用户名: 密码: 验证码:
第三代NO_x储存还原催化剂Pt/K/TiO_2-ZrO_2储存和抗硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx储存-还原(NSR)法是消除稀燃NOx的一种有效方法。目前广泛研究的Pt/Ba/Al2O3催化剂体系抗硫性能差。本文以碱金属K代替碱土金属Ba作为储存剂、以TiO2-ZrO2复合氧化物代替Al2O3,制备了Pt/K/TiO2-ZrO2催化剂。详细考察了载体焙烧温度对催化剂储存、抗硫和再生性能的影响,同时考察了K负载量、储存剂种类和载体效应对催化性能的影响,并对储存机制进行了深入研究。
     NOx储存实验结果表明,随载体焙烧温度升高,催化剂对NOx的储存量呈先增大后减小的趋势,800oC焙烧时,催化剂具有最大的NOx储存量。N2吸附脱附、XRD、TPD和in-situ DRIFTS等结果表明,影响储存能力的直接因素是载体的表面性能和K物种形态,与比表面积大小无明显关系。随焙烧温度升高,载体由无定形结构转变为ZrTiO4晶体结构,B酸位转变为L酸位,表面酸量明显下降,同时,K物种由-OK键和氧化物逐渐转变为K2CO3。由不同K物种形成的硝酸盐的稳定性次序为:K2CO3>氧化物>-OK键。
     随载体焙烧温度升高,硫酸盐脱附温度提高,催化剂抗硫性能逐渐减弱。H2-TPR结果表明,载体于500oC焙烧的样品中硫酸盐从200oC左右开始分解,在500oC之前基本完全脱附,还原温度比传统催化剂Pt/Ba/Al2O3降低200oC以上;载体于650oC焙烧时完全脱附温度升至约610oC;800oC焙烧时,脱附峰温升至625oC。K物种的存在形式影响硫酸盐的稳定性,K2CO3的分解降低了硫酸盐脱附温度。载体于650oC焙烧的样品硫化再还原后,储存能力最强;但载体于500oC焙烧的样品再生性能最好,储存能力达到新鲜催化剂的90%。载体于500或650oC焙烧,Pt/K/TiO2-ZrO2催化剂能同时较好地兼顾储存和抗硫性能。
     K2CO3负载量(5~30wt%)与催化剂储存能力呈顺变关系,但负载量大,硫酸盐脱附温度高,抗硫性能下降,K2CO3负载量不宜超过15wt%。储存组分Li、K、Ba、Mg和Sr对催化性能有不同影响,K和Li是储存和抗硫性能兼顾的适宜选择。载体效应的研究表明,TiO2-ZrO2与储存组分的作用最强,抗硫性能最好;Al2O3载体上储存组分易形成较大颗粒且难以脱除硫酸盐,抗硫性能最差。
     DRIFTS结果表明,载体于500oC焙烧时,反应路径主要是NO直接氧化成硝酸盐以及歧化反应生成硝酸盐;于650oC焙烧时,反应路径主要是NO直接氧化成硝酸盐以及亚硝酸盐;进一步提高焙烧温度至800oC,反应路径主要为NO直接氧化成硝酸盐,并以三维方式向体相扩散。随载体焙烧温度升高,NSR催化剂的最佳储存温区向高温方向移动。
The NOx storage and reduction (NSR) technique proposed by Toyota provides a feasible approach to the abatement of lean-burn NOx. Up to now, the most widely studied catalyst system is Pt/Ba/Al2O3, which shows poor SO2-resisting ability. Thus, new NSR catalysts tolerant to sulfur poisoning are desiderated to be developed. In the present study, a series of NSR catalysts Pt/K/TiO2-ZrO2 with good sulfur-tolerant performance are prepared. The effect of calcination temperature of the support on storage capacity, sulfur durability and the regeneration property of the NSR catalysts are investigated in detail; meanwhile, the influences of the K loading, the kinds of storage components and the supports on the catalytic performance are also studied; in addition, the reaction routes and storage mechanisms are revealed or discussed.
     The results of NOx storage capacity (NSC) show that as the calcination temperature increases, the NOx storage capacities of the catalysts show volcano-type tendency, with the maximum appearing at 800oC. The results of N2 adsorption/desorption, XRD, TPD and in-situ DRIFTS show that the storage capacity is tightly related to the structures and chemical properties of the supports and the state of K speices, regardless of the specific surface areas. With the calcination temperature increasing, the structures of the supports are transformed from amorphous state at 500oC to ZrTiO4 crystalline at 650oC or above, while the total amounts of surface acidity decline evidently, accompanying with the transformation of Br?nsted acidic sites to Lewis acidic sites. The formation of -OK group arising from the interaction between the surface hydroxyl of support and the K-containing phases is not favorable to NOx storage, while the highly dispersed K2CO3 phase facilitates the NOx storage as nitrates. The sequence for the stability of nitrates formed from different K species is K2CO3> potassium oxide >-OK bond.
