reactions on macro- and microsamples using a videocamera-based luminograph, Anal. Chem., 1996, 68: 1073-1080.
    51. Roda A., Guardigli M., Ziessel R., Mirasoli M, Michelini E., Musiani M., Molecular luminescence imaging, Microchem J, 2007, 85: 5-12.
    52. Roda A., Guardigli M., Pasini P., Mirasoli M., Michclini E., Musiani M, Bio-and chemiluminescence imaging in analytical chemistry, Anal. Chim. Acta, 2005, 541: 25-36.
    53. Talmi Y., Anal Chem., 1975, 47: 685A
    54. Talmi Y., Anal. Chem., 1975, 47: 697A
    55. Santini R. E., Milano M. J., Pardue H. L., Anal. Chem, 1973, 45: 915A
    56. Mitchell D. G., Jackson K. W., Aldous K. M., Anal. Chem., 1973, 45: 1215A.
    57. Busch K. W., Morrison G. H., Anal. Chem., 1973, 45: 712A.
    58. Horlick G, Appl. Spectrosc., 1976, 30: 113.
    59. Winefordner J. D., Fitzgerald J. J, Omenetto N, Appl. Spectrosc., 1975, 29: 369.
    60. Cooney R. P., Boutlller G. D, Wlnefordner J. D., Comparison of image devices vs. photomultiplier detectors in atomic and molecular luminescence spectrometry via signal-to-noise ratio calculations, Anal. Chem., 1977, 49:1048-1057.
    61. Smardzewski R. R., Ber. Bunsenges. Phys. Chem. 1978, 82: 108-109.
    62. Rich Jr., Wampler J. E., A flexible, computer-controlled video microscope capable of quantitative spatial, temporal, and spectral measurements, Clin. Chem., 1981,27: 1558-1568.
    63. Kricka L. J., Investigation of a novel solid-phase chemiluminescence analytical system. incorporation photographic detection for the measurement of glucose., Talanta, 1982, 29: 529-531.
    64. Thorpe G.H. G., Whitehead T.P., Penn R., Kricka L., J. Clin. Chem. (Winston-Salem, N.C.), 1984, 30: 806-807.
    65.贠明凯.刘力,数字实时成像(DR)与X射线胶片成像对比分析,CT Theory and Applications, 2005, 14: 13-17.
    66. Karger A.E., Weiss R., Gesteland R.F., Digital chemilumiescence imaging of DNA sequencing blots usirig a charge-couped device camera, Nucleic Acids Res, 1992, 20: 6657-6665.
    67. Martin C. S., Bronstein I., Imaging of chemiluminescent signals with cooled CCD camera systems, Journal Bio Chem., 1994, 9: 145-153.
    68. Miura K., Imaging and detection technologies for image analysis in electrophoresis, Electrophoresis, 2001,22: 801-813.
    69. Feissner R., Xiang Y. B., Kranz R. G, Chemiluminescent-based methods to detect subpicomole levels of c-type cytochromcs, Anal Biochem., 2003, 315: 90-94.
    70. Nicolas J. C., Applications of low-light imaging to life sciences, Journal Bio Chem., 1994, 9: 139-144.
    71. Kobayashi M, Takeda M., Sato T., Yamazaki Y., Kaneko K, Ito K I., Kato H., Inab H, In vivo imaging of spontaneous ultraweak photon emission from a rat's brain correlated with cerebral energy metabolism and oxidative stress, Ncurosci Rcs, 1999, 34:103-113.
    72. http://www.google.com/search
    73. Karger A. E., Weiss R., Gesteland R. F., Line scanning system for direct digital chemiluminesncece imaging of DNA-sequencing blots, Anal. Chem., 1993, 65: 1785-1793.
    74. Carretero A. S., Fernandez J. R., Bowie A. R., Worsfold P. J., Acquisition of chemiluminescence spectral profiles using a continuous flow manifold with two dimensional CCD detection, Analyst, 2000, 125: 387-390.
    75.任宏周,唐贵,杜宇,新型图像传感器C C D的原理及应用.中州煤炭,1998,1:10-11.
    76.樊旭峰,单亚拿,卢雁,吕晶,CCD摄像技术用于分光计实验的研究,大学物理世验,2005,18:36-38.
    77. Girotti S., Pasini P, Ferri E., Ghini S., Fini F, Budini R., Roda A, Chemiluminescent determination of xanthine oxidase activity using a sensitive low-light detection system, Anal lett, 1996, 29: 2097-2114.
    78. Pasini P, Musiani M., Russo C., Valenti P., Aicardi G, Crabtree J. E., Baraldini M., Roda A, Chemiluminescence imaging in bioanalysis, Journal of Pharmaceut Biomed., 1995, 18: 555-564.
    79. Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K, Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001, 73: 487-491.
    80. Roda A., Mirasoli M., Venturoli S., Cricca M., Bonvicini F, Baraldini M., Pasini P, Zerbini M., Musiani M, Microtiter format for simultaneous multianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs, Clin. Chem., 2002, 48: 1654-1660.
    81. Mallard F., Marchand G., Ginot F., Campagnolo R., Opto-electronic DNA chip: high performance chip reading with an all-clectricinterfacc, Biosens Bioclectron., 2005, 20. 1813-1820.
    82. Roda A., Pasini P., Mirasoli M, Michelini E., Guardigli M., Biotechnological applications of bioluminescence and chemiluminescence Review, Trends Biotechnol., 2004, 22: 295-303.
    83. Urbanowska T., Mangialaio S., Zickler C, Cheevapruk S., Hasler P., Regenass S., Legay F., Protein microarray platform for the multiplex analysis of biomarkers in human sera, J Immunol Methods., 2006, 316: 1-7.
    84. Huang R. P., Detection of multiple proteins in an antibody-based protein microarray system, J Immunol Methods., 2001,255: 1-13.
    85. Dzgoev A., Mecklenburg M, Larsson P. O., Danielsson B, Microfonnat imaging ELISA for pesticide determination, Anal Chem., 1996, 68:3S64-3369
    86. Kricka L. J., Ji X. Y., Nozaki O., Wilding P., Imaging of chemiluminescent reactions in mesoscale silicon-glass microstructures, Journal Bio Chem., 1994, 9: 135-138.
    87. Chcek B. J., Steel A. B., Tortes M. P., Yu Y. Y., Yang H. J, Chemiluminescence detection for hybridization assays on the flow-through chip, a three-dimensional microchannel biochip, Anal. Chem 2001, 73: 5777-5783.
    88. Knecht B. R., Strasser A., Dietrich R., Martibauer E, Niesser R., Weller M G., Automated microarray system for the simultaneous detection of antibiotics in milk, Anal Chem, 2004, 76: 646-654.
    89. Kamiya K, Imaging-processing in video microscopy, Acta Histochemica Et Cytochemica, 1991, 24: 353-356.
    90. Creton R., JaNe L. E, Biotechniques, 2001,31: 1098.
    91. Roda A., Pasini P., Baraldini M., Musiani M., Gentilomi G., Robert C., Chemiluminescent imaging of enzyme-labeled probes using an optical microscope-videocamera luminograph, Anal Biochem., 1998, 257: 53-62.
    92. Creton R., Kreiling J. A., Jaffe L. F., Calcium imaging with chemiluminescence, Microsc Res and Techniq, 1999, 46: 390-397.
    93. Wiklund N. P., Iversen H. H., Leone A. M., Cellek S., Rrundin I,., Gustafsson L. E., Moncada S.,Visualization of nitric oxide formation in cell cultures and living tissue, Acta Physiol Scand, 1999, 167: 161-166.
    94. Mishra O. P., Mishra R, Ashraf Q. M, Papadopoulos M. D, Nitric oxide-mediated mechanism of neuronal nitric oxide synthase and inducible nitric oxide synthase expression during hypoxia in the cerebral cortex of newborn piglets, Neuroscience, 2006, 140: 857—863.
    95. Sasaki T., Iwamoto A., Tsuboi H., Watanabe Y., Development of real-time bioradiographic system for functional and metabolic imaging in living brain tissue, Brain Res, 2006, 1077. 161-169.
    96. Wang Z. Q., Haydon P. G, Yeung E. S., Direct observation of calcium-independent intercellular ATP signaling in astrocytes, Anal. Chem., 2000, 72:2001-2007.
    97. Gruenhagen J. A., Lovell P., Morozb L. L., Yeung E. S., Monitoring real-time release of ATP from the molluscan central nervous system, J Neurosci Meth, 2004, 139:145-152.
    98. Wang Z. Q., Yeung E. S., Selective detection of neurotransmitters by fluorescence and chemiluminescence imaging, Pure Appl Chem., 2001, 73: 1599-1611.
    99. Roda A., Musiani M., Pasini P., Baraldini M, Crabtree J. E, In situ hybridization and immunohistochemistry with enzyme-triggered chemihnminescent probes, Method Enzymol., 2000, 305: 577-586.
    100. Musiani M., Pasini P., Zerbini M., Roda A., Gentilomi G., Gallinella G, Venturoli S, Chemiluminescence: a sensitive detection system in in situ hybridization, Histol Histopathol., 1998, 13: 243-248.
    101. Musiani M., Zerbini M., Venturoli S., Gentilomi G., Gallinella G., Manaresi E., LaPlaca M, Dantuono A., Roda A., Pasini P., Sensitive chemiluminescence in situ hybridization for the detection of human papillomavirus genomes in biopsy specimens, J Histochem & Cytochem., 199, 45: 729-735.
    102. Musiani M., Pasini P., Zerbini M., Gcntilomi G., Roda A, Gallinella G., Manaresi E., Venturoli S., Prenatal diagnosis of parvovirus B19-induced hydrops fetalis by chemiluminescence in situ hybridization, J Clin Microbiol., 1999, 37: 2326-2329.
    103. Lamarcq L., Labatmoleur F., Guillermet C., Bethier R, Stoebner P., Enhanced chemiluminescence a high-sensitivity detection system for in-situ hybridizatioa and immunohistochemistry, J Histochem Cytochem., 1993, 41: 1591-1597.
