用户名: 密码: 验证码:
过渡金属氧化物—稀有气体络合物的红外光谱及理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用低温基质隔离红外光谱方法研究了一系列过渡金属氧化物-稀有气体络合物。这些过渡金属氧化物-稀有气体络合物是通过将激光溅射过渡金属与O_2反应或者直接溅射金属氧化物固体靶产生的氧化物分子冷冻沉积在低温稀有气体基质中获得的。在稀有气体基质中,通过过渡金属氧化物M-O伸缩振动频率的裂分和位移,结合~(18)O_2同位素取代实验和量子化学理论计算对产生的过渡金属氧化物-稀有气体络合物进行了归属与表征,并解释了过渡金属氧化物与稀有气体原子间的成键作用机理和规律。
     本论文制备与表征的过渡金属氧化物-稀有气体络合物包括:(1)ScO~+和YO~+与多个稀有气体原子形成的[ScO(Ng)_5]~+(Ng=Ar,Kr,Xe),[YO(Ng)_6]~+(Ng=Ar,Kr)和[YO(Xe)_5]~+络合物;(2)3d过渡金属中性一氧化物分子与一个稀有气体原子形成直线型NgMO(M=Cr,Mn,Fe,Co,Ni;Ng=Ar,Kr,Xe)络合物。(3)第VB族金属二氧化物与两个稀有气体原子形成的MO_2(Ng)_2(M=V,Nb,Ta;Ng=Ar,Kr,Xe)络合物,其四氧化物与一个稀有气体原子形成的MO_4(Ng)(M=V,Nb,Ta;Ng=Ar,Kr,Xe)络合物。(4)Xe与(η~2-O_2)_2CrO_2超氧化物分子反应,生成(η~1-OO)(η~2-O_2)CrO_2(Xe)络合物。这些过渡金属氧化物-稀有气体络合物可以看成是稀有气体原子与过渡金属氧化物之间形成的配位络合物,其中稀有气体原子作为配体,过渡金属作为配位中心。过渡金属氧化物与稀有气体原子间除了静电相互作用以外,通常还包含路易斯酸碱相互作用,即稀有气体原子作为路易斯碱可以提供电子(电子给予体)给金属氧化物中基于金属中心的空的或部分占据的分子轨道(电子接受体,路易斯酸)。按照过渡金属氧化物与稀有气体原子成键价轨道的对称性匹配,能量相近和最大重叠原则,很好地解释了过渡金属氧化物-稀有气体络合物的结构和成键强弱。
     根据分子轨道理论,3d过渡金属一氧化物参与与稀有气体原子形成络合物的主要是9σ,1δ和4π价轨道,其中9σ轨道是由金属原子的4s和3d_z~2形成的杂化轨道,1δ轨道主要由金属原子的3d轨道组成的非键轨道,4π轨道由金属的3dπ和O的2pπ原子轨道形成的反键分子轨道。ScO~+阳离子的9σ和1δ轨道是全空轨道,能量较低,与稀有气体原子的价p轨道能量较接近,可以与五个稀有气体原子配位形成[ScO(Ng)_5]~+(Ng=Ar,Kr,Xe)络合物。YO~+的σ非键空轨道与ScO~+的9σ轨道能量几乎相等,但是YO~+的非键δ轨道要比ScO~+的1δ轨道能量高,因此,YO~+参与成键的主要是球型σ轨道,由于Y比Sc的原子半径大,因此YO~+可以与六个Ar和Kr原子形成[YO(Ar)_6]~+和[YO(Kr)_6]~+络合物,而与五个Xe原子形成[YO(Xe)_5]~+络合物。对于3d过渡金属一氧化物中性分子,由于价轨道的能量比ScO~+正离子的要高,因此它们与稀有气体原子的成键能力比正离子弱。对于前过渡的ScO,TiO和VO分子,它们的9σ,1δ和4π价分子轨道能量很高,不能有效地与稀有气体原子形成络合物,而对于后过渡金属一氧化物则可以配位一个稀有气体原子形成直线型的NgMO(M=Cr,Mn,Fe,Co,Ni)络合物。类似地,第VB族过渡金属二氧化物可以配位两个稀有气体原子形成MO_2(Ng)_2(M=V,Nb,Ta)络合物,四氧化物可以配位一个稀有气体原子形成MO_4(Ng)(M=V,Nb,Ta)络合物。计算结果表明,稀有气体原子与正离子的结合能比与中性分子的结合能强;对于3d过渡金属一氧化物与稀有气体原子之间的结合能依CrO<MnO<FeO<CoO<NiO顺序增加;对于第VB族V,Nb,Ta金属二氧化物,依Ta<Nb<V顺序增加,而MO_2(Ng)_2>MO_4(Ng);对于相同的金属氧化物分子,依Ar<Kr<Xe顺序增加,这些计算结果表明在稀有气体基质中重稀有气体原子可以逐步取代络合物中的轻稀有气体原子。
     由于稀有气体原子的配位,影响了过渡金属氧化物M-O键的强弱,从而导致M-O伸缩振动频率发生位移。若稀有气体原子中的电子所给予的是金属氧化物的成键轨道,则紫移;若给予的是反键轨道,则红移,而且位移比较大;若给予的是非键轨道,则位移很小;配位的稀有气体原子个数越多,位移越大。研究结果显示,过渡金属氧化物振动频率位移的多少,与金属和稀有气体原子间结合的强弱并无必然联系,而与稀有气体原子的电子和过渡金属氧化物成键轨道的性质有着直接的关系。
Noble gas-transition metal oxide complexes have been investigated by matrixisolation infrared spectroscopy and theoretical calculations. The complexes wereprepared by co-deposition of transition metal oxides with noble gas atoms at 12 K,and were characterized on the basis of frequency shifts via noble gas doping and ~(18)O_2isotopic substitution, as well as quantum chemical calculations. The metal oxideswere generated either via the reactions of laser-evaporated metal atoms with oxygenor by laser-evaporation of bulk metal oxide targets. The bonding mechanism andperiodic trends in these transition metal noble gas complexes were discussed.