     The reduction temperature of sulfates formed on the catalysts shifts to high temperature as the calcination temperature of support increases. The results of H2-TPR reveal that the reduction of the sulfates formed on Pt/K/TiO2-ZrO2 catalyst with the support calcined at 500oC started from about 200oC and completely finished before 500oC, which is about 200oC lower than that of traditional Pt/Ba/Al2O3. The corresponding temperature for the catalyst with the support calcined at 650oC is elevated to 610oC, and at higher calcination temperature of 800oC, the major reduction peak further shifts to 625oC. The stability of sulfates is also influenced by the state of K species, the decomposition of K2CO3 has decreased the reduction temperature of the sulfates. After reduced in H2-containing atmosphere, the regenerated sample with the support calcined at 650oC shows the biggest NOx storage capacity, being about 60% of that for the fresh catalyst; and the regenerated one with the support calcined at 500oC possesses the best regeneration ability, whose storage capacity achieves 90% of that for the fresh sample; while the storage capacity for the regenerated sample with the support calcined at 800oC only reaches 20% of that for the fresh one. The catalysts Pt/K/TiO2-ZrO2 with the calcination temperature of support at 500 and 650oC possess not only high storage capacity but also novel sulfur-resisting ability.
     The results of NSCs show that the K loadings (5~30 wt%) are proportional to the storage capacities of the catalysts, but with the increase of K loading, the sulfates reduction shifts to higher temperature, decreasing the sulfur-resisting ability, so, the optimal loading for K2CO3 should not exceed 15 wt%. Among the different storage components of Li, K, Ba, Mg and Sr, K and Li are the best selection from the view of both the storage capacity and the sulfur resistance. The comparative studies of the support effect show that the interaction of TiO2-ZrO2 with the storage component is stronger than other supports, leading to the best SO2-resisting performance. The sulfate particles are easily agglomerated on the surface of Al2O3, which is hard to be removed, and therefore showing the worst performance for sulfur resistance.
     The DRIFTS results of NOx adsorption over the catalyst Pt/K/TiO2-ZrO2 indicate that the different storage mechanisms are followed for the samples with the support calcined at different temperatures. For the catalyst with the support calcined at 500oC, the reaction pathway consists of direct oxidation of NO to nitrate and the disproportionation reaction of NO2 with the formation of nitrate and NO; for the sample with the support calcined at 650oC, the main reaction routes may be the oxidation of NO to form nitrite and nitrate species; at higher calcination temperature of 800oC, the main reaction pathway is the formation of bulk nitrate species via the direct oxidation of NO and the three-dimensional transferring from surface to bulk. As the calcination temperature of support increases, the optimal temperature region for NOx storage as nitrate shifts to higher temperature direction.
引文
[1]曲格平,我们需要一场变革,长春:吉林人民出版社,1997,110
    [2]王大全,“京都议定书”与“二氧化碳绿色化”,化学工业,2007,25:8-11
    [3]吕建华,生态环境问题:国际政治经济新焦点,中国与世界,2007,9:30-42
    [4]邝生鲁,全球变暖与二氧化碳减排,现代化工,2007,8:1-12
    [5]联合国棋手变化框架公约缔约方第三次会议,京都气候会议达成协议后闭幕[N],参考消息,1997-12-12(7)
    [6]郑小明,周仁贤,环境保护中的催化治理技术,北京:化学工业出版社,2003,4
    [7]秦大河,气候变化对我国经济、社会和可持续发展的挑战,外交评论,2007,8:6-14
    [8] Heck R M, Farrauto R J, Catalytic Air Pollution Control, New York: Van Nostrand Reinhold, 1995, 106
    [9]王建昕,汽车排气污染治理及催化转化器,北京:石油工业出版社,2000,15-16;242-244
    [10]周玉明,内燃机废气排放及控制技术,北京:人民交通出版社,2001,152-153
    [11] Miyoshi N, Matsumoto S, Katoh K, et al. Development of new concept three-way catalyst for automotive lean-burn engines, SAE Paper, 1995, 950809
    [12] Koltsakis G C, Stamatelos A M. Catalytic automitive exhaust aftertreatment, Prog. Energy Combust Sci, 1997, 23: 1-39
    [13]外山敏夫,香川顺,在烟雾中生活(燃料化工设计院译),北京:燃料化工出版社,1973,3
    [14] Thomas J M, Zamaraev K I, Perspectives in catalysis, London: Blackwell Sci. Pub., 1992, 1
    [15] Truex T J, Searles R A, Sun D C. Catalysts for nitrogen oxides control under lean burn conditions, Platinum Metals Rev., 1992, 36(1): 2-10
    [16] Roth J F. Industrial catalysis poised for innovation, Chemtech, 1991, 21(6): 357-360
    [17] Talor K C. Nitric oxide catalysis in automotive exhaust systems, Catal. Rev.-Sci. Eng., 1993, 35(4): 457-481
    [18]田广生,区柏森,陈罕立,近地层氮氧化物和臭氧的区域分布研究,环境科学研究,1995,8(6):1-6
    [19]张远航,李金龙,中国城市光化学烟雾污染研究,北京大学学报:自然科学版,1998,34(2):392-400
    [20]齐立文,王文兴,我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析,环境科学研究,1995,8(1):12-20
    [21] Linberg S E, Turner R R, Meyer T P, Talyor G E, et al., Atmospheric concentrations and deposition of mercury to a deciduous forests at Walker Branch Watershed, Tennessee USA, Water Air Soil Pollut, 1991, 56: 577-594