    104. Heider H., Schroeder C., luminescence assay: macroscopically visualized foci of human cytomegalovirus and varicella zostcr virus infection, Journal of Viral Methods, 1997, 66: 311-316.
    105. Zulli A., Liu J. J., A novel Immunohistochemical semiquantitative technique for endothelial constitutive nitric oxide synthase immunoreactivity in rat coronary artery, J Histochem Cytochem., 1998, 46: 257-262.
    106. van Gijssel H. E, Divi R. L., Olivero O. A., Roth M. J., Wang G. Q., Dawsey S. M., Albert P. S., Qiao Y. L, Taylor P. R., Dong Z. W., Schrager J. A., Kleiner D. E., Poirier M C., Semiquantitation of polycyclic aromatic hydrocarbon-DNA adducts in human esophagus by immunohistochemistry and the automated cellular imaging system, Cancer Epidem Biomar., 2002, 11: 1622-1629.
    107.张力华.张志良,沈曾佑.不同幼曲对大豆化学发光的影响,华东师范大学学报(自然科学版),1997,199:80-85.
    108. Saito H., Fukumura D., Kurose I., Suematsu M, Tada S., Kagawa T., Miura S., Morizane T, Tsuchiya M., Visualization of oxidative Processes, at the cellular-level during neutrophil-mediated cytotoxicity against a human hepatoma-ccll line, Hcc-minternational, Journal of Cancer, 1992, 51: 124-129.
    109. Campbell A. T., Robertson L. J., Smith H. V., Detection of oocysts of cryptosporidium by enhanced chemiluminescence, J Microbiol Moth., 1993, 17: 297-303.
    110. Whiston R. J., Hallett M. B., Davies E V., Harding K. G, Lanc I. E, Nappropriatr neutrophil activation in venous disease, Brit J Surg, 1994, 81: 695-698.
    111. Chanez P., Godard P., Vachier I., Ledoucen C., Loubatiere J., Damon M., Terouanne B., Nicolas J. C., Imaging reactive oxygen species in asthma, J Biol Chem., 1994, 9: 171-175.
    112. Makino T., Kato K., Iyozumi H., Honzawa H., Tachiiri Y., Hiramatsu M., Ultraweak luminescence generated by sweet potato and fusarium oxysporum interactions associated with a defense response, Photochemistry and Photobiology, 1996, 64: 953-956.
    113. Kobayashi M., Takeda M., Ito K. L, Kato H., Inaba H., Two-dimensional photon counting imaging and spatiotcmporal charactcrization of ultrawcak photon emission from a rat's brain in vivo, J Neurosci Meth., 1999, 93: 163-168.
    114. Kobayashi M, Takeda M, Sato T, Yamazaki Y, Kaneko K, Ito K, Kato H, Inaba H, In vivo imaging of spontaneous ultraweak photon emission from a rat's brain correlated with cerebral energy metabolism and oxidative stress, Neurosci Res, 1999, 34: 103-113.
    115. Yasui H., Sakurai H, Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA, Biochem Bioph Res Co., 2000, 269: 131-136.
    116. lie Y. H., Xing D., Tan S. C., Tang Y. H., Ueda K, In vivo sonoluminescence imaging with the assistance of FCLA, Phys Med Biol., 2002, 47:1535-1541.
    117. Wang J., Xing D., He Y. G, Hu X. J., Localization of tumor by chemiluminescence probe during photosensitization action, Cancer Lett, 2002, 188: 59-65.
    118. He Y. H., Xing D., Wang J., A novel cancer imaging method using chemiluminescence-mediated sonosensitization, Chinese Sci Bull., 2003, 48: 777-780.
    119. Ojetti V., Di Campli C., Mutignani M., Migncco A., Tridcnte A., Silvcri N. G, Gasbarrini G, Gasbarrini A., Real time endoscopic imaging of oxyradical generation in pig stomach during ischemia-reperfusion, Digest Liver Dis., 2003, 35: 309-313.
    120. Roda A., Guardigli M., Pasini P., Mirasoli M., Bioluminescence and chcmiluminesccnce in drug screening, Anal Bioanal Chem, 2003, 377: 826-833.
    121. Chen W. L., Xing D., Tan S. C., Tang Y. H., lie Y. H., Imaging of ultra-weak bio-chemiluminescence and singlet oxygen generation in germinating soybean in response to wounding, Luminescence, 2003, 18: 37-41.
    122. Yoshiki Y., Iida T., Akiyama Y., Okubo K., Matsumoto H., Sato M., Imaging of hydropcroxide and hydrogen peroxide-scavenging substances by photon emission, Luminescence, 2001, 16: 327-335.
    123. Akhavantafti H., Schaap A. P., Arghavani Z., Desilva R., Eickholt R. A., Handley R. S., Schoenfelner B. A., Sugioka K, Sugioka Y., CCD Camera imaging for the chemiluminescent detection of enzymes using new ultra sehsitive reagents, J Bioi Chem., 1994, 9:155-164.
    124. Olesen C.E.M., Martin C. S., Voyta J. C., Edwards B, Bronstein I., Dioxetane substrates for alkaline phosphatase labels, Journal of Clinical Ligand assay, 1999, 22: 129-138.
    125. Lau C. W., Lu J. Z., Yamaguchi T., Kai M., Controlled kinetics of non-enzymatic chemiluminescence reactions for simple imaging of DNA and protein, Anal Bioanal Chem, 2002, 374: 1064-1068.
    126. Lu J., Lau C., Morizono M., Ohta K., Kai M. A., Chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications, Anal, Chem, 2001,73: 5979-5983.
    127. Roda A., Pasini R, Baraldini M., Musiani M., Gentilomi G, Robert C., Chemilumincscent imaging of enzyme-labeled probes using an optical microscope-videocamera luminograph, Anal. Biochem., 1998, 257: 53-62.
    1. Hage D. S., Immunoassays, Anal Chem., 1999, 71: 294-304.
    2. Schulman S. G, Calokerinos A. C., Zhao Y., Ma Garcia Campana A., Nakashima K, De Keukeleire D., Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays, Journal of Pharmaceut Biomed, 1998 17: 941-953.
    3. Kricka L. J, Chemiluminescence and biolumincscencc, Anal. Chem, 1999, 71: 305R-308R.
    4. Yalow R. S., Berson S. A., Nature, 1959, 184: 1648.
    5. Hage D. S., Ph. D. Immunoassays, Anal. Chem., 1991, 63: 206R-208R.
    6. Engvall E., Perlman P., Enzyme-linked immunosorhentassay (ELISA): quantitative assay of immunoglobulin G, Immunochem., 1971, 8: 871.
    7. Tijssen P., Practice and theory of enzyme immunoassay, Amsterdam, New York, Oxford: Elsever Science Publishers, 1985.
    8. Porstmann T., Kiessig S. T., Enzyme immunoassay techniques, An Overview, J Immunol Methods, 1992, 150: 5-21.
    9. Blake C., AL-Bassam M. N., Gould B. J., Marks V., Bridges J. W., Riley C., Simultaneous enzyme immunoassay of two thyroid hormones, Clin Chem., 1982, 28: 1469-1473.
    10. Katona E., Ajzner E, Toth K, Enzyme-linked immunosorbent assay for the determination of blood coagulation factor ⅫⅠ A-subunit in plasma and in celllysates, J. Immunological methods, 2001, 258: 127-135.
    11. Lome F. E, Darlene S., David B., Whole cell ELISA for detection of tumor antigen expression in tumor samples, J. Immunological methods, 2001,258: 47-53.
    12. Corns A., et al, Proc Soc Exper Biol & Med CN Y, 1941,47: 200.
    13.尹东光,博士论文.吖啶酯DMAE·NHS的合成及TSII和TT-4化学发光免疫分析的研究,中国原子能科学研究院,2003:10-13.
    14. Mannacrt E., Daenens P, Development of a fluorescence polarization immunoassay for the routine detection of N-desmethylzopiclone in urine samples, Analyst, 1996, 121: 857-861.
    15. Zhu Q. Z., Liu F. H., Xu J. G., Sub W. J., Huang J. W., Mimetic-enzyme fluorescence immunoassay using a thermal phase separating polymer, Analyst, 1998, 123: 1131-1134.
    16. Arakawa H., Maeda M, Tsuji A, Enzyme immunoassay of cortisol by chemi-luminescence reaction of luminol-peroxidase, Bunseki Kagaku, 1977, 26: 322-326.
    17. Dodeigne C., Thunus L, Lejeune R, Chemiluminescence as diagnostic tool. A review, Talanta, 2000, 51: 415-439.
    18. Kricka L. J., Clinical applications of chemiluminescence, Anal. Chim Acta, 2003, 500: 279-286.
    19. Motte A., Colson P., Tamalet C, Evaluation of the clinical performance of the Beckman Coulter Access AbIIBsll immunoassay for the detection of hepatitis B surface antibodies,, J Clin Virol., 2006, 37: 213-217.
    20. Wu A.H.B., A selected history and future of immunoassay development and applications in clinical chemistry, Clin Chim Acta, 2006, 369:119-124.
    21. Wehry E. L., Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem., 1982, 54: 131R-150R.
    22. Iervasi A., Zucchelli G.C., Turchi S., Emdin M., Passino C., Ripoli A., Clerico A., Analytical and clinical performance of an automated chemiluminescent immunoassay for direct renin measurement: comparison with PRA and aldosterone assays, Immuno-analyse & Biologic specialisee, 2005, 20: 257-262.
    23. Rubina A.Y,, Dyukova V.I., Dementieva E,I,, Stomakhin A.A., Nesmeyanov V.A., Grishin E.V., Zasedatelev A.S., Quantitative immunoassay of biotoxins on hydrogel-based protein microchips, Anal Biochem., 2005, 340:317-329.
    24. Cadieuxa B., Blanchfieida B., Smith J.P., Austin J.W., A rapid chemiluminescent slot blot immunoassay for the detection and quantification of clostridium botulinum neurotoxin type E, in cultures, International Journal of Food Microbiology, 2005, 101 : 9-16.
    25. Oda S., Hirasawa H., Shiga H, Nakanishi K., Matsuda K., Nakamua M., Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis, 2005, Cytokine, 29:169-175.
