用户名: 密码: 验证码:
基于电流驱动无源混频器的宽带接收机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信市场近年来迅猛发展,各种无线设备给人们的生活提供了便利,在人们的生活中扮演着越来越重要的角色。生活中的各种无线通信协议的射频前端电路互不兼容,这给人们的便携化带来了不便。因此设计能够兼容多种无线通信协议的射频前端就成为了设计者们需要面对的问题,而多模多频带的宽带接收机又是需要攻克的重点和难点。本文分别对多模多频带的宽带接收机的核心模块进行了研究,并在此基础上研究完整的接收机电路。
     低噪声放大器(Low Noise Amplifier)是接收机链路的第一级电路,需要实现宽带范围内的输入匹配,并在功耗尽可能低的条件下得到低噪声和适当的增益。本文首次提出了一种正反馈环路用来改善因为隔直电容带来的低频增益和噪声的恶化。同时本文综合利用电流复用技术和电容交叉耦合技术来降低电路的功耗,采用电阻负反馈结构来提高输入匹配的带宽,同时分析了反馈电阻对于各个性能参数的影响从而获得了最优的噪声和增益。
     混频器(Mixer)是接收机链路的第二级电路,也是完成变频功能的核心模块。因为线性度的考虑,LNA的增益一般不会过大,因此混频器的噪声系数应该尽可能的低。本文在分析了跨导管和开关管对于混频器的噪声贡献后,采用了噪声抵消的技术来降低跨导管的噪声,同时采用电流抽取技术降低开关管的噪声。在综合分析了电流抽取技术对于增益、噪声的影响后选择了一个最佳的电流抽取比例。
     本文采用基于电流驱动无源混频器的架构来研究多模多频段的宽带接收机。在分析了传统的拓扑结构的优缺点后,本文提出了一种新的方法来提高无源混频器得到的交流电流比例。同时在分析了传统的跨阻放大器的缺点后,本文针对性的进行了改进,从而在功耗,噪声和稳定性等方面有了比较大的改善。所设计的电路使用SMIC65nm工艺流片,测试结果验证了设计思想。
The wireless communication market has grown fast in the past few years. Different kinds of wireless handsets are playing an important role in our lives. However, RF front-ends of different communication systems are not compatible with each other, resulting in lack of portable. This problem pushes designers to design an RF front-end which is capable to deal with multiple standards. Of all the sub-systems, Multi-mode multi-band receiver is difficult for designers. We will study on the core modules of the multi-mode multi-band receiver, and after that we will study on the integrated receiver.
     Low noise amplifier is the first stage of the receiver. It should achieve wideband input matching and low noise figure with power consumption as low as possible. We apply the current reuse and capacitor cross coupling techniques to reduce the power consumption to one fourth, and we use the resistor feedback topology to get the wideband input matching. After analyzing the impact of the feedback resistor on the parameters, we get an optimized resistance for the best noise figure and other parameters.
     Mixer is the second stage in the receiver which plays a key role in the down conversion. For the sake of linearity, the gain of the LNA shouldn't be too large. Then the noise figure of the mixer should be as low as possible. After analyzing the noise contribution of the transconductance stage and the switch stage, we apply the noise cancellation technique and the current bleeding technique to reduce the noise. Since the ratio of the current bleeding has a direct affection on the gain and noise figure of mixer, we optimized this ratio to get the best performance.
     This thesis applies the current driven passive mixer to design the multi-mode multi-band receiver. We proposed a new way to raise the ac current ratio of mixer to LNA and we also proposed a new architecture to implement the transimpedance amplifier after analyzing the drawbacks of the traditional transimpedance amplifier. The new architecture consumes a lower power and meanwhile, the nose figure and stability are better than the traditional competitors. Our work is implemented with SMIC65nm process. The measured results demonstrate our design strategies.
引文
[1]W. Chen, N. Poobuapheun, and A. Niknejad, "A Broadband High Dynamic Range CMOS Front-End," BWRC Summer Retreat,2006.
    [2]H. W. Moon, J. Y. Han, S. I. Choi, D. J. Keum, and P. B. Ha, "A 0.13um CMOS multi-band WCDMA/HSDPA receiver adopting silicon area reducing techniques," in Proc. IEEE Radio Frequency Integrated Circuits Symposium(RFIC),2009, pp.17-20.