    [22] Beilke S, Elshout A J, Acid deposition: Commission of the European Communities, Springer, 1983, 40
    [23]曹磊,全球十大环境问题,环境科学,1995,16(4):86-88
    [24]李晓文,宋健男(译),吴景华(校),国外环境科学技术,1994,2:27
    [25]王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社,1999,20
    [26]吴咏,张尚娇,国外的汽车排放法规,汽车科技,2001,1:31-35
    [27]欧洲汽车尾气排放标准与环保,天津汽车,2003,4:29-31
    [28] Kummer J T, Use of noble metals in automobile exhaust catalysts, J. Phys. Chem., 1986, 90(20): 4747-4752
    [29] Shelf M, Graham G W, Why rhodium in automobile three-way catalysts, Catal. Rev.-Sci. Eng., 1994, 36(3): 433-457
    [30] Jr J B, Duprez D, Steam effects in three-way catalysis, Appl. Catal. B, 1994, 4(2-3): 105-140
    [31] Matsumoto Sh. Recent advances in automobile exhaust catalysts, Catal. Today, 2004, 90(3-4): 183-190
    [32] Ohtsuka H, Tabata T. Poles of palladium and platinum in the selective catalyatic reduction of NOx on palladium-platinum-loaded sulfated zirconia, Appl. Catal. B, 2001, 29(3): 177-183
    [33] Liotta L F, Deganello G. Influence of barium and cerium oxides cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion, Appl. Catal. A, 2002, 229(1-2): 217-227
    [34] Iwamoto M, Yahiro H, Mizuno N, et al. Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites, J. Phys. Chem., 1992, 96(23): 9360-9366
    [35] Hoost T E, Laframboise K A, Otto K. Co-adsorption of propene and nitrogen oxides on Cu-ZSM-5: an FTIR study, Appl. Catal. B., 1995, 7(1-2): 79-93
    [36] Amirnazmi A, Boudart M. Decomposition of nitric oxide on platinum, J. Catal., 1975, 39(3): 383-394
    [37] Iwamoto M, Hamada H. Removal of nitrogen monoxide from exhasust gases through novel catalytic processes, Catal. Today, 1991, 10(1): 57-71
    [38] Iwamoto M, Yahiro H, Mine Y. Excessively copper ion-exchanged ZSM-5 zeolites as highly-active catalysts for direct decomposition of nitrogen monoxide, Chem. Lett., 1989, 2: 213-216
    [39] Iwamoto M, Yahiro H, Torikai Y. Novel preparation method of highly copper ion-exchanged ZSM-5 zeolites and their catalytic activities for NO decomposition, Chem. Lett., 1990, 11: 1967-1970
    [40] Iwamoto M, Yahiro H, Shundo S, et al. Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 Zeolite, Appl. Catal., 1991, 69(1): L15-L19
    [41] Tofan C, Klvana D, Kirchnerova J. Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO2, H2O and CH4, Appl. Catal. B, 2002, 36(4): 311-323
    [42] Ishihara T, Ando M, Sada K, et al. Direct decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 perovskite oxide, J. Catal., 2003, 220(1): 104-114
    [43] Ishihara T, Anami K, Takiishi K, et al. Direct decomposition of NO on Cu-doped La perovskite oxide under coexistence of O2, H2O and SO2, Chem. Lett., 2003, 32: 1176-1177
    [44] Liu Z M, Hao J M, Fu L X, et al. Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen, Appl. Catal. B, 2003, 44(4): 355-370
    [45] Goralski C T, Schneider W F. Analysis of the thermodynamic feasibility of NOx decomposition catalysis to meet next generation vechicle NOx emissions standards, Appl. Catal. B, 2002, 37(4): 263-277
    [46] Bond G C, Tahir S F. Vanadium oxide monolayer catalyst preparation, characterization and catalytic activity, Appl. Catal., 1991, 71(1): 1-31
    [47] Nakajima, Takeuchi F, Matsuda M, et al. Catalytic process for reducing nitrogen oxides to nitrogen, US Patent, 4085193, 1978-4-18
    [48] Nakajima F, Hamada I. The state-of-the-art technology of NOx control, Catal. Today, 1996, 29(1-4): 109-115
    [49] Nakajima F. Air pollution control with catalysis-past, present and future, Catal. Today, 1991, 10(1): 1-20
    [50] Lietti L, Nova I, Ramis G, et al. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts, J. Catal., 1999, 187(2): 419-435
    [51] Iwamoto M, Yahiro H, Yu-u Y, et al. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over cuppoe ion-exchanged zeolites. Shokubai(Catalyst), 1990, 32: 430-433 - 105 -
    [52] Iwamoto M. Proc. of meeting of catalytic technology for removal of nitrogen monoxide, Tokyo. Jpn., 1990, 17
    [53] Held W, Koening A, Richter T, et al. Catalytic NOx reduction in net oxidizing exhaust gas, SAE paper, 1990, 900496
    [54] Li Y J, Armor J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen, Appl. Catal. B, 1992, 1(4): L31-L40
    [55] Campa M C, Rossi S D, Ferraris G, et al. Catalytic activity of Co-ZSM-5 for the abatement of NOx with methane in the presence of oxygen, Appl. Catal. B, 1996, 8(3): 315-331
    [56] Li Y J, Armor J N. Selective catalytic reduction of NO with methane on gallium catalysts, J. Catal., 1994, 145(1): 1-9
    [57] Nishizaka Y, Misono M. Catalytic reduction of nitrogen monoxide by methane over palladium-loaded zeolites in the presence of oxygen, Chem. Lett., 1993, 1295