    26. Dati F., Denoyel G., van Helden J., European performance evaluations of the ADVIA Centaur~(?) infectious disease assays: requirements for performance evaluation according to the European directive on in vitro diagnostics, J Clin Virol., 2004, 30S1: S6-S10.
    27. Moigne F.L., Beauvieux MC., Derache P., Darmon Y.M., Determination of myoglobin: comparative evaluation of the new automated VIDAS assay with two other immunoassays, Clin Biochem., 2002, 35: 255-262.
    28. Cheng Y., Dubovoy N., Hayes-Rogers M.E., Stewart J., Shah D., Detection of IgM to hepatitis B core antigen in a reduetant containing, chemiluminescence assay, J. Immunol. Methods, 1999, 230: 29-35.
    29. Kokado A., Tsuji A., Maeda M, Chemiluminescence assay of alkaline phosphatase using cortisol-2 1 -phosphate as substrate and its application to enzyme immunoassays, Anal. Chim. Acta, 1997, 337: 335-340.
    30. Sato K., Muramatsu K., Amano S., Application of vitamin B12-targeting site on lactobacillus helvetieus B-1 to vitamin B12 assay by chemiluminescence method, Anal Biochem, 2002, 308: 1-4.
    31. Kricka I,.J., Prospects for chemiluminescent and bioluminescent immunoassay and nucleic acid assays in food testing and the pharmaceutical industry, J.Biolumin Chemilumin, 1998, 13: 189-193.
    32. Rilo I., Takashi II., Direct determination of plasma endothelin21 by chemiluminescence enzyme immunoassay, Clin. Chem., 1996, 42:1155-1158.
    33. Iielen L., Larry J. K, Influence of different luminols on the characteristics of the chemiluminescence reaction in human neutropjils, J.Biolumin. Chemilumin, 1995, 10 353-359.
    34. Metelitxa D. I., Eryomin A. N., Enhanced chemiluminescence in the oxidation of luminol and an isoluminol cortisol conjugate by hydrogen peroxide in reversed micelles, J. Biolumin.Chemilumin, 1992, 7:21-26.
    35. Kricka L J., Chemiluminescence and bioluminescence techniques., Clin. Chem., 1991, 371: 1471-1481.
    36. Schroeder H. R., Yeager F. M., Boguslaski, R. C, Vogelut P. O., Immunoassay for serum thyroxine monitored by chemiluminescence, J.Immunol. Methods, 1979, 25: 275-282.
    37. Schroeder H. R, Chemiluminescence Immunoassay for serum thyroxine, Meth. Enzymol., 1982, 84:303-317.
    38. Kohen F., Pazzagli M., Kim J. B., Lindner H. R, Boguslaski R. C., An assay proce-dure for plasma progesterone based on antibody-enhanced chemiluminescence, Febs Lett,1979,104: 201-205.
    39. Kim J. B., Kohen F., Lindner H. R, Collins W. P., Measurement of plasma progesteroney a solid-phase chemiluminescence immunoassay methed, Serono Symp PUBL Raven Presbs,1982: 201-206.
    40. Kohen F., Kim J. B., Lindner H. R, An immunoassay for plasma cortisol based on chemiluminescence, Steroids, 1980, 36:421-437.
    41. Eshhar Z., Kim J. B., Barnard G. J., Use of monoclonal antibodied to pregnanediol-16α-glucuronide for the development of a solid-phase chemiluminescence immunoassay, Steroids, 1981, 38: 89-109.
    42. Schroeder H. R., Hines C M., Osborn D., Immunochemiluminometric assay for hepatitis B surface antigen, Clin. Chem., 1981, 27, 1378-1384.
    43. Kim J. B., Barnard G. J., Collins W. P., Kohen F., Lindner H. R., Eshhar Z., The measurement of plasma 17-β-estradiol by a solid-phase chemiluminescence, immunoassay, Clin. Chem., 1982, 101,254-263.
    44. Aoyagi S., Iwata T., Miyasaka T., Sakai K., Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell, Anal. Chim. Acta, 2001 436: 103-108.
    45. Olejnik Y., Elaerts S., Bonardet A., Chon G.,Mourad G., Cristol J. P., Dupuy A. M., Preliminary Evaluation of a New Chemiluminescence Assay (Liaison Cyclosporine; DiaSorin Laboratories) Allowing Both C0 and C2 Cyclosporine Levels Determination: Comparison With RIA Method, Transplant P., 2005, 3.7: 172-174.
    46. Arai K., Takahashi K., Kusu F., An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol, 1999, Anal. Chem., 71 2237-2240.
    47. Mayer A., Neuenhofer S., Luminescent labels more than just an alterantive to radioisotopes, Chem. Int. Ed. Engl., 1994, 33: 1044-1072.
    48. Zomer G., Stavenuiter F. C., Anal. Chim. Acta, 1989, 227: 11.
    49. Sato N., Shirakawa K., Proceedings of the 43th Annual Meeting of the Japan Society for Analytical Chemistry, 1994: 197.
    50. Lifting J. S., Nieman T. A, Flow injection chemiluminescence study of acridinium ester stability and kinetics of decomposition, J.Biolumin. Chemilumin., 1993, 8:25-31.
    51. Mccapra F., Chemical mechanisms in Bioluminescence, Acc. Chem. Res., 1976, 9: 201-208.
    52. John W., Leidy J., High sensitivity two-site immunoradiometric and immunochemiluminometric assays for rat-growth hormone releasing hormone. Development of acridinium ester based chemiluminescence assays for the avidin-coatcd bead system, J. Immunol. Metheds, 1994, 172: 197-207.
    53. Alkan S., Akdis C., Towbin H., Chemiluminescent and enzyme-linked immunoassays for sensitive detection of human IFN-gamma, J. Immunoassay, 1994,15:217-238.
    54. Joss U. R., Towbin H., Acridinium ester labeled cytokines; receptor binding studies with human interleukin-1 alpha, interleukin-1 beta and interferon-gamma, J. Biolumin. Chemilumin., 1994,9: 21-28.
    55. Bert A. H., Araakman E., Jonker M., An ear swelling reaction for in vivo monitoring of inflammatory T cell activity in collagenarthritic rats, J. Immunol. Methods, 1994, 176: 179-184.
    56. Towbin H., Schmitz A., Vanoostrum J., Seita M., Dewald B., Zingel O., Motz J., Vosbeck K., Rordorf C., Monoclonal antibody based enzyme-linked and chemiluminescence assays for the human interleukin-1 receptorantagonist application to measure hIL-1 ra levels in monocyle cultures and synovial fluids, J. Immunol. Methods., 1994,70:125-135.
    57. Wu T. J., Lin C. L., Taylor R. L., Kao P. C., Proinsulin level in diabetes mellitus measured by a new immunochemiluminometric assay, Ann. Clin Lah. Sci., 1995, 25: 467-474.
    58. Wu T. J., Lin C. L., Taylor R. L., Kao P. C, Parathyroid-hormone-related pcptide immunochemiluminometric assay, developed with polyclonal antisera produced from asingle animal, Ann. Clin. Lab. Sci., 1997, 27: 384-390.
    59. Ogbonna G., Caines P. S., Catomeris P., Thibert R. J,, Adeli K, A competitive immunoassay for the sensitive measurement of Apolipoprotein B 100, Clin Biochem, 1995, 28: 117-122.
    60. Piran U., Riordan W. J., Livshin L. A., New noncompetitive immunoassays of small analytes, Clin. Chem., 1995, 41: 986-990.
    61. Sato H., Mochizuki H., Tomita Y. T., Sato I. N., Kanamori T, Competitive chemiluminescent immunoassay for estrdiol using an N-functionalized acridinium ester, J. Biolumin. Chemilumin, 1996, 1: 23-29.
    62. Schlaeppi J.M.A., Kessler A., Fory W., Development of a magnetic particle-based automated chemiluminescent immunoassay for triasulfuron, J. Agric. Food Chem, 1994, 42:1914-1919
    63. Koszegi T., Immunoluminometric detection of human procalcitonin, J. Diochem. Biophys. Methods, 2002, 53:157-164.
    64. Fukada H., Hiramatsu N., Kitamura M., Chiba H., Hara A., Chemiluminescent immunoassay (CLIA) for salmon growth hormone (GH), J. Biolumin. Chcmilumin., 1997,12: 271-275.
    65. Sato H., Mochizuki H., Tomita Y., Izako T., Sato N., Kanamori T., Competitive chemiluminescent immunoassay for estradiol using an n-functionalized acridinium ester, J. Biolumin Chemilumin, 1996, 11: 23-29.
    66. Oates M R., Clarke W., ZimLich A., Hage D. S., Optimization and development of a high-performance liquid chromatography-based one-site immunometric assay with chemiluminescence detection, Anal. Chim Acta, 2002, 470: 37-50.
    67. Silvaieh H., Schmid M. G., Hofstetter O., Schurig V. , GObitz G., Development of enantioselective chemiluminescence flow- and sequential-injection immunoassays for a-amino acids, J. Biochem. Biophys. Methods, 2002, 53: 1-14
    68. Silvaieh H, Wintersteiger R., Schmid M. G., Hofstetter O., Schurig V., Gubitz, G, Enantioselective sequential-injection chemiluminescence immunoassays for 3, 3', 5-triiodothyronine (T3) and thyroxine (T4), Anal. Chim. Acta, 2002, 463: 5-14.
    69. Fukada H., Haga A., Fujita T., Hiramatsu N., Sullivan C. V., Hara A., Development and validation of chemiluminescent immunoassay for vitellogenin in five salmonid species, Comp Biochem Phys A, 2001, 130: 163-170.
    70. OH S. K, Foster K., Datta P., Orswell M., Tasaico K., Mai X. L., Connolly P., Reamer R., Walsh R., Yang G. H., Barlow E., Bluestein B., Parsons G., Use of a dual monoclonal solid phase and a polyclonal detector to create an Immunoassay for the detection of human cardiac troponin I, Clin Biochem., 2000, 33: 255-262.
    71. Dreveny D., Klammer C., Michalowsky J., Gubitz G., Flow-injection- and sequential-injection immunoassay for triiodothyronine using acridinium ester chemiluminescence detection, Anal. Chim. Acta, 1999, 398: 183-190.