     The experimentally characterized noble gas-transition-metal complexes include:(1) The ScO~+ cation coordinates five noble gas atoms in forming the[ScO(Ng)_5]~+(Ng=Ar, Kr, Xe) complexes, and YO~+ cation coordinates six Ar or Kr andfive Xe atoms in forming the [YO(Ng)_6]~+ (Ng=Ar, Kr) and [YO(Xe)_5] complexes innoble gas matrixes. (2) The 3d transition metal monoxides coordinate one noble gasatom in forming the linear NgMO(M=Cr, Mn, Fe, Co, Ni; Ng=Ar, Kr, Xe) complexes.(3) The group VB metal oxides MO_2 and MO_4 coordinate two and one noble gasatoms in forming the MO_2(Ng)_2 and MO_4(Ng)(M=V, Nb, Ta; Ng=Ar, Kr, Xe)complexes. (4) A chromium(V1) oxo-superoxide complex (η~2-O_2)_2CrO_2 reacts withXe in forming the chromium(Ⅵ) oxo-peroxide-Xe complex. The bonding ofabove-characterized noble gas-transition metal oxide complexes involves the Lewisacid-base interactions, in which electron density of the Ng lone pair is donated intothe vacant or partially occupied MO's of the transition metal oxides.
     According to molecular orbital theory, the main bonding orbitals of 3d transitionmetal monoxides MO are 9σ, 1δand 4πmolecular orbitals. The 9σis primarily anonbonding hybrid of the metal 4s and 3d_z~2 orbitals that is directed away from the Oatom; The 1δmolecular orbital is largely 3d orbital of metal that is mainlynonbonding; the doubly degenerated 4πmolecular orbitals are the combination of themetal 3dπand O 2pπatomic orbitals, which are M-O antibonding in character. The 9σand 1δorbitals of ScO~+ are the primary acceptor orbitals for donation from noble gasatoms, which lead to the formation of the [ScO(Ng)_5]~+ (Ng=Ar, Kr, Xe) complexes.The yttrium-based nonbonding LUMOσorbital of YO~+ is virtually at the same energy level as the 9σLUMO of ScO~+, but the LUMO+1 nonbondingδorbital ofYO~+ is significantly higher in energy than that of the 1δorbital of ScO~+. Hence,donation from the valence p orbitals of noble gas atoms onto theσLUMO of YO~+dominates the bonding interactions, which results in the formation of [YO(Ar)_6]~+,[YO(Kr)_6]~+ and [YO(Xe)_5]~+ complexes. The interaction between 3d transition metalmonoxide neutrals and noble gas atoms is less efficient. It was found that earlytransition metal monoxides ScO, TiO and VO do not form noble gas complexes, whilethe late transition metal monoxides coordinate one noble gas atom in forming thelinear NgMO(M=Cr, Mn, Fe, Co, Ni) complexes. Similarly, the group VB metaldioxides are able to coordinate two noble gas atoms to form the MO_2(Ng)_2 (M=V,Nb, Ta) complexes, while MO_4 form MO_4(Ng) (M=V, Nb, Ta) complexes with onenoble gas atom. The calculated results show that the binding energies of the NgMOcomplexes increase in the order of CrO<MnO<FeO<CoO<NiO, those of theMO_2(Ng)_2 (M=V, Nb, Ta) complexes increase in the order of Ta<Nb<V, andMO_2(Ng)_2>MO_4(Ng). The results show that the heavier noble gas atoms can replacethe lighter noble gas atoms in coordination sphere of the complexes in noble gasmatrixes, as experimentally observed.