    [58] Zhou X J, Zhang T, Xu Zh Sh, et al. Selective catalytic reduction of nitrogen monoxide with methane over impregnated In/HZSM-5 in the presence of excess oxygen, Catal. Lett., 1996, 40(1/2): 35-38
    [59] Zhou X J, Xu Zh Sh, Zhang T, et al. The chemical status of indium in indium impregnated HZSM-5 catalysts for the SCR of NO with CH4, J. Mol. Catal. A, 1997, 122(2-3): 125-129
    [60] Wang X P, Yu Sh Sh, Yang H L, et al. Selective catalystic reduction of NO by C2H2 over MoO3/HZSM-5, Appl. Catal. B, 2007, 71(3-4): 246-253
    [61] Iwamoto M, Yahiro H, Shundo S, et al. Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite, Appl. Catal., 1991, 69(2): L15-L19
    [62] Sato S, Yu Y, Yahiro H, et al. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines, Appl. Catal., 1991, 70(1): L1-L5
    [63] Li Y J, Armor J N. Selective catalytic reduction of NOx with methane over metal exchange zeolite, Appl. Catal. B, 1993, 2(2-3): 239-256
    [64] Chen H Y, Sachtler W M H. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catal. Today, 1998, 42(1-2): 73-83
    [65] Chajar Z, Denton P, Berthet de Bernard F, Primet M, Praliaud H. Influence of silver on the catalytic activity of Cu-ZSM-5 for NO SCR by propane. Effect of the presence of water and hydrothermal agings, Catal. Lett., 1998, 55(3/4): 217-222
    [66] Tabata M, Tsuchida H, Miyamoto K, et al. Reduction of NOx in diesel exhaust with methanol over alumina catalyst. Appl. Catal. B, 1995, 6(2): 169-183
    [67] Ohno T, Hatayama F, Toda Y, et al. Fourier transform infrared studies of reduction of nitric oxide by ethylene over V2O5 layered on ZrO2, Appl. Catal. B, 1994, 5(1-2): 89-101
    [68] Zhang X K, Walters A B, Vannice M A. NOx decomposition and reduction by methane over La2O3, Appl. Catal. B, 1994, 4(2-3): 237-256
    [69] Zhang X K, Walters A B, Vannice M A. NO adsorption, decomposition, and reduction by methane over rare earth oxides, J. Catal., 1995, 155(2): 290-302
    [70] Fokema M D, Ying J Y. The selective catalytic reduction of nitric oxide with methane over scandium oxide, yttrium oxide and lanthanum oxide, Appl. Catal. B, 1998, 18(1-2): 71-77
    [71] Hamada H, Kintaichi Y, Sasaki M, et al. Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane, Appl. Catal., 1991, 75: L1-L8
    [72] Kintaichi Y, Hamada H, Tabata M, et al. Selective reduction of NO with propene over In2O3-Al2O3, Catal. Lett., 1990, 6(2): 239-245
    [73] Bethke K A, Alt D, Kung M C. NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides, Catal. Lett., 1994, 25(1-2): 37-48
    [74] Inaba M, Kintaichi Y, Hamada H. Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propane, Catal. Lett., 1996, 36(3-4): 223-227
    [75] Burch R, Millington P J. Selective reduction of NOx by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts, Catal. Today, 1996, 29(1-4): 37-42
    [76] Nakatsuji T. Studies on the structural evolution of highly active Ir-based catalysts for the selective reduction of NO with reductants in oxidizing conditions, Appl. Catal. B, 2000, 25(2-3): 163-179
    [77] W?gerbauer C, Maciejewski M, Baiker A, et al. Structural properties and catalytic behaviour of iridium black in the selective reduction of NO by hydrocarbons, J. Catal., 2001, 201(1): 113-127
    [78] Skolundh M, L?wendahl L, Jansson K, et al. Characterization and catalytic properties of perovskites with nominal compositions La1-xSrxAl1-2yCuyRuyO3, Appl. Catal. B, 1994, 3(4): 259-274
    [79] Teraoka Y, Nakano K, Kagawa S, et al. Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B, 1995, 5: L181-185
    [80] Bradow R, Jovanovi? D, Petrovi? S, et al. Ruthenium perovskite catalysts for lean NOx automotive emission control, Ind. Eng. Chem. Res., 1995, 34(6): 1929-1932
    [81] Feeley J S, Deeba M, Farrauto R J, et al. Lean NOx reduction with hydrocarbons over Ga/S-ZrOx and S-GaZr/Zeolite catalysts, Appl. Catal. B, 1995, 6(1):79-96
    [82] Meunier F C, Breen J P, Zuzaniuk V, et al. Mechanistic aspects of selective reduction of NO by propene over alumina and silver-alumina catalysts, J. Catal., 1999, 187(2): 493-505
    [83] Seker E, Gulari E. Activity and N2 selectivity of sol-gel prepared Pt/alumina catalysts for selective NOx reduction, J. Catal., 2000, 194(1): 4-13
    [84] Walker A P. Mechanistic studies of the selective reduction of NOx over Cu/ZSM-5 and related systems, Catal. Today, 1995, 26: 107-128
    [85] Xin M, Hwang I C, Woo S I. In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5, Catal. Today, 1997, 38(2): 187-192
    [86] Meunier F C, Zuzaniuk V, Breen J P, et al. Mechanistic difference in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS study, Catal. Today, 2000, 59(3-4): 287-304
    [87] Sun D C, Johnson Matthey Internal report, 1991, No.91A2-9.0
    [88] B?gner W, Kr?mer M, Krutzsch B, et al. Removal of nitrogen oxides from the exhaust of a lean-tune gasoline engine, 1995, Appl. Catal. B, 7(1-2): 153-171.