    72. Sato H., Mochizuki H., Tomita Y., Kanamori T., Enhancement of the sensitivity of a chemiluminescent immunoassay for estradiol based on hapten heterology, Clin Biochem., 1996, 29: 509-513.
    73. Koszegi T., Immunoluminometric detectionof human procaicitonin, J. Biochem. Biophys. Methods, 2002, 53: 157-164.
    74. Demutha K., Ducrosc V., Michelsohna S., Paula J. I,., Evaluation of Advia Centaur R automated chemiluminescence immunoassay for determining total homocysteine in plasma, Clinica Chimica Acta, 2004, 349: 113-120.
    75. Jotwani R., Kato N., Kato H., Watanabe K., Ueno K., Detection of Bacteroides fragilis in clinical specimens by polymerase chain reaction amplification of the neuraminidase gene, Curr. Microbiol., 1995, 31: 215-219.
    76. Musiani M., Roda A., Zerbini M., Pasini P., Gentilomi G., Gallinella G., Venturoli S., Chemiluminescent in situ hybridization for the detection of cytomegalovirus DNA, Am J. Pathol., 1996, 148: 1105-1112.
    77. Akhavan-Tafli H., DeSilva R., Arghavani Z., Eickholt R. A., Handley R. S., Schoenfelner B. A, Sugioka K., Sugioka Y., Schaap A P., Charactcrization of acridancarboxylic acid derivatives as chemiluminescent peroxidase substrates, J. Org Chem., 1998, 63: 930-937.
    78. Akhavan-Tafti H., Arghavani Z., DeSilva R., Eickholt R. A., Handley R. S., Schocnfelner B. A., Siripurapu S., Sugioka K., Schaap A. P., in: Hastings J. W., Kricka L. J., Stanley P. E. (Eds), Bioluminescence and chemiluminescence: molecular reporting with photons, Wiley, Chichester, 1997: 311.
    79. Matingly P. G., Bennet L. G., Chemiluminescencent acridinium and phenantridinium salts, European Patent Application, 1988, 273: 115.
    80. Zomer G., Stavenuter J. F., Acridinium compounds as chemiluninogenic label, European Patent Application, 1989, 324: 202.
    81. Litig J. S, Nieman T. A., Quantitation of acridinium esters using clcctrogenerated chemiluminescence and flow injection, Anal. Chem, 1992, 64: 1140-1144.
    82. Roelant C., Vande V., Chemiluminescencent compositions, chemiluminescent process and their uses in ananlytical assays, European Patent Application, 1991, 408: 463.
    83. George G. K., Carol M. P., Patricia G. S. Multesite immunochemiluminometric assay for simultaneously measuring whole-molecule and amino-terminal fragments of human parathyrin, Clin Chem., 1992, 38: 628-635.
    84. Pal C. K., Lawrenece R., Patricia G. S., Development and evaluation of an osteocalcin chemiluminoimmunoassay, Clin Chem., 1993, 39: 1369-1374.
    85. Litig J. S., Nieman T. A., Flow injection chemiluminescence study of acridinium ester stability and kinetics of decomposition, J. Biolumin. Chemilumin., 1993, 8: 25-31.
    86. Dinesh S., Tarun C., Alice C., Kurt K., Acridinium-labeling to latex microparticles and aplication in chemiluminescence-based, Clin Chem., 1994, 40: 1824-25.
    87. Godwin O., Patrick S. C., peter C., Roger J. T., A competitive Chemilumincscencent immunoassay for the sensitive measurement of apolipoprotein B 100, Clin Biocbem, 1995, 28: 117-122
    88. Hiroshi S., Hiroshi M., Yuki T., Toshinori K., Enhancement of the sensitivity of a chemiluminascencent immunoassay for estradiol based on hapten heterology, Clin Biochem, 1996, 29: 509-513.
    89. Steijger O. M., Kamminga D. A., Lingeman H., Brinkman U. A. T., An acridinium sulphonylamide as a new chemiluminescent label for the determination of carboxylic acids in liquid chromatography, J. Biolumin. Chcmilumin, 1998, 13: 31-40.
    90. Zia R., Frank M., Stable and versatile active acridinium ester, Luminescence, 2000, 15: 239-244.
    91. Okrongly D., The ADVIA Centaur~(?) immunoassay system—designed for infectious disease testing, J Clin Virol., 2004, 30S1: SI9-S22.
    92. Josefina M. B., Neus G. R., Evaluation of Ciba Coming ACS: 180~(TM) Automated Inununoassay System, Clin Chem, 1994, 40:407-410.
    93. Adamczyk M., Chen Y. Y., Mattingly P. G., Moore J. A., Shreder K., Modulation of the chemiluminescent signal from N~(10)-(3-sulfopropyl)-N-sulfonylacridinium-9-carboxamides, Tetrahedron, 1999, 55: 10999-10914.
    94. Loranelle L. S., Timothy A. N., Stopped-flow analysis of Ru(bpy)_3~(3+) chimiluminescencc reations, J Biolumin Chemilumin., 1998, 13: 85-90.
    95. Gary F. B, Haresh P. S., John H. K., et al, Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 1991, 37: 1534-1539.
    96. Jonathan K. L., Michael J. P., Electrogenerated chemiluminescence; an oxidative-reduction type ECL reaction sequence using tripropyl amine, J. Electrchem. Soc., 1990, 137:3127-3131.
    97. Daniel R. D., A new non-isotopic detection system for immunoassays, Nature, 1995, 377: 758-760.
    98. Wilson R., Schiffrin D. J., Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol, Journal ELectroanal Chem., 1998, 448:125-130.
    99. Kulmala S., Hakansson M, Spehar A. M, Nymana A, Kankare J., Loikas K., Ala-Kleme T., Eskola J., Heterogeneous and homogeneous electrochemiluminoimmunoassays of hTSH at disposable oxide-covered aluminum electrodes, Anal. Chim. Acta, 2002, 458: 271-280.
    100. Lin J. M, Yamada M, Electrogenerated Chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay, Microchem J., 1998, 58:105-116.
    101. Richter M. M., Electrochemiluminescence (ECL), Chem Rev., 2004, 104: 3003-3036.
    102. Marquette C. A., Blum L. J., Sensor. Actuat. B, 1998, 1: 51.
    103. Chen G N., Lin R. E., Zhuang H. S., Zhao Z. F., Xu X Q., Zhang F., Anal. Chim. Acta, 1998, 375: 269.
    104.安镜如,陈曦,碱性水溶液中ABEI的电致化学发光的研究.高等学校化学学报.1989,11:1110-1113.
    105. Wang P., Zhu G, Asian J. Chem. 1999, 11: 1149.
    106. Shelton D. R., Karns J. S., Appl and Environ Microb., 2001, 67:2908-2915.
    107. Blackburn G F, Shah H. P, Kenten J. H., Leland J., Kamin R. A., Link J., Peterman J., Powell M. J., Shah A., Talley D. B., Tyagi S. K., Wilkins E., Wu T. G, Massey R. J., Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 1991, 37:1534-1539.
    108. Wilson R., Clavering C., Ilutchinson A., Electrochemilumincscencc enzyme immunoassnys for TNT and pentaerythritol tetranitrate, Anal. Chem, 2003, 75: 4244-4249.
    109. Ikariyama Y., Kunoh H., Aizawa M., Electrochemical luminescence-based homogeneous immunoassay, Biochem. Biophys. Res. Commun., 1985, 128: 987-992.
    110. Zhang C. X., Zhang H. H., Feng M. L., Homogeneous electrogenerated chemiluminescence immunoassay using a luminol-labeled digoxin hapten, Anal Lett., 2003, 36: 1103-1114
    111. Yang H. J., Leland J. K., Yost D., Massey R. J., Electrochemiluminescencew: A new diagnostic and research tool, Biotechnology, 1994, 12: 193-194.
    112. Massay R. J., Blackburn G. F., Wilkins E. W., Leland J. K., U. S. Patent, 5,746,974, 1995.
    113. Massey R. J., Blackburn G. F., Wilkins E. W., Leland J. K., U. S. Patent, 5,770,459, 1994.
    114. Leland J. K., Shah H. P., Kenten J. H., Goodman J. E., Lowke G. E, Namba Y., Blackburn G. F., Massey R. J., U. S. Patent, 5,705,3,02, 1998.
    115. Deaver D. R., A new non-isotopic detection system for immunoassays, Nnture, 1995, 377: 758-760
    116. Siddiqi A. M., Jennings V. M, Kidd M. R., Actor J. K., Hunter R. L., Evaluation of electrochemiluminescence- and bioluminescence-based assays for quantitating specific DNA, J. Clin. Lab. Anal., 1996, 10: 423-431.
    117. Motmans K., Raus J., Vandevyver C., Quantification of cytokinc messenger RNA in transfected human T cells by RT-PCR and an automated electrochemiluminescence-based post-PCR detection system, J. Immunol. Methods, 1996, 190: 107-116.
    118. O'Connell C. D., Juhasz A, Kuo C., Reoder D. J., Hoon D. S. B., Detection of tyrosinase mRNA in melanoma by reverse transcription-PCR and electrochemiluminescence, Clin. Chem., 1998, 44: 1161-1169.
    119. Forest J. C., Masse J., Lane A., Evaluation of the analytical performance of the Boehringer Mannheim ElecsysT 2010 Immunoanalyzer, Clin Biochem., 1998, 31: 81-88.
    120. Ftthnrich K. A., Pravda M., Guilbault G. G., Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, 2001, 54: 531-559.
    121. Yu H., Raymonda J. W., McMahon T. M, Campagnari A. A., Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenic-and electro-chemiluminescence, Biosens Bioelectron., 2000, 14: 829-840.
    122. Vidziunaite R., Mikulskis P., Kulys J., Chemiluminescence immunoassay (CLIA) for the detection of brucellosis and tularaemia antigens, J. Biolumin, Chemilumin., 1995, 10: 199-203.
    123. Whitehead T. P., Thorpe G. H. G., Carter T. J. N., Polymorphism near the rat prolatin gene caused by insertion of an Alu21ike element, Nature, 1983, 305: 158-159.