     The coordination of noble gas atoms leads to a shift of the M-O stretch frequency.In general, donation of electron density into a bonding orbital of metal oxides inducesa blue-shift of the M-O stretch frequency, while donation of electron density into aantibonding orbital of metal oxides results in a red-shift of the M-O stretch frequency.But if a nonbonding orbital of metal oxides is involved, no significant shift will beobserved. Our results show that the observed frequency shifts are largely depended onthe nature of valence orbitals of the metal oxides involved in bonding.
引文
[1] Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements [M]. Oxford: Butterworth-Heinemann, 2001: 888.
    [2] Pauling, L. The formulas of antimonic acid and the antimonates [J]. J. Am. Chem. Soc. 1933, 55: 1895-1900.
    [3] (a) Yost, D. M. L.; Kaye, A. C. An attempt to prepare a chloride or fluoride of xenon [J]. J. Am. Chem. Soc. 1933, 55: 3890-3892.; (b) Laszlo, P.; Schrobilgen, G. J. One or Several Pioneers? The Discovery of Noble-Gas Compounds [J]. Angew. Chem. Int. Ed Engl. 1988, 27: 479-489.
    [4] Bartlett, N. Xenon Hexafluoroplatinate(V) Xe~+[PtF6]~-[J]. Proc. Chem. Soc. 1962, 218.
    [5] (a) Weinstock, B., Weaver, E. E., and Knop, C. P. Noble-Gas Compounds [M]. Chicago: University of Chicago Press Ⅲ. 1963: 50.; (b) Weeks, J. L.; Chernick, C. L.; Matheson, M. S. Photochemical Preparation of Xenon Difluoride [J]. J. Am. Chem. Soc. 1962, 84:4612-4613.; (c) Claassen, H. H.; Seling, H.; Maim, J. G. Xenon Tetrafluoride [J]. J. Am. Chem. Soc. 1962, 84: 3593-3953.
    [6] Turner, J. J.; Pimentel, C. C. Krypton fluoride: preparation by the matrix isolation technique [J]. Science 1963, 140: 974-975.
    [7] Nelson, L. Y.; Pimentel, G. C. Infrared detection of xenon dichloride [J]. Inorg. Chem. 1967, 6(9): 1758-1759.
    [8] Gerken, M.; Schrobilgen, G. J. Solution multi-NMR and Raman spectroscopic studies of thermodynamically unstable XeO_4 The first ~(131)Xe NMR study of a chemically bound xenon species [J]. Inorg. Chem. 2002, 41: 198-204.
    [9] Frohn, H.J.; Schroer, T. Trifluorovinylxenon(Ⅱ) tetrafluoroborate [J]. Angew. Chem. Int. Ed. 1999, 38: 2554-2556.
    [10] Gerken, M.; Schrobilgen, G. J. The impact of multi-NMR spectroscopy on the development of noble-gas chemistry [J]. Coord. Chem. Rev. 2000, 197: 335-395.
    [11] Frohn, H.J.; Theissen, M. A Key Substrate in Xenon-Carbon Chemistry: Synthesis of C_6F_5XeF [J]. Angew. Chem. Int. Ed. 2000, 39: 4591-4593.