    [3]C. S. Chiu, B. S. Heng, E. S. Khoo, S. R. Karri, B. J. Kuo, C. H. Shen, et al., "A multi-band high performance single-chip transceiver for WCDMA/HSDPA," in Proc. IEEE Radio Frequency Integrated Circuits Symposium(RFIC),2009, pp.201-204.
    [4]C. T. Che, C. C. Wei, O. T. C. Chen, and R. Y. J. Tsen, "A multi-band RF front-end receiver for Bluetooth, WCDMA, and GPS applications," in Proc. IEEE Circuits and Systems Midwest Symposium,2003, pp.1175-1178 Vol.3.
    [5]S. Sarwana, D. E. Kirichenko, V. V. Dotsenko, A. F. Kirichenko, S. B. Kaplan, and D. Gupta, "Multi-Band Digital-RF Receiver," IEEE Trans. Applied Superconductivity, vol.21, pp. 677-680,2011.
    [6]A. Noroozi, C. J. M. Verhoeven, G. L. E. Monna, and E. K. A. Gill, "A direct conversion GPS/Galileo receiver front-end for space applications," in Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), 2010 5th ESA Workshop on,2010, pp.1-5.
    [7]W. C. Shiun, L. W. Chang, and W. C. Kuang, "A multi-band multi-standard RF front-end IEEE 802.16a for IEEE 802.16a and IEEE 802.11 a/b/g applications," in Proc. ISCAS, May 2005, pp.3974-3977.
    [8]T. M. Da, L. C. Fan, W. Yun, L. Y. Bin, B. Tzeng, and D. G. Kaai, "A multi-band inductor-less SAW-less 2G/3G-TD-SCDMA cellular receiver in 40nm CMOS," in ISSCC Dig. Tech. Papers,2014, pp.354-355.
    [9]W. R. White and D. M. W. Leenaerts," 1/f noise in passive CMOS mixers for low and zero IF integrated receivers," in Proc. IEEE ESSCIRC,2001, pp.41-44.
    [10]M. Soer, E. A. M. Klumperink, Z. Ru, F. E. van Vliet, and B. Nauta, "A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving<11dBm IIP3 and <6.5 dB NF," in ISSCC Dig. Tech. Papers,2009, pp.222-223,223a.
    [11]D. Murphy, H. Darabi, A. Abidi, A. A. Hafez, A. Mirzaei, M. Mikhemar, et al., "A Blocker-Tolerant, Noise-Cancelling Receiver Suitable for Wideband Wireless Applications," IEEE J. Solid-State Circuits, vol.47, pp.2943-2963,2012.
    [12]H. Yumei, L. Weinan, H. Song, X. Renzhong, L. Xin, F. Jian, et al, "A High-Linearity WCDMA/GSM Reconfigurable Transceiver in 0.13um CMOS," IEEE Trans. Microw. Theory Tech., vol.61, pp.204-217,2013.
    [13]I. S. Lu, Y. C. Yao, C. Y. Horng, C. L. Chou, C. E. Sun, T. C. Chun, et al., "A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC," in ISSCC Dig. Tech. Papers,2011, pp.364-366.
    [14]J. Borremans, G. Mandal, V. Giannini, B. Debaillie, M. Ingels, T. Sano, et al., "A 40nm CMOS 0.4-6 GHz Receiver Resilient to Out-of-Band Blockers," IEEE J. Solid-State Circuits, vol.46, pp.1659-1671,2011.
    [15]K. Phansathitwong, H. Sjoland, and P. Andreani, "Low power multi-band CMOS receiver front-end," in Ph.D. Research in Microelectronics and Electronics (PRIME),2010 Conference on,2010, pp.1-4.
    [16]G. Heinrichs, G. Rohmer, and F. Henkel, "A direct digitisation spread-spectrum architecture for GNSS receivers," in EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security. IEEE/AFCEA,2000, pp.199-203.
    [17]L. W. Zhang, H. J. Jiang, J. J. Wei, J. J. Dong, W. T. Li, G. Jia, et al., "A low-power reconfigurable multi-band sliding-IF transceiver for WBAN Hubs in 0.18um CMOS," in Proc. IEEE Asian Solid-State Circuits Conference (ASSCC),2012, pp.77-80.