    124. Matthews J. A., Batki A., Hynds C., Enhanced chemiluminescent method for the detection of DNA Dot hybridization assays., Anal. Biochem., 1985, 151: 205-209.
    125. Vidziunaite R., Mikulskis P., Kulys J, Chemiluminescence immunoassay (CLIA) for the detection of brucellosis and tularatemia antigens, J. Biolumin. Chemilumin., 1995, 10: 199-203.
    126. Ito H., Suzuki H., Miki Y., Hayashi T., Iwata M., Yamaki M., Jpn. Patent, 1996, 38: 196
    127. Mitoma Y., Hara K, Kumakura S, Jpn. Patent, 1995, 311: 197.
    128. Thorpe G. H., Kricka L. J., Gillespie E, Moseley S., Amess R., Baggett N., Whitehead T. P, Enhanced of horseradish peroxidase-catalyzed chemiluminescent oxidation of cyclic diacyl hydrazides by 6-hydroxybenzothiazoles, Anal. Biochem, 1985, 145: 96-100.
    129. Nozaki O., Kricka L., Campbell A. K., Kricka L. J., Stanley P. E., Bioluminescence and Chemiluminescence: Fundamental and Applied Aspects. Wiley, Chichester, 1994: 52.
    130. Kisscl T. R., Friedman A. E., Fingar S. A. US Patent 5, 1998, 705: 357.
    131. Luo J. X., Yang X. C., Flow injection chemiluminescent immunoassay with para-phenylphenol and sodium tetraphenylborate as synergistic enhancers, Anal. Chim Acta, 2003, 485: 57-62.
    132. Diaz A. N., Sanchez F. G., Garcia J. A. G., Phenol derivatives as enhancers and inhihitors of luminol-H_2O_2-horservdish peroxidase chemiluminescence, J Biolumin Chemilumin, 1998, 13: 75-84.
    133.封满良,章竹君,张新荣,增强化学发光酶免疫分析法测定血清中的铁蛋白,分析化学,1994,22:788-790.
    134. Samsonova J. V., Rubtsova M. Y., Kiseleva A. V., Ezhov A. A., Egorov A. M., Chemiluminescent multiassay of pesticides with horseradish peroxidase as a label, Biosens Bioelectron., 1999,14:273-281.
    135. Wittmann C., Schreiter P. Y., Analysis of terbuthylazine in soil samples by two test strip immunoassay formats using reflectance and luminescence detection, J. Agric. Food Chem, 1999, 47: 2733-2737.
    136. Zhou Y., Zhang Y. H., Lau C., Lu J. Z., Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay, Anal. Chem., 2006, 78: 5920-5924.
    137. Samsonova J. V., Rubtsova M. Y., Kiseleva A. V., Ezhov A. A., Egorov A. M., Chemiluminescent multiassay of pesticides with horseradish peroxidase as a label, Biosens Bioelectron., 1999, 14: 273-281.
    138. Wang J. N., Ren J. C., A sensitive and rapid immunoassay for quantification of CA125 in human sera by capillary electrophoresis with enhanced chemiluminescence detection, Electrophoresis, 2005, 26: 2402-2408.
    139. Whitehead T. P., Thorpe G. H. G, Carter T. J. N., Groucutt C., Kricka L. J., Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay, Nature, 1983, 305: 158-159.
    140. Yang X. C., Wu L. P., Deng A. P., Chen D. J., Chemiluminescence determination of horseradish peroxidase and its conjugates with several systems, Anal Lett, 1993, 26: 1065-1071.
    141. Samsonova J. V., Rubtsova M. Y., Franek M., Determination of 4-n-nonylphenol in water by enzyme immunoassay, Anal Bioanal Chem, 2003, 375:1017-1079.
    142.章竹君,邹克渭,封满良,化学发光酶联免疫分析测定血清中抗DNA抗体,高等学校化学学报,1994,15:832-835.
    143.邹克渭,章竹君,吕九如等,化学发光单孵多层免疫技术检测粪样中轮状病毒,高等学校化学学报,1996,17:219-223.
    144. Ioana S., Bengt D., Lei Y., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal Chem, 2001, 73: 487-491.
    145. Schneider C., Scholer H. F., Schneidcr R. J., Direct sub-ppt detection of the endocrine disruptor ethinylestradiol in water with a chemiluminescence enzyme-linked immunosorhent assay, Anal. Chim. Acta, 2005, 551: 92-97.
    146. Dotsikas Y., Loukas Y. L., Employment of 4-(1-imidazolyl)phenol as a luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigen-horseradish peroxidase conjugate-based assay, Anal. Chim. Acta, 2004, 509: 103-109.
    147. Botchkareva A. E., Eremina S. A., Montoya A., Manclus J. J., Mickova B., Rauch P., Finid F., Girotti S., Development of chemiluminescent ELISAs to DDT and its metaholites in food and environmental samples, J Immunol Methods, 2003, 283: 45-57.
    148. Hulten C., Tulamo R. M., Suominen M. M., Burvall K., Marhaug G., Forsbcrg M., Vet Immunol Immunop., 1999, 68: 267-281.
    149. Osipov A. P., Zaitseva N. V., Egorov A. M., Chemiluminescent immunoenzyme biosensor with a thin-layer flow through cell, Application for study of a real-time bimolecular antigen-antibody interaction, Biosens Bioelectron., 1996, 11: 881-887.
    150. Lin S., Han S. Q., Liu Y. B., Xu W., Guan G. Y., Chemiluminescence immunoassay for chloramphenicol, Anal Bioanal Chem., 2005, 382: 1250-1255.
    151. Wang S. H., Lin S. L., Du L. Y., Zhuang H. S., Flow injection chemiluminescence immunoassay for 17-β-estradiol using an immunoaffinity column, 2006, Anal Bioanal Chem, 384: 1186-1190.
    152. Christofides N. D., Sbeehan C. P., Enhanced Chemiluminescence labeled antibody immunoassay (Amerlite-MAB) for free thyroxcine : design , development, and technical valiation., Clin. Chem., 1995, 41: 17-23.
    153. Christofides N. D., Sbeehan C. P, Enhanced Chemiluminescence labeled-antibody immunoassay (Amerlite-MAB) for free thyroxcine: design, development, and technical valiation, Clin. Chem., 1995, 41, 17-23.
    154. Fahnert B., Hahn D., Guthke R, Knowledge-based assessment of gene expression data from chemiluminescence detection, J. Biotechnol., 2002, 94: 23-35.
    155. Bronstein I., Me Grath P., Chemiluminescence lights up, Nature, 1989, 338: 599-600
    156. Bronstein I., Voyta J. C., Edwards B., A comparision of chemiluminescent and colorimetric substrates in hepatitis B virus DNA hybridization assay, Anal. Biochem, 1989, 180: 95-98.
    157. Bronstein I., Kricka I,. J., in: Kessler C, Nonradioactive Labeling and Detection of Biomolecules, Springer-Verlag, Berlin, 1992: p. 168.
    158. Bronstein I., Edwards B., Sparks A, PCT Int. Patent Appl., 94, 26, 726, 1994.
    159. Bronstein I., Edwards B., Voyta J. C, PCT Int. Patent Appl., 94, 21,821, 1994.
    160. Bronstein I., Edwards B., Juo R. R., US Patent, 5,326,882, 1994.
    161. Bronstein I., Edwards B., Voyta J C., PCT Int. Patent Appl.,96,25,667, 1996.
    162. Bronstein I., Juo R. R., Voyta J. C., Edwards B, in: Stanlcy P. E., Kricka L. J. (Eds), Bioluminescence and Chemiluminescence: Current Status, Wiley, Chichester, 1991: p. 73.
    163. Bronstein I., Mc Grath P, Chemiluminescence lights up, Nature, 1989, 338, 599-600.
    164. Bronstein i., Voyta J. C, Edwards B, A comparision of chemiluminescent and colorimetric substrates in hepatitis B virus DNA hybridization assay, Anal. Biochem., 1989, 180: 95-98.
    165. Schaap A. P., Alchavan H., Romano L. J., Chemiluminescence substrates for alkaline phosphatase: application to ultrasensitive enzyme-linked immunoassays and DNA probes, Clin. Chem., 1989, 35: 1863-1864.
    166. Bronstein I., Voyta J. C., Chemiluminescent detection of herpes simplex virus I DNA in blot and in-situ hybridization assays, Clin Chem., 1989, 35: 1856-1857.
    167. Thorpe G. H, Bronstein I., Kricka L. J., Euwards B., Voyta J. C., Chemiluminescence enzyme immunoassay of alpha-fetoprotein based on an adamantly dioxetane phenylphosphate substrate, Clin. Chem., 1989, 35: 2319-2321.
    168. Nishizono I., Lida S., Suzuki N., Kawada H., Muradami H., Ashibara Y., Okada M, Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markers, Clin. Chem., 1991, 37: 1639-1644.
    169. Bronstein I., Edwards B., Voyta J. C., 1,2-dioxetanes: novel chemiluminesccnt enzyme substrates. Applications to immunoassays, J. Biolumin. Chemilumin., 1989, 4: 99-111.
    170. Pawlotslcy J. M, Bastie A., Lonjon I., Remire J., Darthuy F., Soussy C. J., Dhumeaux D., What technique should be used for routine detection and quantification of HBV DNA in clinical samples? J. Virol. Methods, 1997, 65: 245-253.
    171. Iwata R., Hayashi T., Nakao Y., Yamaki M., Yoshimasa T., Ito H., Saito Y., Mukoyam M., Nakao K., Direct determination of plasma endothelin-I by chemiluminescence enzyme immunoassay, Clin. Chem., 1996, 42: 1155-1158.
    172. Alkan S., Akdis C., Towbin H., Chemiluminescent and enzyme-linked immuno assays for sensitive detection of human IFN-gamma, J. Immunoassay, 1994, 15:217-23g.