    [12] Maggiarosa, N.; Naumann, D.; Tyrra, W. Bis(pentafluorphenyl)xenon, Xe(C_6F_5)~(2-) in homoleptisches Diarylxenon-Derivate [J]. Angew. Chem. Int. Ed. 2000, 39: 4588-4591.
    [13] Casteel, W. J.; Dixon, D. A.; Schrobilgen, G. J. The Osmium(Ⅷ) Oxofluoro Cations OsO_2F_3~+ and F(cis-OsO_2F_3)_2~+: Syntheses, Characterization by ~(19)F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO_2F_3)_2~+Sb_2F_(11)~-, and Density Functional Theory Calculations of OsO_2F_3.+, ReO_2F_3, and F(cis-OsO_2F_3)_2~+ [J]. Inorg. Chem. 1996, 35(15): 4310-4322.
    [14] Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. A stable argon compound [J]. Nature 2000, 406: 874-876.
    [15] Liao, M. S.; Zhang, Q. E. Chemical Bonding in XeF_2, XeF_4, KrF_2, KrF_4, RnF_2, XeCl_2, and XeBr_2: From the Gas Phase to the Solid State [J]. J. Phys. Chem. A 1998, 102(52): 10647-10654.
    [16] Joyner, C. H.; Dixon, T. A.; Baiocchi, F. A. The structure of Ar-N_2O [J]. J Chem. Phys. 1981, 75: 5285-5290.
    [17] Hodge, J.; Hayman, G. D.; Dyke, T. R. Molecular Beam Infrared Spectroscopy of Ar-N_2O [J]. J. Chem. Soc. Faraday Trans. 1986, 82(8): 1137-1142.
    [18] Hu, T. A.; Chappell, E. L.; Sharpe, S. W. Infrared, diode laser spectroscopy of the Ar-N_2O complex: Observation of the intermolecular bending mode in combination with the highest frequency intramolecular stretching mode [J]. J. Chem. Phys. 1993, 98: 6162-6169.
    [19] Herrebout, W. A.; Qian, H. B.; Yamaguchi, H. High-Resolution Infrared Diode Laser Spectroscopy of Ne-N_2O, Kr-N_2O, and Xe-N_2O [J]. J Mol. Spectrosc. 1998, 189(2): 235-243.
    [20] Ngari, M. S.; Jager, W. Study of the Rotational Spectrum of the Ne-N_2O van der Waals Dimer with a Fourier Transform Microwave Spectrometer [J]. J. Mol. Spectrosc. 1998, 192(2): 320-330.
    [21] Song, X. G.; Xu, Y. J.; Roy, P. N.; Jager, W. Rotational spectrum, potential energy surface, and bound states of the weakly bound complex He-N_2O [J]. J. Chem. Phys. 2004, 121: 12308-12314.
    [22] Zhou, Y. Z.; Xie, D. Q. Ab intio intermolecular potential energy surface, bound states, and microwave spectra for the van der Waals complex Ne-HCCCN [J]. J. Chem. Phys. 2005, 122: 174312-1-174312-6..
    [23] Zhu, H.; Zhou, Y. Z.; Xie, D. Qo Ab intion intermolecular potential-energy surface and microwave spectra for the Ne-OCS complex [J]. J. Chem. Phys. 2005, 122:234312-1-234312-6.
    [24] Vela, A. G. Intramolecular vibrational redistribution in the vibrational predissociation dynamics of He-I_2 [J]. J. Phys. Chem. A 2006, 110(26): 8023-8030.
    [25] Darr, J. P.; Glennon, J. J.; Loomis, R. A. Observation of bound-free transitions of the linear Ar…I_2(X, υ"=0) complex in and above the I_2 B-X spectral region [J]. J. Chem. Phys. 2005, 122: 131101-1-131101-4.
    [26] Wen, Q.; Jager, W. Microwave and ab initio studies of the Xe-CH_4 van der Waals complex [J]. J. Chem. Phys. 2005, 122: 014301-1-014301-10.
    [27] Vayner, G.; Alexeev, Y.; Wang, J. P.; Windus, T. L.; Hase, W. L. Ab initio and analytic intermolecular potentials for Ar-CF_4 [J]. J. Phys. Chem. A 2006, 110(9): 3174-3178.