    [18]G. Q. Yao, B. Y. Chi, C. Zhang, and Z. H. Wang, "A low-power monolithic reconfigurable direct-conversion receiver RF front-end for 802.11 a/b/g applications," in Proc. IEEE Solid-State and Integrated-Circuit Technology(ICSICT),2008, pp.1460-1463.
    [19]X. Haolu, P. Rakers, R. Fernandez, T. McCain, J. Xiang, J. Parkes, et al., "Single-chip multi-band SAW-less LTE WCDMA and EGPRS CMOS receiver with diversity," in Radio Frequency Integrated Circuits Symposium (RFIC),2011 IEEE,2011, pp.1-4.
    [20]C. H. Yeh, H. H. Chi, P. Xu, and S. Chakraborty, "Multi-band, multi-mode, low-power CMOS receiver front-end for sub-GHz ISM/SRD band with narrow channel spacing," in Proc. IEEE CICC,2012, pp.1-4.
    [21]A. Mirzaei and H. Darabi, "Reconfigurable RF Front-Ends for Cellular Receivers," in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS),2010, pp.1-4.
    [22]I. S. Lu, Y. C. Yao, C. Y. Horng, C. L. Chou, C. E. Sun, T. C. Chun, et al., "A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC," in ISSCC Dig. Tech. Papers,2011, pp.364-366.
    [23]R. Wang, Z. Li, J. Huang, M. Fang, W. Zhang, and L. Zeng, "A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver," in Proc. IEEE Radio-Frequency Integration Technology (RFIT),2011, pp.85-88.
    [24]Behzad Razavi, "RF Microelectronics," Prentice Hall,2012.
    [25]Qizheng Gu, "RF System Design of Transceivers for Wireless Communications," Springer, 2005.
    [26]池保勇,余志平,石秉学,"CMOS射频集成电路分析与设计,”ed:清华大学出版社,2007.
    [27]R. E. Bamett, L. Jin, and S. Lazar, "A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in UHF RFID Transponders," IEEE J. Solid-State Circuits, vol.44, pp.354-370, 2009.
    [28]U. Karthaus and M. Fischer, "Fully integrated passive UHF RFID transponder IC with 16.7-mW minimum RF input power," IEEE J. Solid-State Circuits, vol.38, pp.1602-1608,2003.
    [29]G. De Vita and G. Iannaccone, "Design criteria for the RF section of UHF and microwave passive RFID transponders," IEEE Trans. Microw. Theory Tech., vol.53, pp.2978-2990, 2005.
    [30]T. Ying-Khai, F. Mohd-Yasin, F. Choong, M. I. Reaz, and A. V. Kordesch, "Design and Analysis of UHF Micropower CMOS DTMOST Rectifiers," IEEE Trans. Circuits Syst. Ⅱ, Analog Digit. Signal Process, vol.56, pp.122-126,2009.
    [31]J. P. Curry, N. Joehl, F. Krummenacher, C. Dehollaini, and M. J. Declercq, "A model for u-power rectifier analysis and design," IEEE Trans. Circuits Syst. I, Reg. Papers, vol.52, pp. 2771-2779,2005.
    [32]Y. Jun, K. W. Hung, and T. C. Ying, "Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, pp.153-166,2007.
    [33]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, "A 950-MHz rectifier circuit for sensor network tags with 10-m distance," IEEEJ. Solid-State Circuits, vol.41, pp.35-41,2006.
    [34]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, et al., "A Passive UHF RF Identification CMOS Tag IC Using Ferroelectric RAM in 0.35 umTechnology," IEEE J. Solid-State Circuits, vol.42, pp.101-110,2007.
    [35]Y. W. Gan, Y. B. Choi, T. K. Yin, S. X. Diao, and Y. S. Li, "A CMOS 2.45-GHz radio frequency identification tag IC with read/write memory," in IEEE Radio Frequency Integrated Circuits Symposium(RFIC),2005, pp.365-368.
    [36]K. Kotani and T. Ito, "High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs," in Proc. IEEE Asian Solid-State Circuits Conference (ASSCC),2007, pp.119-122.
    [37]C. K. Hou, L. J. Hao, and S. I. Liu, "A 2.4GHz Efficiency-Enhanced Rectifier for Wireless Telemetry," in Proc. IEEE CICC,2007, pp.555-558.
    [38]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, "A 950-MHz rectifier circuit for sensor network tags with 10-m distance," IEEE J. Solid-State Circuits, vol.41, pp.35-41,2006.