    [89] Takahashi N, Shinjoh H, Iijima T, et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, Catal. Today, 1996, 27(1-2): 63-69
    [90] Matsumoto Sh. DeNOx catalyst for automotive lean-burn engine, Catal. Today, 1996, 29(1-4): 43-45
    [91] Shinjoh H, Takahashi N, Yokota K, et al. Effect of periodic operation over Pt catalyst in simulated oxidizing exhaust gas, Appl. Catal. B, 1998, 15(3-4): 189-201
    [92] Ohtsuka H, Tabata T. Roles of palladium and platinum in the selective catalytic reduction of nitrogen oxides by methane on palladium-platinum-loaded sulfated zirconia, Appl. Catal. B, 2001, 29(3): 177-183
    [93] Ohtsuka H. The selective catalytic reduction of nitrogen oxides by methane on noble metal-loaded sulfated zirconia, Appl. Catal. B, 2001, 33(4): 325-333
    [94] Amberntsson A, Fridell E, Skoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur torelance of a barium based NOx storage catalyst, Appl. Catal. B, 2003, 46(3): 429-439
    [95] Salasc S, Skoglundh M, Fridell E. A comparison between Pt and Pd in NOx storage catalysts, Appl. Catal. B, 2002, 36(2): 145-160
    [96] Kobayashi T, Yamada T, Kayano K. Study of NOx trap reaction by thermodymic calculation, SAE paper, 1997, 970745
    [97] Huang H, Long R, Yang R. The promoting role of noble metals on NOx storage catalyst and mechanistic study of NOx storage under lean-burn conditions, Energy & Fuel, 2001, 15(1): 205-213
    [98] Olsson L, Persson H, Fridell E, et al. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3, J. Phys. Chem. B, 2001, 105(29): 6895-6906
    [99] Olsson L, Fridell E. The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ? NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3, J. Catal., 2002, 210(2): 340-353
    [100] Hodjati S, Bernhardt P, Petit C, et al. Removal of NOx: PartⅠ. Sorption/desorption processes on barium aluminate, Appl. Catal. B, 1998, 19(3-4): 209-219
    [101] Hodjati S, Petit C, Ptichon V, et al. Absorption/desorption of NOx process on perovskites: Nature and stability of the species formed on BaSnO3, Appl. Catal. B, 2000, 27(2): 117-126
    [102] Despres J, Koebel M, Kr?cher O, et al. Storage of NO2 on BaO/TiO2 and the influence of NO, Appl. Catal. B, 2003, 43(4): 389-395
    [103] Fridell E, Persson H, Westerberg B, et al. The mechanism for NOx storage, Catal. Lett., 2000, 66(1/2): 71-74
    [104] Fridell E, Skoglundh M, Westerberg B, et al. NOx storage in Barium-containing catalysts, J. Catal., 1999, 183(2): 196-209
    [105] Rodrigues F, Juste L, Potvin C, et al. NOx storage on barium-containing three-way catalyst in the presence of CO2, Catal. Lett., 2002, 72(1-2): 59-64
    [106] Mahzoul H, Brilhac J F, Gilot P. Experimental and mechanistic study of NOx adsorption over NOx trap catalysts, Appl. Catal. B, 1999, 20(1): 47-55
    [107] James D, FourréE, Ishii M, et al. Catalytic decomposition/regeneration of Pt/Ba(NO3)2 catalysts: NOx storage and reduction, Appl. Catal. B, 2003, 45(2): 147-159
    [108] Liotta L F, Macaluso A, Arena G E, et al. A study of the behaviour of Pt supported on CeO2-ZrO2/Al2O3-BaO as NOx storage-reduction catalyst for the treatment of lean burn engine emissions, Catal. Today, 2002, 75(1-4): 439-449
    [109] Westerberg B, Fridell E. A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system, J. Mol. Catal. A, 2001, 165(1-2): 249-263
    [110] Li X G, Meng M, Lin P Y, et al. A study on the properties and mechanisms for NOx storage over Pt/BaAl2O4-Al2O3 catalyst, Top. Catal., 2003, 22(1-2): 111-115
    [111] Luo J Y, Meng M, Li X G, et al. Highly thermo-stable mesoporous catalyst Pt/BaCO3-Al2O3 used for efficient NOx storage and desulfation: Comparison with conventional impregnated catalyst, Microporous Mesoporous Mater., doi: 10.1016/ j.micromeso.2007.11.025
    [112] Luo J Y, Meng M, Zha Y Q, et al. A comparative study of Pt/Ba/Al2O3 and NSR catalysts: New insights into the interaction of Pt-Ba and the function of Fe, Appl. Catal. B, 2008, 78(1-2): 38-52
    [113] Fang H, Wang J, Yu R, et al. A fundamental consideration of NOx adsorber technology for DI diesel Application, SAE Paper, 2002, 2002-01-2889
    [114] Dou D, Balland, J. Impact of alkali metals on the performance and mechanical properties of NOx adsorber catalysts, SAE Paper, 2002, 2002-01-0734
    [115] Iwachido K, Tanada H, Watanabe T, et al. Development of the NOx adsorber catalyst for use with high-temperature condition, SAE Paper, 2001, 2001-01-1298
    [116] Han P H, Lee Y K, Han S M, et al. NOx storage and reduction catalysts for automotive lean-burn engines: Effect of parameters and storage materials on NOx conversion, Top. Catal., 2001, 16/17(1-4): 165-170