    [28] Sampson, R. K.; Bellm, S. M.; McCaffery, A. J.; Lawrance, W. D. Rotational distributions following van der Waals molecule dissociation: Comparison between experiment and theory for benzene-Ar [J]. J. Chem. Phys. 2005, 122:074311-1-074311-9.
    [29] Walker, K. A.; McKellar, K. A. Millimeter-wave spectroscopy of Kr-CO and Xe-CO using a coaxial jet spectrometer [J]. J. Mol. Spectrosc. 2001, 205(2): 331-337.
    [30] Han, J. D.; Philen, D.; Heaven, M. C. Spectroscopic characterization of the C_2-Ne van der Waals complex [J]. J. Chem. Phys. 2006, 124:054314-1-054314-5.
    [31] Dham, A.; Meath, W. J.; Jechhow, J.; McCourt, R. W. New exchange-coulomb N_2-Ar potential-energy surface and it comparision with other recent N_2-Ar potential-energy surfaces [J]. J. Chem. Phys. 2006, 124: 034208-1-034208-23.
    [32] (a) Malm, J. G.; Selig, H.; Jortner, J.; Rice, S. A. The chemistry of xenon [J]. Chem. Rev. 1965, 65: 199-236.; (b) Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. The chemistry of krypton [J]. Coord. Chem. Rev. 2002, 233: 1-39.
    [33] (a) Pettersson, M.; Lundell, J.; Rasanen, M. Neutral rare-gas containing charge-transfer molecules in solid matrices.Ⅱ. HXeH, HXeD, and DXeD in Xe [J]. J. Chem. Phys. 1995, 103(1): 205-210.; (b) Nemukhin, A. V.; Grigorenko, B. L.; Khriachtchev, L.; Tanskanen, H.; Pettersson, M.; Rasanen, M. Intermolecular Complexes of HXeOH with Water: Stabilization and Destabilization Effects [J]. J. Am. Chem. Soc. 2002, 124: 10706-10711.; (c) Pettersson, M.; Lundell, J.; Khriachtchev, L.; Isoniemi, E.; Rasanen, M. HXeSH, the First Example of a Xenon-Sulfur Bond [J]. J. Am. Chem. Soc. 1998, 120(31): 7979-7980.; (d) Pettersson, M.; Lundell, J.; Rasanen, M. Neutral rare-gas containing charge-transfer molecules in solid matrices. I. HXeCk, HXeBr, HXeI, and HKrCl in Kr and Xe[J]. J. Chem. Phys. 1995, 102(16): 6423-6431.
    [34] (a) Khriachtchev, L.; Pettersson, M.; Lundell, J.; Tanskanen, H.; Kiviniemi, T.; Runeberg, N.; Rasanen, M. Neutral Xenon-Containing Radical, HXeO [J]. J. Am. Chem. Soc. 2003, 125(6): 1454-1455.; (b) Pettersson, M.; Khriachtchev, L.; Lundell, J.; Rasanen, M. A Chemical Compound Formed from Water and Xenon: HXeOH [J]. J. Am. Chem. Soc. 1999, 121(50): 11904-11905.; (c) Pettersson, M.; Lundell, J.; Khriachtchev, L.; Rasanen, M. Neutral rare-gas containing charge-transfer molecules in solid matrices. Ⅲ. HXeCN, HXeNC, and HKrCN in Kr and Xe [J]. J. Chem. Phys. 1998, 109(2): 618-625.; (d) Pettersson, M.; Nieminen, J.; Khriachtchev, L.; Rasanen, M. The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe [J]. J Chem. Phys. 1997, 107(20): 8423-8431.; (e) Ahokas, J.; Vaskonen, K.; Eloranta, J.; Kunttu, H. Electronic Absorption Spectra of HXeCl, HXeBr, HXeI, and HXeCN in Xe Matrix [J]. J. Phys. Chem. A 2000, 104(42): 9506.
    [35] (a) Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyulpina, I. V. Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom [J]. J. Am. Chem. Soc. 2003, 125(16): 4698-4699.; (b) Khriachtchev, L.; Tanskanen, H.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Rasanen, M. Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH [J]. J. Am. Chem. Soc. 2003, 125(16): 4696-4697.; (c) Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Rasanen, M. A A gate to organokrypton chemistry: HKrCCH [J]. J. Am. Chem. Soc. 2003, 125(23): 6876-6877.; (d) Tanskanen, H.; Khriachtchev, L.; Lundell, J.; Kiljunen, H.; Rasanen, M. Chemical compounds formed from diacetylene and rare-gas atoms: HKrC_4H and HXeC_4H [J]. J. Am. Chem. Soc. 2003, 125(52): 16361-16366.