    [39]A. Amer, E. Hegazi, and H. Ragai, "A Low-Power Wideband CMOS LNA for WiMAX," IEEE Trans. Circuits Syst. Ⅱ, Analog Digit. Signal Process, vol.54, pp.4-8,2007.
    [40]C. J. Jeong, W. Qu, Y. Sun, D. Y. Yoon, S. K. Han, and S. G. Lee, "A 1.5V,140uA CMOS ultra-low power common-gate LNA," in IEEE Radio Frequency Integrated Circuits Symposium (RFIC),2011,pp.1-4.
    [41]D. K. Shaeffer and T. H. Lee, "A 1.5-V,1.5-GHz CMOS low noise amplifier," IEEE J. Solid-State Circuits, vol.32, pp.745-759,1997.
    [42]J. Sanghoon, C. Tae-Young, and J. Byunghoo, "A 2.4-GHz Resistive Feedback LNA in 0.13um CMOS," IEEE J. Solid-State Circuits, vol.44, pp.3019-3029,2009.
    [43]C. Chia-Hung, W. Tao, and C. F. Jou, "Dual cross-coupling LNA with forward body bias technique," Electronics Letters, vol.48, pp.1100-1102,2012.
    [44]D. J. Cassan and J. R. Long, "A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS," IEEE J. Solid-State Circuits, vol.38, pp.427-435, 2003.
    [45]S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, "Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling," IEEE J. Solid-State Circuits, vol.43, pp.1341-1350,2008.
    [46]F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE J. Solid-State Circuits, vol.39, pp.275-282, 2004.
    [47]K. M. Ching, K. S. Wen, C. C. Hung, H. T. Shuen, S. Y. Shing, Y. T. Yi, et al., "A 1.2 V 114 mW Dual-Band Direct-Conversion DVB-H Tuner in 0.13um CMOS," IEEE J. Solid-State Circuits, vol.44, pp.740-750,2009.
    [48]D. Manstretta and L. Dauphinee, "A Highly Linear Broadband Variable Gain LNA for TV Applications," in Proc. IEEE CICC,2007, pp.531-534.
    [49]S. B. T. Wang, A. M. Niknejad, and R. W. Brodersen, "Design of a Sub-mW 960-MHz UWB CMOS LNA," IEEE J. Solid-State Circuits, vol.41, pp.2449-2456,2006.
    [50]K. Y. Myung, H. Honggul, and K. T. Wook, "A 0.6-V+4 dBm IIP3 LC Folded Cascode CMOS LNA With gm Linearization," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.60, pp.122-126,2013.
    [51]I. Donggu, K. H. Teuk, and L. Kwyro, "A CMOS Resistive Feedback Differential Low-Noise Amplifier With Enhanced Loop Gain for Digital TV Tuner Applications," IEEE Trans. Microw. Theory Tech., vol.57, pp.2633-2642,2009.
    [52]E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari, and E. S. Sinencio, "A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback," IEEE Trans. Microw. Theory Tech., vol.59, pp.3154-3161,2011.
    [53]C. K. Hou and S. I. Liu, "Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique," IEEE Trans. Circuits Syst. I, Reg. Papers, vol.59, pp.305-314,2012.
    [54]K. Jusung and J. S. Martinez, "Wideband Tnductorless Balun-LNA Employing Feedback for Low-Power Low-Voltage Applications," IEEE Trans. Microw. Theory Tech., vol.60, pp. 2833-2842,2012.
    [55]M. T. Terrovitis and R. G. Meyer, "Noise in current-commutating CMOS mixers," IEEE J. Solid-State Circuits, vol.34, pp.772-783,1999.
    [56]M. T. Terrovitis and R. G. Meyer, "Intermodulation distortion in current-commutating CMOS mixers," IEEEJ. Solid-State Circuits, vol.35, pp.1461-1473,2000.
    [57]H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers:a simple physical model," IEEE J. Solid-State Circuits, vol.35, pp.15-25,2000.
    [58]D. Manstretta, M. Brandolini, and F. Svelto, "Second-order intermodulation mechanisms in CMOS downconverters," IEEE J. Solid-State Circuits, vol.38, pp.394-406,2003.
    [59]H. Darabi and J. Chiu, "A noise cancellation technique in active RF-CMOS mixers," IEEE J. Solid-State Circuits, vol.40, pp.2628-2632,2005.