    173. Divi R. L., Beland F. A., Fu P. P., Von Tungeln L. S., Schoket B., Camara J. E., Ghei M, Rothman N., Sinha R., Poirier M. C, Highly sensitive chemiluminescence immunoassay for benzo[a]pyreneoDNA adducts: validation by comparison with other methods, and use in human biomonitoring, Carcinogenesis, 2002, 23: 2043-2049.
    174. DuffS. E, Li C., Renehan A., O'Dwyer S. T., Kumar S., Immunodetection and molecular forms of plasma vascular endothelial growth factor-C, Int. J. Oncol., 2003, 22: 339.
    175. Ullman E. F., Kirakossian H., Switchenko A. C., Ishkanian J., Ericson M, Wartchow C. A., Pirio M., Pease J., Irvin B. R., Singh S., Singh R., Patel R., Daffom A., Davalian C., Skold C., Kum N., Wagner D. B., Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method, Clin. Chem., 1996, 42:1518-1526.
    176 Zhao L. X., Lin J. M., Li Z. J., Ying X. T., Development of a highly sensitive, second antibody format chemiluminescence enzyme immunoassay for the determination of 17β-estradiol in wastewater, Anal. Chim. Acta, 2006, 558: 290-295.
    177. Dzgoev A., Mecklenburg M., Xi B., Miyabayashi A, Larsson P. O., Danielsson B, Optimization of a charge coupled device imaging enzyme linked immuno sorbent assay and supports for the simultaneous determination of multiple 2, 4-D samples, Anal. Chim. Acta, 1997, 347: 87-93.
    178. Nishizono J., Iida S., Suzuki N., Kawada H., Murakami H., Ashihara Y., Okada M, Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markers, Clin. Chem, 1991, 37: 1639-1644.
    179. De B. J., Mares A., Starts G., Bosmans E., Kohcn F., Comparison of chemiluminescent and chromogenic substrates of alkaline phosphatase in a direct immunoassay for plasma estradiol, Anal. Chim. Acta, 1995, 303: 143-148.
    180. Decarie A., Drapeau G., Closset J., Couture R., Adam A., Development of a digoxigenin-labeled peptide: application to a chemiluminoenzyme immunoassay of bradykinin in inflamed tissues, Biochemica, 1996, 4: 20-23.
    181. Kokada A, Tsuji A., Maeda M., Chemiluminescence assay of alkaline phosphatase using cortisol-21 -phosphate as substrate and its application to enzyme immunoassays, Anal Chim Acta, 1997, 337: 335-340.
    182. Gui J. Y., Feldman S. F., Shu E. Y., AT-ONSITE, 1995, 1: 45-55.
    183. Okauoto N., Maeda M, Tsuji A, Bunseki Kagaku, 1994, 43: 384-394.
    184. Ashihara Y., Isomura M., Seibutsu B., Kagaku, 1998, 42: 281-285.
    185. Sokoll L. J., Chart D. W., Clinical analyzers, immunoassays, Anal. Chem., 1999, 71: 356-362.
    186. Takashi L., Masatoshi Y., Koichi S., Yoshihiro S., Yukil S., The development of luminomaster TM , a fully automated chemiluminescence enzyme immunoassays system, J. Biolumin Chemilumin, 1995, 10: 219-227.
    187. Bamet V. F., T_4 and Ultrasensitive TSH immunoassays using luminescent enhanced xanthine oxide assay, J. Biolumin. Chemin, 1989, 4: 149-153.
    188. Fert V., Baret A., Preparation and characterization of xanthinc oxidase-antibody and -hapten conjugates for use in sensitive chemiluminescent immunoassays, J Immuno Methods, 1990, 131: 237-247.
    189. Bronstein I., J Clin Lab Anal, 1988, 3: 316.
    190. Baret A., Fert V., Aumaile J., Application of a long-term enhanced xanthine oxidase-induced luminescence in solid-phase immunoassays, Anal Biochem., 1990, 187: 20-26.
    191. Ikegami T., Yamamot M., Sekiya K., Sato Y., Saito Y., Maeda M., Tsuji A., J. Biolumin. Chemilumin., 1995, 10: 219.
    192. Adam W., Reinhardt D., Saha-Moller C. R., From the firefly bioluminescence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: a retroanalysis, Analyst, 1996, 121: 1527-1531.
    193. Kricka L. J., Stroebel J., Stanley P. E., Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998, Luminescence, 1999, 14: 39-46.
    194. Seto Y., Iba T., Abe K., Development of ultra-high sensitivity hioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferase, Luminescence, 2001, 16: 285-290.
    195. Dilling W. L., Alford J. A., Pentacyclodecane chemistry. Ⅶ. Synthesis and acetolysis of syn and anti -6-methylpentacyclo[5.3.0.0~(2.5).0~(3.9).0~(4.8)]dcc.6-yl P -toluenesulfonate. Demonstration of the absence of steric or strain stereochemical control in the solvolysis of a 7-norbornyl system, Tetrahedron Lett., 1971, 12:761-764.
    196. Rauhut M M., Chemiluminescence from concerted peroxide decomposition reactions, Acc. Chem. Res., 1969,2:80-87
    197.宋启军,过氧草酰类化学发光分析研究的新进展,世界科技研究与发展,2004,26:105-112。
    198. Hua C., Shifeng L, Feng L., Yugang S., Xiangqin L., A novel chemiluminescent method for the determination of salicylic acid in bactericidal solution, Anal Bioanal Chem., 2002, 372: 601-604.
    199. Zheng-Hua S., Shuang H., Chemiluminescence assay for uric acid in human serum and urine using flow-injection with immunobilized reagents technology, Anal Bioanal Chem., 2002, 372: 327-332.
    200. Arakawa H., Maeda M., Tsuji A., Chemiluminescence enzyme immunoassay for thyroxin with use of glucose oxidase and a bis(2,4,6-trichlorophenyl)oxalate-fluorescent dye system, Clin. Chem., 1985, 31: 430-434.
    201. Imai K, Nawa H.,Tanaka M., Novel aryl oxalate esters for peroxyoxalate chemiluminescence reactions, Analyst, 1986, 111: 209.
    202. Nakashima K, Maki K., Akiyana S., Synthesis and evaluation of aryl oxalates as peroxyoxalate chemiluminescence reagents, Analyst, 1989, 114:1413.
    203. Weeks I., Woodhead J. S., Two-site immunochemiluminometric assay for serum ferritin, Clinica Chimica Acta, 1984, 141: 275-280.
    204. Delavekke R., Grayeski M L, Flow-injection determination of proteins using enhanced peroxyoxalate chemiluminescence applied to the determination of immunoglobin G and albumin in serum, Anal. Biochem, 1991, 197: 340-346.
    205. Kamyshny A., Magdassi S., Chemiluminescence immunoassay in microemulsions, Colloids and Surfaces B: Biointerfaces, 1998, 11: 249-254.
    206. Verkleij A J., Leunissen J. L. M., Immuno-gold-labeling in cell biology; CRC Press: Boca Raton, FL, 1989.
    207. Ni J., Lipert R. J., Dawson G. B., Porter M. D., Anal. Chem., 1999, 71: 4903-4908.
    208. Lyon L. A., Musick M. D., Natan M. J., Colloidal Au-enhanced surthce plasmon resonance immunosensing, Anal. Chem. 1998, 70: 5177-5183.
    209. Chevalier M., Procaccio V., Rabilloud T., A nonradioactive double detection method for the assignment of spots in two-dimensional blots, Anal. Biochem, 1997, 251: 69-72.
    210. Zhang C., Zhang Z., Yu B., Shi J., Zhang X., Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry, Anal. Chem. 2002, 74: 96-99.
    211. Fan A. P., Lau C. W., Lu J. Z., Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label, Anal. Chem., 2005, 77: 3238-3242.
    212. Li Z. P., Liu C. H., Fan Y. S., Wang Y. C., Duan X. R., A chemiluminescent metalloimmunoassay based on silver deposition on colloidal gold labels, Anal Biochem, 2006, 359: 247-252.
    213. Tsukagoshi K., Nakamura T., Nakajima R., Batch-type chemiluminescence detection cell for sensitization and simplification of capillary electrophoresis, Anal. Chem., 2002, 74:4109-4116
    214. Wang J. H., Huang W. H., Liu Y. M., Cheng J. K., Yang J., Capillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells, Anal. Chem., 2004, 76: 5393-5398.
    215. Ji X. H., He Z. K., Ai X. P., Yang H. X., Xu C. L., Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection, Talanta, 2006,70: 353-357.
    216 Rollag J. G., Liu T., Hage D. S., Optimization of post-column ehemiluminescent detection for lowrnolecular-mass conjugates of acridinium esters, J Chromatogr A, 1997, 765: 145-155.
    217. Fu Z. F., Hap C., Fei X. Q., Ju H. X., Flow-injection chemiluminescent immunoassay for α-fctoprotein based on epoxysilane modified glass microbeads, J Immunol Methods, 2006, 312: 61-67.
    218. Lin J. H, Yan F., Ju H. X, Noncompetitive enzyme immunoassay for carcinoembryonic antigen by flow injection chemiluminescence, Clinica Chimica Acta, 2004, 341:109-115.
    219. Zhang X. R., Feng M L., Lu J. R., Zhang Z. J., Studies on flow injection chemiluminescence immunoassay l. determination of HBs∧g in serum. Acta Chim. Sin., 1994, 52: 83.
    220. Botchkareva A. E., Fini F., Eremin S., Mercader J. V., Montoya A., Girotti S., Development of a heterogeneous chemiluminescent flow immunoassay for DDT and related compounds, Anal. Chim. Acta, 2002, 453: 43-52.
    221. Liu H. J., Yu J. C., Bindra D. S., Givens R. S., Wilson G. S., Flow injection solid-phase chemiluminescent immunoassay using a membrane-based reactor, Anal Chem., 1991, 63: 666-669.
    222. Arefyev A. A., Vlasenko S. B., Eremin S. A, Osipov A. P., Egorov A. M, Flow-injection enzyme immunoassay of haptens with enhanced chemiluminescence detection, Anal. Chim. Acta, 1990, 237: 285-289.
    223. Silvaieh H., Schmid M. G., tlofstetter O., Schurig V., Gubitz G., Development of enantioselective chemiluminescence flow-and sequential-injection immunoassays for a-amino acids, J. Biochem. Biophys. Methods, 2002, 53: 1-14.