    [117] Area G E, Bianchini A, Centi G, et al. Transient surface processes of storage and conversion of NOx speices on Pt-Me/Al2O3 catalysts (Me = Ba, Ce, Cu), Top. Catal., 2001, 16/17(1-4): 157-164
    [118] Coronada J, Anderson J. FTIR study of the interaction of NO2 and propene with Pt/BaCl2/SiO2, J. Mol. Catal. A, 1999, 138(1): 83-96
    [119] Graham G W, Jen H W, Chun W, et al. Coarsening of Pt particles in a model NOx trap, Catal. Lett., 2004, 93(3/4): 129-134
    [120] Yamamoto K, Kikuchi R, Takeguchi T, et al. Development of NO sorbents tolerant to sulfur oxides, J. Catal., 2006, 238(2): 449-457
    [121] Hodjati S, Vaezzadeh K, Petit C, et al. Absorption/desorption of NOx process on perovskite: performances to remove NOx from a lean exhaust gas, Appl. Catal. B, 2000, 26(1): 5-16
    [122] Fanson P, Horton M, Delgass W, et al. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts, Appl. Catal. B, 2003, 46(2): 393-413
    [123] Yamazaki K, Suzuki T, Takahashi N, et al. Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing condition in the presence of SO2, Appl. Catal. B, 2001, 30(3-4): 459-468
    [124] Fornasari G, Trifiro F, Vaccari A, et al. Noval low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds, Catal. Today, 2002, 75(1-4): 421-429
    [125] Takeuchi M, Matsumoto S. NOx storage-reduction catalysts for gasoline engine, NOx storage-reduction catalysts for gasoline engines, Top. Catal., 2004, 28(1-4): 151-156
    [126]陈加福,孟明,林培琰等,BaFeO3和BaCeO3钙钛矿型氧化物的储氮性能,催化学报,2003,24(6):419-422
    [127] Yu J J, Jiang zh, Zhu L, et al. Adsorption/Desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al hyfrotalcite-like compounds, J. Phys. Chem. B, 2006, 110(9): 4291-4300
    [128] Yu J J, Tao Y X, Liu Ch Ch, et al. Novel NO trapping catalysts derived from Co-Mg/X-Al (X=Fe、Mn、Zr、La) hydrotalcite-like compounds, Environ. Sci. Technol., 2007, 41(4): 1399-1404
    [129] Prinetto F, Ghiotti G, Nova I, et al. FT-IR and TPD investigation of the NOx storage properties of BaO/Al2O3 and Pt-BaO/Al2O3 catalysts, J. Phys. Chem. B, 2001, 105(51): 12732-12745
    [130] Sedlmair C, Seshan K, Jentys A, et al. Elementary steps of NOx adsorption and surface reaction on a commercial storage-reduction catalyst, J. Catal., 2003, 214(2): 308-316
    [131] Ito K, Kakino Sh, Ikeue K, et al. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning, Appl. Catal. B, 2007, 74(1-2): 137-143
    [132] Piacentini M, Maciejewski, Baiker A. NOx storage-reduction behavior of Pt-Ba/MO2 (MO2 = SiO2, CeO2, ZrO2) catalysts, Appl. Catal. B, 2006, 72(1-2): 105-117
    [133] Lietti L, Forzatti P, Nova I, et al. NOx storage reduction over Pt-Ba/γ-Al2O3 catalyst, J. Catal., 2001, 204(1): 175-191
    [134] Nova I, Castoldi L, Lietti L, et al. On the dynamic behavior of“NOx-storage/reduction”Pt-Ba/Al2O3 catalyst, Catal. Today, 2002, 75(1-4): 431-437
    [135] Erkfeldt S, Jobson E, Larsson M. The effect of carbon monoxide and hydrocarbons on NOx storage at low temperature, Top. Catal., 2001, 16/17(1-4): 127-131
    [136] Amberntsson A, Persson H, Engstrom P, et al. NOx release from a noble metal/BaO catalyst: dependence on gas composition, Appl. Catal. B, 2001, 31(1): 27-39
    [137] Eguchi K, Hayashi T. Reversible sorption-desorption of NOx by mixed oxides under various atmosphere, Catal. Today, 1998, 45(1-4): 109-115
    [138] Abdulhamid H, Fridell E, Skoglundh M. Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NOx in a Pt/BaO/Al2O3 model catalyst, Top. Catal., 2004, 30/31(1): 161-168
    [139] Limousy L, Mahzoul H, Brilhac J F, et al. SO2 sorption on fresh and aged SOx traps, Appl. Catal. B, 2003, 42(3): 237-249
    [140] Isabella N, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/alumina catalyst: FT-IR and pulse experiments, J. Catal., 2004, 222(2): 377-388
    [141] Sedlmair Ch, Seshan K, Jentys A, et al. Elementary steps of NOx adsorption and surface reaction on a commercial storage-reduction catalyst, J. Catal., 2003, 214(2): 308-316
    [142] Epling W S, Parks J E, Campbell G C, et al. Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts, Catal. Today, 2004, 96(1-2): 21-30
    [143] Olsson L, Fridell E, Skoglundh M, et al. Mean field modeling of NOx storage on Pt/BaO/Al2O3, Catal. Today, 2002, 73(3-4): 263-270
    [144] Matsumoto Sh, Ikeda Y, Suzuki H, et al. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, Appl. Catal. B, 2000, 25(2-3): 115-124
    [145] Hachisuka I, Hirata H, Ikeda Y, et al. Deactivation mechanism of NOx storage-reduction catalyst and improvement of its performance, SAE Paper, 2000, 2000-01-1196
    [146] Sedlmair Ch, Seshan K, Jentys A, et al. Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide, Catal. Today, 2002, 75(1-4): 413-419