    [60]M. Brandolini, P. Rossi, D. Sanzogni, and F. Svelto, "A+78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers," IEEE J. Solid-State Circuits, vol.41, pp.552-559,2006.
    [61]S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, "The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology," IEEE J. Solid-State Circuits, vol.43, pp. 2706-2715,2008.
    [62]N. Stanic, P. Kinget, and Y. Tsividis, "A 0.5 V 900 MHz CMOS Receiver Front End," in VLSI Symp. Dig.,2006, pp.228-229.
    [63]A. Amer, E. Hegazi, and H. F. Ragaie, "A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation," IEEE J. Solid-State Circuits, vol.42, pp.323-328,2007.
    [64]S. S. K. Ho and C. E. Saavedra, "A CMOS Broadband Low-Noise Mixer With Noise Cancellation," IEEE Trans. Microw. Theory Tech., vol.58, pp.1126-1132,2010.
    [65]A. A. Abidi, "The Path to the Software-Defined Radio Receiver," IEEE J. Solid-State Circuits, vol.42, pp.954-966,2007.
    [66]F. Agnelli, G. Albasini, I. Bietti, A. Gnudi, A. Lacaita, D. Manstretta, et al., "Wireless multi-standard terminals:system analysis and design of a reconfigurable RF front-end," IEEE Circuits and Systems Magazine, vol.6, pp.38-59,2006.
    [67]W. Redman-White and D. M. W. Leenaerts, "1/f noise in passive CMOS mixers for low and zero IF integrated receivers," in Proc. IEEE Solid-State Circuits Conference(ESSCIRC), 2001, pp.41-44.
    [68]E. Sacchi, I. Bietti, S. Erba, L. Tee, P. Vilmercati, and R. Castello, "A 15mW,70 kHz 1/f corner direct conversion CMOS receiver," in Proc. IEEE CICC,2003, pp.459-462.
    [69]M. Valla, G. Montagna, R. Castello, R. Tonietto, and I. Bietti, "A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner," IEEEJ. Solid-State Circuits, vol.40, pp.970-977,2005.
    [70]R. Bagheri, A. Mirzaei, S. Chehrazi, M. Heidari, M. Lee, M. Mikhemar, et al., "An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS," in ISSCCDig. Tech. Papers,2006, pp.1932-1941.
    [71]N. T. Kien, O. N. Jin, L. V.-Hoang, and L. S. Gug, "A low-power CMOS direct conversion receiver with 3-dB NF and 30-kHz flicker-noise corner for 915-MHz band IEEE 802.15.4 ZigBee standard," IEEE Trans. Microw. Theory Tech., vol.54, pp.735-741,2006.
    [72]B. Tenbroek, J. Strange, D. Nalbantis, C. Jones, P. Fowers, S. Brett, et al., "Single-Chip Tri-Band WCDMA/HSDPA Transceiver without External SAW Filters and with Integrated TX Power Control," in ISSCC Dig. Tech. Papers,2008, pp.202-607.
    [73]B. R. Carlton, J. S. Duster, S. S. Taylor, and J. H. C. Zhan, "A 2.2dB NF,4.9-6GHz direct conversion multi-standard RF receiver front-end in 90nm CMOS," in Proc. IEEE Radio Frequency Integrated Circuits Symposium(RFIC),2008, pp.617-620.
    [74]N. Poobuapheun, C. W. Hung, Z. Boos, and A. M. Niknejad, "A 1.5-V 0.7-2.5GHz CMOS Quadrature Demodulator for Multiband Direct-Conversion Receivers," IEEE J. Solid-State Circuits, vol.42, pp.1669-1677,2007.
    [75]A. Mirzaei, H. Darabi, J. C. Leete, C. Xinyu, K. Juan, and A. Yazdi, "Analysis and Optimization of Current-Driven Passive Mixers in Narrowband Direct-Conversion Receivers," IEEE J. Solid-State Circuits, vol.44, pp.2678-2688,2009.
    [76]M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat, and T. Parra, "A 5.4 mW/0.07 mm22.4 GHz Front-End Receiver in 90 nm CMOS for IEEE 802.15.4 WPAN Standard," IEEE J. Solid-State Circuits, vol.43, pp.1372-1383,2008.