    224. Dreveny D. D., Michalowski J., Seidl R., Gubitz G., Development of solid-phase chemiluminescence immunoassays for digoxin comparing flow injection and sequential injection techniques, Analyst, 1998, 123: 2271-2276.
    225. Dittrich P. S., Tachikawa K., Manz A., Micro total analysis systems, latest advancements and trends, Anal. Chem., 2006, 78: 3887-3908.
    226. Vilkner T., Janasek D., Manz A., Micro total analysis systems, recent developments, Anal. Chem., 2004, 76:3373-3386.
    227. Tsukagoshi K., Jinno N, Nakajima R., Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer Markers, Anal. Chem., 2005, 77: 1684-1688.
    228. Yakovleva J., Davidsson R., Lobanova A., Bengtsson M., Eremin S., Laurell T., Emneus J., Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection, Anal. Chem., 2002, 74: 2994-3004.
    229. Yacoub-George E., Hell W., Meixner L., Wenninger F., Bocka K., Lindner P., Wolf H., Kloth T., Feller K.A., Automated 10-channel capillary chip immunodetector for biological agents detection, Biosens Bioelectron., 2007, 22: 1368-1375.
    230. Tudorache M., Emneus J., A micro-immuno supported liquid membrane assay (μ-ISLMA), Biosens Bioelectron., 2006, 21: 1513-1520.
    231. Hosokawa K., Omata M., Sato K., Maeda M., Power-free sequential injection for microchip immunoassay toward point of care testing, Lab Chip, 2006, 6: 236-241.
    232. Zhang X. R., Baeyens W.R.G., Garcia-Campana A. M., Recent developments in chemiluminescence sensors, Trac-Trend anal chem., 1999, 18: 384-391.
    233. Lin J. H., Ju H. X., Electrochemical and chemiluminescent immunosensors for tumor markers, B ioscns B ioelectron., 2005 20:1461-1470.
    234. Yang X. Y., Janatova J., Andrade J. D., Homogeneous enzyme immunoassay modified for application to luminescence-based biosensors, Anal Biochem., 2005, 336: 102-107.
    235. Aizawa M., Bessatsu, 1987, 31: 278.
    236. Hara T., Tsukagoshi K., Arai A, Imashiro Y., Bull.Chem. Soc. Jpn., 1989, 62: 2844.
    237. Gatto-Menking D. L., Yu H., Bruno J. G., Goode M. T., Miller M., Zulich A. W., Sensitive detection of biotoxoids and bacterial spores using an immunomagnctic elcctrochcmincsccnce sensor,'Biosens. Bioelectron., 1995, 10: 501-507.
    238. Jain S. R., Borowska E., Davidsson R., Tudorachc M., Ponten E, Emneus J, A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with protein G, Biosens Bioclectron., 2004, 19: 795-803.
    239. Lin J. H., Yan F., Hu X. Y., Ju H. X., Chcmiluminesccnt immunoscnsor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane,J Immunol Methods, 2004, 291: 165-174.
    240. Rubtsova M.Y., Kovba G.V., Egorov A.M., Chemiluminescent biosensors based on porous supports with immobilized peroxidase, Biosens Bioelectron., 1998, 13: 75-85.
    241. Kim K. S., Park J. K., Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel, Lab Chip, 2005, 5: 657-664.
    242. Zhang R.Q., Hirakawa K, Seto D., Soh N., Nakano K., Masadome T., Nagata K, Sakamoto K, Imato T., Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody, Talanta, 2005, 68:231-238.
    243. Gehring A. G., Albin D. M, Irwin P. L, Reed S. A., Tu S., Comparison of enzyme-linked immunomagnetic chemiluminescence with U.S. food and drug administration's bacteriological analytical manual method for the detection of escherichia coil O157:H7, J Microbiol Meth., 2006, 67: 527-533.
    244. Matsunaga T., Sato R., Kamiya S., Tanaka T., Takeyama H., Chemiluminescence enzyme immunoassay using protein A-bacterial magnetite complex, J Magn Magn Mater., 1999, 194: 126-131.
    245. Matsunaga T., Kawasaki M., Yu X., Tsujimura N., Nakamura N., Chemiluminescence enzyme immunoassay using bacterial magnetic particles, Anal. Chem., 1996, 68: 3551-3554.
    246. Tanaka T., Matsuna T., Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes, Anal. Chem., 2000, 72: 3518-3522.
    247. Lamarcq L., Labatmlleur F., Guillermet C., Bethier R., Stoebner P., Enhanced chemiluminesence-a high-sensitivity detection system for in-situ hybridization and immunohistochemistry, J Histochem Cytocbem., 1993, 41: 1591-1597.
    248. van Gijssel H. E., Divi R. L., Olivero O. A., Roth M. J., Wang G.. Q., Dawsey S. M., Albert P. S., Qiao Y. L., Taylor P. R, Dong Z. W., Schrager J. A., Kleincr D. E., Poirier M. C, Semiquantitation of polycyclic aromatic hydrocarbon-DNA adducts in human esophagus by immunohistochemistry and the automated cellular imaging system, Cancer Epidcm Biomar., 2002,11: 1622-1629.
    249. Girotti S., Musiani M., Ferri E., Gallinella G, Zerbini M., Roda A., Gentilomi G, Venturoli S., Chemiluminescent immuno peroxidase assay for the dot blot hybridization detection of parvovirus B i9 DNA using a low light imaging device, Anal Biochem, 1996, 236: 290-295.
    250. Dzgoev A, Mecklenburg M., Xie B., Miyabayashi A., Larsson P. O., Danielsson B., Optimization of a charge coupled device imaging enzyme linked immune sorbent assay and supports for the simultaneous determination of multiple 2,4-D samples, Anal. Chim. Acta, 1997, 347: 87-93.
    251. Roda A., Mirasoli M., Venturoli S., Cricca M, Bonvicini F, Baraldini M., Pasini P, Zerbini M, Musiani M., Microtiter format for simultaneous muttianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs, Clin Chem., 2002, 48:1654-1660.
    252. Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001, 73: 487-491.
    253. Ambrettia S., Mirasolib M., Venturolia S., Zerbinia M., Baraldinic M., Musiania M., Roda A., High-throughput polymerase chain reaction chemiluminescent enzyme immunoassay for typing and quantifying human papillomavirus DNAs, Anal Biochem., 2004, 332: 349-357.
    254. Montoya A., Rapid detection and counting of viable beer-spoilage lactic acid bacteria using a monoclonal chemiluminescence enzyme immunoassay and a CCD camera, J Immunol Methods, 2005, 303: 92-104.
    255. Magliulo M., Mirasoli M., Simoni P., Lelli R., Portanti O., Roda A., Development and validation of an ultra,sensitive chemiluminescent enzyme immunoassay for aflatoxin MI in milk, J. Agric. Food Chem., 2005, 53:3300-3305
    256. Knecht B. G., Strasser A., Dietrich R., Malrtlbauer E., Niessner R., Weller M. G., Automated microarray system for the simultaneous detection of antibiotics in milk, Anal. Chem., 2004, 76: 646-654.
    1. Duffort R. T., Nightingale D., Gaddum L. W., Lumincscence of grignard compounds in electric and magneiic fields, and related electrical phenomena, J. Am. Chem. Soc., 1927, 49: 1858.
    2. Harvey N, Luminescence during electrolysis, J. Phys. chem., 1929, 33: 14:56-1459.
    3. Jameison F., Sanchez R. I., Dong L. W., Leland J. K., Yost D., Martin M. T., electrochemiluminescence-based quantitation of classical clinical chemistry analytes, Anal. Chem., 1996, 68:1298-1302.
    4. Gerardi R. D., Barnett N. W., Lewis S. W., Analytical applications of tris (2,2'-bipyridyl) ruthenium(Ⅲ) as a chemiluminescent reagent, Anal. Chim. Acta, 1999, 378:1-41.
    5. Knight A. W., A review of recent trends in analytical applications of electrogenerated chemiluminescence, Trac-Trend anal chem., 1999, 18: 47-62.
    6. Karsten A. F., Miloslav P., George G. G., Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, 2001, 54:531-559.
    7. Kulmala S., Suomi J., Current status of modern analytical luminescence methods, Anal. Chim. Acta, 2003, 500:21-69.
    8. Richter M. M, Electrochemiluminescence (ECL), Chem Rev., 2004, 104: 3003-3036.
    9.王鹏,张文艳,周鸿,朱果逸,免疫电化学发光,分析化学,1998,26:898-903.
    10.陈曦,王小如,黄本立,电致化学发光研究的新进展,分析化学,1998,26:770-778.
    11.王鹏,袁艺,朱果逸,张密林,电化学发光分析的新进展,分析化学,1999,27:1219-1225.
    12.徐国宝,蓝绍俊,电化学发光及其应用,分析化学,2001,29:103-108.
    13.易长青,陈曦,Ru(bpy)_3~(2+)固相电致化学发光研究进展,世界科技研究与发展,2004,26:56-65.
    14.张成孝,漆红兰,电化学发光分析研究进展,世界科技研究与发展,2004,26:7-13.
    15. McCall J., Bruce D., Workman S., Cole C., Richter M. M., Electrochemiluminescence of copper(1) bis(2,9-dimethyl-1, 10-phenanthroline), Anal. Chem., 2001,73:4617-4620.
    16. Bruce D., Richter M. M, Green Electrochemiluminescence from ortho-metalated tris(2-phenylpyridine)iridium(Ⅲ), Anal. Chem., 2002, 74:1340-1342.
    17. Muegge B. D., Brooks S., Richter M. M., Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(Ⅲ) in aqueous solution, Anal. Chem., 2003, 75:1102-1105.
    18. Kim J., Shin I. S., Kim H, Lee J. K., Efficient electrogeneratcd chemiluminescence from cyclometalated Iridium(Ⅲ) complexes, J. Am. Chem. Soc., 2005, 127:1614-1615.