    [147] Breen J P, Marella M, Pistarino C, et al. Sulfur-tolerant NOx storage traps: an infrared and thermodynamic study of the reactions of alkali and alkaline-earth metals sulfates, Catal. Lett., 2002, 80(3-4): 123-128
    [148] Miyoshi N, Matsumoto S. NOx storage-reduction catalyst (NSR catalyst) for automotive engines: sulfur poisoning mechanism and improvement of catalyst performance, Stud. Surf. Sci. Catal., 1999, 121: 245-250
    [149] Yoshida K, Makino S, Sumiya S, et al. Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust, SAE paper, 1989, 892046
    [150] Shangguan W F, Teraoka Y, Kagawa S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate, Appl. Catal. B, 1998, 16(2): 149-154
    [151] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B, 1996, 8(2): 217-227
    [152] Fino D, Fino P, Saracco G, et al. Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered peroskites for the combined removal of diesel particulate and NOx, Appl. Catal. B, 2003, 43(3): 243-259
    [153] Liu J, Zhao Zh, Xu Ch M, et al. The structures of VOx/MOx and alkali-VOx/MOx catalysts and their catalytic performances for soot combustion, Catalysis Today, 2006, 118(3-4): 315-322
    [154] Liu J, Zhao Z, Xu Ch M, et al. Simultaneous removal of NOx and diesel soot particulates over nanometric La2-xKxCuO4 complex oxide catalysts, Catal. Today, 2007, 119(1-4): 267-272
    [155] Wang H, Zhao Z, Xu C M, et al. Nanometric La1-xKxMnO3 perovskite-type oxides-highly active catalysts for the combustion of diesel soot particle under loose contact conditions, Catal. Lett., 2005, 102: 251-256
    [156] Machida M, Ikeda S, Kurogi D, et al. Low temperature catalytic NOx-H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen, Appl. Catal. B, 2001, 35(2): 107-116
    [157] Mariscal R, Rojas S, Gómez-Cortés A, et al. Support effect in Pt/TiO2-ZrO2 catalysts for NO reduction with CH4, Catal. Today, 2002, 75(1-4): 385-391
    [158] Kintaichi Y, Haneda M, Inaba M, et al. Catalytic performance of indium-supported TiO2-ZrO2 for the selective reduction of nitrogen monoxide in the presence of oxygen, Catal. Lett., 1997, 48(1-2): 121-127
    [159] Haneda M, Kintaichi Y, Inaba M, et al. Additive effect of silver on the catalytic activity of TiO2-ZrO2 for the selective reduction of NO with propene, 2-propanol, and acetone, Bull. Chem. Soc. Jpn., 1997, 70(2): 499-508
    [160] Haneda M, Kintaichi Y, Inaba M, et al. Catalytic performance of silver- and indium-supported TiO2-ZrO2 binary oxide for the selective reduction of nitrogen monoxide with propene, Appl. Surf. Sci., 1997, 121/122: 391-395
    [161] Reddy B M, Khan A. Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports, Catal. Rev.- Sci. Eng., 2005, 47: 257-296
    [162] Takahashi N, Suda A, Hachisuka I, et al. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides, Appl. Catal. B, 2006, 72(1-2): 187-195
    [163] Reddy B M, Ganesh J, Chowdbury B. Design of stable and reactive vanadium oxide catalysts supported on binary oxides, Catal. Today, 1999, 49(1-3): 115-121
    [164] Daly F P, Ando H, Schmitt J L, et al. Hydrodesulfurization over a TiO2-ZrO2-supported CoO-MoO3 catalyst, J. Catal., 1987, 108(2): 401-408
    [165] Wang I, Chang W F, Shiau R J, et al. Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts:Ⅰ. Effect of composition on surface properties and catalytic activities, J. Catal., 1983, 83(2): 428-436
    [166] Lahousse C, Aboulayt A, MaugéF, et al. Acidic and basic properties of zirconia-alumina and zirconia-titania mixed oxides, J. Mol. Catal. A, 1993, 84(3): 283-297
    [167] Maity S K, Rana M S, Bej S K, et al. TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst, Catal. Lett., 2001, 72(1-2): 115-119
    [168] Das D, Mishra H K, Parida K M, et al. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides, J. Mol. Catal. A, 2002, 189(2): 271-282
    [169] Ryndin Y A, Hicks R F, Bell A T, et al. Effects of metal-support interactions on the synthesis of methanol over palladium, J. Catal., 1981, 70(2): 287-297
    [170] Hattori H, Itoh M, Tanabe K. The nature of active sites on TiO2 and TiO2-SiO2 for the isomerization of butanes, J. Catal., 1975, 38(1-3): 172-178
    [171] Tanabe K, Sumiyoshi T, Shibata K, et al. A new hypothesis regarding the surface acidity of binary metal oxides, Bull. Chem. Soc. Jpn., 1974, 47(5): 1064-1066
    [172] Wu J C, Chung C S, Ay C L, et al. Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts, J. Catal., 1984, 87(1): 98-107
    [173] Sing K S W, Everett D H, Haul R A, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure. Appl. Chem., 1985, 57(4): 603-619
    [174] Axelsson O, Shao Y, Pau J, et al. A theoretical and experimental study of reaction pathways for the interaction of CO2 with alkali-modified surfaces, J. Phys. Chem., 1995, 99(18): 7028-7035