    [77]V. Giannini, P. Nuzzo, C. Soens, K. Vengattaramane, J. Ryckaert, M. Goffioul, et al., "A 2-mm2 0.1-5GHz Software-Defined Radio Receiver in 45-nm Digital CMOS," IEEE J. Solid-State Circuits, vol.44, pp.3486-3498,2009.
    [78]N. T. Kien, V. Krizhanovskii, L. Jeongseon, H. Seok-Kyun, L. S. Gug, K. N. Soo, et al., "A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18um CMOS Technology," IEEE Trans. Microw. Theory Tech., vol.54, pp. 4062-4071,2006.
    [79]K. Namsoo, L. E. Larson, and V. Aparin, "A Highly Linear SAW-Less CMOS Receiver Using a Mixer With Embedded Tx Filtering for CDMA," IEEE J. Solid-Stale Circuits, vol. 44, pp.2126-2137,2009.
    [80]K. M. Ching, K. S. Wen, C. C. Hung, H. T. Shuen, S. Y. Shing, Y. Tzu-Yi, et al, "A 1.2 V 114 mW Dual-Band Direct-Conversion DVB-H Tuner in 0.13um CMOS," IEEE J. Solid-State Circuits, vol.44, pp.740-750,2009.
    [81]B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, and K. S. J. Pister, "Low-Power 2.4-GHz Transceiver With Passive RX Front-End and400-mV Supply," IEEEJ. Solid-State Circuits, vol.41, pp.2757-2766,2006.
    [82]L. V. Hoang, N. H. Nam, L. I. Young, H. S. Kyun, and L. S. Gug, "A Passive Mixer for a Wideband TV Tuner," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 58, pp.398-401,2011.
    [83]Z. Sining and M. C. F. Chang, "A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver," IEEE J. Solid-State Circuits, vol.40, pp.1084-1093, 2005.
    [84]K. Namsoo, V. Aparin, and L. E. Larson, "A Resistively Degenerated Wideband Passive Mixer With Low Noise Figure and High IIP2," IEEE Trans. Microw. Theory Tech., vol.58, pp.820-830,2010.
    [85]E. D. Backer, J. Bauwelinck, C. Melange, E. Matei, P. Ossieur, X. Z. Qiu, et al., "2.5 V passive CMOS mixer with 20 dBm Pl dB compression," Electronics Letters, vol.44, pp. 1067-1068,2008.
    [86]A. Mirzaei, H. Darabi, J. C. Leete, and C. Yuyu, "Analysis and Optimization of Direct-Conversion Receivers With 25% Duty-Cycle Current-Driven Passive Mixers," IEEE Trans. Circuits Syst. I, Reg. Papers, vol.57, pp.2353-2366,2010.
    [87]H. Y. Mei, L. W. Nan, H. Song, X. R. Zhong, L. Xin, F. Jian, et al., "A High-Linearity WCDMA/GSM Reconfigurable Transceiver in 0.13um CMOS," IEEE Trans. Microw. Theory Tech., vol.61, pp.204-217,2013.
    [88]K. Jusung and J. S. Martinez, "Low-Power, Low-Cost CMOS Direct-Conversion Receiver Front-End for Multistandard Applications," IEEE J. Solid-State Circuits, vol.48, pp.2090-2103,2013.
    [89]W. Xiao, J. Sturm, Y. Na, T. Xi, and M. Hao, "0.6-3GHz Wideband Receiver RF Front-End With a Feedforward Noise and Distortion Cancellation Resistive-Feedback LNA," IEEE Trans. Microw. Theory Tech., vol.60, pp.387-392,2012.
    [90]K. Namsoo, V. Aparin, and L. E. Larson, "A Resistively Degenerated Wideband Passive Mixer With Low Noise Figure and High IIP2," IEEE Trans. Microw. Theory Tech., vol.58, pp.820-830,2010.
    [91]M. Soer, E. A. M. Klumperink, Z. Ru, F. E. van Vliet, and B. Nauta, "A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving<11dBm IIP3 and <6.5 dB NF," in ISSCC Dig. Tech. Papers,2009, pp.222-223,223a.
    [92]N. Poobuapheun, C. W. Hung, Z. Boos, and A. M. Niknejad, "A 1.5-V 0.7-2.5GHz CMOS Quadrature Demodulator for Multiband Direct-Conversion Receivers," IEEEJ. Solid-State Circuits, vol.42, pp.1669-1677,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700