    19. Factor B., Muegge B., Workman S., Bolton E., Bos J., Richter M. M., Surfactant chain length effects on the light emission of tris(2,2'-bipyridyl)ruthenium(Ⅱ)/tripropylamine electrogenerated chemiluminescence, Anal. Chem., 2001, 73:4621-4624.
    20. Cole C., Muegge B. D., Richter M. M., Effects of Poly(ethylene glycol) tert-octylphenyl ether on tris(2-phenylpyridine)iridium(Ⅲ)-tripropylamine electrochemiluminescence, Anal. Chem., 2003, 75:601-604.
    21. Zhou M, Roovers J., Dendritic supramolecular assembly with multiple Ru(Ⅱ) tris(bipyridinc) units at the periphery, synthesis, spectroscopic, and clcctrochcmical study, Macromoicculcs, 2001, 34:244-252.
    22. Gcrardi R. D., Barnett N. W., LeWis S. W., Analytical applications of tris(2,2'-bipyridyl)ruthcnium(Ⅲ) as a chcmiluminescent reagent, Anal. Chim Acta, 1999, 378: 1-41.
    23. Michel P. E., de Rooij N. F., Koudelka-Hep M, Fahnrich K. A., O'Sullivan C. K., Guilbault G. G, Redox-cycling type clectrochcmiluminescencc in aqueous medium. A new principle for the detection of proteins labeled with a ruthenium chelate, Journal Ectroanal Chem., 1999, 474: 192-194.
    24. Dennany L., Forster R. J., Rusling J. F., Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films, J. Am. Chem. Soc., 2003, 125: 5213-5218.
    25. Sun X. H., Liu J. F., Cao W. D., Yang X. R., Wang E. K., Fung Y. S., Capillary electrophoresis with electrochemiluminescence detection of procyclidine in human urine pretreated by ion-exchange cartridge, Anal. Chim Acta, 2002, 470:137-145.
    26. Muegge B. D., Richter M. M, Electrochemiluminescent detection of metal cations using a Ruthenium(Ⅱ) bipyridyl complex containifig a crown ether moiety, Anal. Chem., 2002, 74: 547-550.
    27. Chiang M. T., Whang C. W., J Chromatogr A Tris(2,2'-bipyridyl)ruthenium(Ⅲ)- based electrochemiluminescence detector with indium/tin oxide working electrode for capillary electrophoresis, 2001, 934: 59-66.
    28. Yah J. L, Yang X. R., Wang E. K., Fabrication of a poly(dimethylsiloxane)-based electrochemiluminescence detection cell for capillary electrophoresis, Anal. Chem., 2005, 77: 5385-5388.
    29. Du Y., Wei H., Kang J. Z., Yan J. L., Yin X. B., Yang X. R., Wang E. K., Microchip capillary electrophoresis with solid-state electrochemiluminescence detector, Anal. Chem., 2005, 77:7993-7997.
    30. Sun X. P., Du Y., Zhang L. X., Dong S. J., Wang E. K., Pt nanoparticles: heat treatment-based preparation and Ru(bpy)_3~(2+)-mediated formation of aggregates that can form stable films on bare solid electrodesurfaces for solid-state electrochemiluminescence detection, Anal. Chem., 2006, 78:6674-6677.
    31. Elliott C. M, Pichot F., Bloom C. J., Rider L. S., Highly efficient solid-state electrochemically generated chemiluminescence from ester-substituted Trisbipyridineruthenium(Ⅱ)-based polymers, J. Am. Chem. Soc., 1998, 120:6781-6784.
    32. Dennany L, Hogan C F., Keyes T. E., Forster R. J., Effect of Surface Immobilization on the Electrochemiluminescence of Ruthenium-Containing Metallopolymers, Anal. Chem., 2006, 78, 1412-1417.
    33. Kim D J., Lyu Y. K., Choi H. N., Min I. H., Lee W. Y., Nation-stabilized magnetic nanoparticles (Fe_3O_4) for [Ru(bpy)_3]~(2+)(bpy 5 bipyridinc) clcctrogenerated chemiluminescence sensor, Chem. Commun., 2005: 2966-2968.
    34. Lee J. K., Lee S. H., Kim M., Kim H., Kim D. H., Yong W., Organosilicate thin film containing [Ru(bpy)_3]~(2+) for an electrogenerated chemiluminescence (ECL) sensor, Chem. Commun., 2003: 1602-1603.
    35. Hercules D. M., Science, 1964, 143: 308.
    36. Bezman R., Faulkner L. R., Mechanisms of chemiluminescent electron-transfer reactions. V. Absolute measurements of rubrene luminescence in benzonitrile and N,N-dimetbylformamide, J. Am. Chem. Soc., 1972, 94: 6324-6330.
    37. Littig, J. S.; Nieman, T. A., Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection, Anal. Chem., 1992, 64:1140-1144.
    38. Chen G N., Zhang L, Lin R. E., Yang Z. C., Duan J. P., Chen H. Q., Hibbert D. B., The electrogenerated chemiluminescent behavior of heroin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin, Talanta, 2000, 50:1275-1281.
    39.陈曦,陈薇,王小如,流动体系中维生素B1的电致化学发光研究,化学学报,2000,58:563-566.
    40. Zhang C., Zhou G., Zhang Z., Aizawa M., Highly sensitive electrochemical luminescence determination of thiamine, Anal. Chim. Acta, 1999, 394:165-170.
    41. Chen G. N., Lin R. E., Zhao Z. F., Duan J. P., Zhang L., Electrogenerated chemiluminescence for determination of indole and tryptophan, Anal. Chim Acts, 1997, 341 : 251-256.
    42. Lee S. K., Richter M. M., Strekowski L., Bard A. J., Electrogenerated chemiluminescence. 61. Near-IR Electrogenerated Chemiluminescence, Electrochemistry, and Spectroscopic Properties of a Heptamethine Cyanine Dye in MeCN, Anal. Chem., 1997, 69:4126-4133.
    43. Chen X., Li M. J., Yi C. Q., Tao Y., Wang X. R., Electrochemiluminescence determination of nitro polycyclic-aromatic hydrocarbons using HPLC separation, Chromatographia, 2003, 58: 571-577.
    44. Richards T. C., Bard A. J., Elcctrogenerated chemiluminescence. 57. Emission from sodium 9,10-diphenylanthracene-2-sulfonate, thianthrenecarboxylic acids, and chlorpromazine in aqueous media, Anal. Chem, 1995, 67:3140-3147.
    45. Taylor C. E., Creager T. E., Electrochemiluminescence-based detection of ferrocene derivatives at monolayer-coated electrodes, Journal Electroanal Chem., 2000, 485: 114-120.
    46. Zhang G. F., Chen H. Y., Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system, Anal. Chim. Acta, 2000, 419: 25-31.
    47. Sakura S., Flectrochemiluminescence of hydrogen peroxide luminol at a carbonelcctrode, Anal. Chim, Acta, 1992, 262: 49-57.
    48. Kulmala S., Ala-Kleme T., Kulmala A., Papkovsky D, Loikas K., Cathodic electrogenerated chemiluminescence of luminol at disposable oxide covered aluminum electrodes, Anal. Chem., 1998, 70: 1112-1118.
    49. Marquette C. A., Blum L. J., Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta, 1999, 381: 1-10.
    50. Zheng X., Zhang Z., Guo Z., Wang Q., Flow-injection electrogenerated chemiluminescence detection of hydrazine based on its in-situ electrochemical modification at a pre-anodized platinum electrode, Analyst, 2002, 127: 1375.
    51. Yang M L., Liu C. Z., Qian K. J., He P. G., Fang Y. Z., Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst 2002, 127: 1267.
    52. Arai K, Takahashi K., Kusu F., An electrochemiluminescence flow through cell and its applications to sensitive immunoassay using N(amino butyl)N ethyl isoluminol. Anal Chem., 1999, 71: 2237-2240.
    53. Reyes D. R., Lossifidis D., Auroux P. A., Manz A, Micro Total Analysis Systems. 1. Introduction, Theory, and Technology, Anal Chem., 2002, 74: 2623-2636.
    54. Liu J. F., Yan J. L., Yang X. R., Wang E. K., Miniaturized tris(2, 2'-bipyridyl)ruthenium(Ⅱ) electrochemiluminescence detection cell for capillary electrophoresis and flow injection analysis, Anal. Chem., 2003, 75: 3637-3642.
    55. Ding S. N., Xu J. J., Chen H. Y., Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H_2O_2 solution, Analyst, 2005, 130: 541-544.
    56. Ala-Kleme T, Makinen P., Ylinen T, Vare L., Kulmala S., Ihalainen P., Peltonen J., Rapid electrochemiluminoimmunoassay of human C-reactive protein at planar disposable oxide-coated silicon electrodes, Anal. Chem., 2006, 78: 82-88.
    57. Chovin A., Garrigue P., Vinatier P., Sojic N., Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: Application to remote electrochemiluminescence imaging, Anal. Chem., 2004, 76: 357-364.
    58.吕家根,西南师范大学,分析化学,博士学位论文,2003:55-61.
    59. Bockris J. O'M., Conway B. E., Yeager E, White R. E.(Eds.), Comprehensive treatise of electrochemistry(Electrochemical Materials Science Vol. 4), Plenum press. NewYork AND London, 1981: pl42.
    60. Thirsk H. R., Armstrong R. D., Bell M. F., Bowling J. E, Briggs G. W. D., Brown O. R., Edmondson K., Inman D., Lakshminarayanaiah N., Covering D. G, Roberston P. M., West G. D., White S. H.,(Eds) Electrochemistry(The Chemical Society Vol. 4), Burlington House. London, 1972: p2.
    61. Lv J. G., Luo L. R., Zhang Z. J., On-line galvanic cell generated clectrochemilumincscence determination of acyclovir based on the flow injection sampling, Anal. Chim. Acta, 2004, 510: 35-39.
    62.吕家根,章竹君,罗利荣,田穗康,侯涛,在线自发电源激发的流动注射电致化学发光测定异烟肼,化学学报,2003,61:950-953.
    63. Lv J. G, Zhang Z. J., Luo L. R., An On-line galvanic cell generated electrochemiluminescence and flow injection determination of calcium in milk and vegetables, Anal Sci, 2003: 883-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700