    [175] Toops T J, Smith D B, Epling W S, et al. Quantified NOx adsorption on Pt/K/gamma-Al2O3 and the effects of CO2 and H2O, Appl. Catal. B, 2005, 58(3-4): 255-264
    [176] Krupay B W, Amenomiya Y. Alkali-promoted alumina catalysts:Ⅰ. Chemisorption and oxygen exchange of carbon monoxide and carbon dioxide on potassium-promoted alumina catalysts, J. Catal., 1981, 67(2): 362-370
    [177] Kantschewa M, Albano E V, Etrl G, et al. Infrared and X-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3, Appl. Catal., 1983, 8: 71-84
    [178] Amenomiya Y, Pleizier G. Alkali-promoted alumina catalysts:Ⅱ.Water-gas shift reaction, J. Catal., 1982, 76(2): 345-353
    [179] Stork W H J, Pott G T. Studies of compound formation on alkali/γ-aluminum oxide catalyst systems using chromium, iron, and manganese luminescence, 1974, J. Phys. Chem., 78(24): 2496-2506
    [180] Iordan A, Zaki M I, Kappenstein C. Interfacial chemistry in the preparation of catalytic potassium-modified aluminas, J. Chem. Soc. Faraday. Trans., 1993, 89(14): 2527-2536
    [181] Shen J, Cortright R D, Chen Y, et al. Microcalorimetric and infrared spectroscopic studies ofγ-Al2O3 modified by basic metal oxides, J. Phys. Chem., 1994, 98(33): 8067-8073
    [182] Hadjiivanov K, Bushev V, Kantcheva M, et al. Infrared spectroscopy study of the species arising during NO2 adsorption on TiO2 (anatase), Langmuir, 1994, 10(2): 464-471
    [183] Lamontagne B, Semond F, Roy D. K overlayer oxidation studied by XPS: the effects of the adsorption and oxidation conditions, Surf. Sci., 1995, 327: 371-378
    [184] Nagase K, Itoh M, Watanabe A. Thermodynamics and kinetics of steam splitting over a potassium aluminosilicate electrolyte, J. Therm. Anal. Calorim., 2002, 70(2): 329-336
    [185]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社, 1992. 550
    [186] Sedlmair Ch, Seshan K, Jentys A, et al. Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide, Catal Today, 2002, 75(1-4): 413-419
    [187] Abdulhamid H, Fridell E, Dawody J, et al. In situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions, J. Catal., 2006, 241(1): 200-210
    [188] Fanson P T, Horton M R, Delgass W N, et al. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts, Appl. Catal. B, 2003, 46(2): 393-413
    [189] Mahzoul H, Limousy L, Brilhac J, et al. Experimental study of SO2 adsorption on barium-based NOx adsorbers. J. Anal. Appl. Pyrolysis, 2000, 56(2): 179-183
    [190] Waqif M, Bazin P, Saur O, et al. Study of ceria sulfation, Appl. Catal. B, 1997, 11(2): 193-205
    [191] Castoldi L, Nova I, Lietti L, et al. Study of the effect of Ba loading for catalytic activity of Pt-Ba/Al2O3 model catalysts, Catal. Today, 2004, 96(1-2): 43-52
    [192] Nova I, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments, J. Catal., 2004, 222(2): 377-388
    [193] Laurent F, Pope C J, Mahzoul H, et al. Modelling of NOx adsorption over NOx adsorbers, Chem. Eng. Sci., 2003, 58(9): 1793-1803
    [194] Hess C, Lunsford J H. NO2 storage and reduction in barium oxide supported on magnesium oxide studied by in situ Raman spectroscopy, J. Phys. Chem. B, 2003, 107(9): 1982-1987
    [195] Szailer T, Kwak J H, Kim D H, et al. Effects of Ba loading and calciantion temperature on BaAl2O4 formation for BaO/Al2O3 NOx storage and reduction catalysts, Catal. Today, 2006, 114(1): 86-93
    [196] Szanyi J, Kwak J H, Kim D H, et al. NO2 adsorption on BaO/Al2O3: The nature of nitrate species, J. Phys. Chem. B, 2005, 109(1): 27-29
    [197] Wang J A, Li C L. SO2 adsorption and thermal stability and reductivity and reductivity of sulfates formed on the magnesium-aluminate spinel sulfur-transfer catalyst, Appl. Surf. Sci., 2000, 161(3-4): 406-416
    [198] Su Y, Amiridis M D. In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts, Catal. Today, 2004, 96(1-2): 31-41
    [199] Olsson L, Fridell E, Skoglundh M, et al. Mean field modeling of NOx storage on Pt/BaO/Al2O3, Catal. Today, 2002, 73(3-4): 263-270
    [200] Schmitz P J, Baird R J. NO and NO2 adsorption on barium oxide: model study of the trapping stage of NOx conversion via lean NOx traps, J. Phys. Chem. B, 2002, 106(16): 4172-4180
    [201] Cant N W, Patterson M J. The storage of nitrogen oxides on alumina-supported barium oxide, Catal. Today, 2002, 73(3-4): 271-278
    [202] Hadjiivanov K I. Identification of neutral and charged NxOy surface species by IR spectroscopy, Catal. Rev.-Sci. Eng., 2000, 42(1&2): 71-144
    [203] Takahashi N, Yamazaki K, Sobukawa H, et al. Influence of NOx species and residual CO and C3H6 on NOx storage performance of NSR catalysts at low temperature, J. Chem. Eng. Japan, 2006, 39(4): 437-443

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700