    [36] (a) Jayasekharan, T. Ghanty, T. K. Structure and stability of xenon insertion compound of hypohalous acids, HXeOX(X=F, Cl, and Br) an ab initio investigation [J]. J. Chem. Phys. 2006, 124: 164309-1-164390-6.; (b) Borocci, S.; Broozolino, N.; Grandinetti, F. Neutral helium compounds: theoretical evidence for a large class of polynuclear complexes [J]. Chem. Eur. J. 2006, 12: 5033-5042.
    [37] Ansbacher, T.; Gerber, R. B. New organic noble gas molecules: energetics, stability and potential energy surfaces of HCCXeCCH and HCCKrCCH [J]. Phys. Chem. chem. phys. 2006, 8: 4175-4181.
    [38] Lundell, J.; Cohen, A.; Gerber, R. B. Qunatum chemical calculation on novel molecules from xenon insertion into hydrocarbons [J]. J. Phys. Chem. A 2002, 106(49): 11950-11955.
    [39] Ohshima, Y.; Iida, M.; Endo, Y. Pure roational spectrum of the mercury-argon van der Waals complex [J]. J. Chem. Phys. 1990, 92(6): 3990-3991.
    [40] Mizoguchi, A.; Endo, Y.; Ohshima, Y. Rotational spectrum of a salt-containing van der Waals complex: Ar-NaCl [J]. J. Chem. Phys. 1998, 109(24): 10539-10542.
    [41] Evans, C. J.; Gerry, M. C. L. Noble gas-metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar-CuX(X=F, Cl, Br) [J]. J Chem. Phys. 2000, 112(21): 9363-9374.
    [42] Evans, C. J.; Gerry, M. C. L. The microwave spectra and structure of Ar-AgX(X=F, Cl, Br) [J]. J. Chem. Phys. 2000, 112(3): 1321-1329.
    [43] Evans, C. J.; Lesarri, A.; Gerry, M. C. L. Noble Gas-Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar-AuCl and Kr-AuCl [J]. J. Am. Chem. Soc. 2000, 122(25): 6100-6105.
    [44] Evans, C. J.; Rubinoff, D. S.; Gerry, M. C. L. Noble gas-metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar-AuF and Ar-AuBr [J]. Phys. Chem. Chem. Phys. 2000, 2: 3943-3948.
    [45] Reynard, L. M.; Evans, C. J.; Gerry, M. C. L. Microwave Spectrum, Structure, and Hyperfine Constants of Kr-AgCl: Formation of a Weak Kr-Ag Covalent Bond [J]. J. Mol. Spectrosc. 2001, 206(1): 33-40.
    [46] Walker, N. R.; Reynard, L. M.; Gerry, M. C. L. The microwave spectrum and structure of KrAgF [J]. J. Mol. Structure. 2002, 612:109-116.
    [47] Thomas, J. M.; Walker, N. R.; Cooke, S. A.; Gerry, M. C. L. Microwave Spectra and Structures of KrAuF, KrAgF, and KrAgBr; ~(83)Kr Nuclear Quadrupole Coupling and the Nature of Noble Gas-Noble Metal Halide Bonding [J]. J Am. Chem. Soc. 2004, 126(4): 1235-1246.
    [48] Cooke, S. A.; Gerry, M. C. L. Insights into the xenon-silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl [J]. Phys. Chem. Chem. Phys. 2004, 6: 3248-3256.
    [49] Michaud, J. M.; Cooke, S. A.; Gerry, M. C. L. Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl [J]. Inorg Chem. 2004, 43(13): 3871-3881.
    [50] Cooke, S. A.; Gerry, M. C. L. XeAuF [J]. J. Am. Chem. Soc. 2004, 126(51): 17000-17008.
    [51] Michaud, J. M.; Gerry, M. C. L. XeCu covalent bonding in XeCuF and XeCuCl, characterized by Fourier transform microwave spectroscopy supported by quantum chemical calculations [J]. J Am. Chem. Soc. 2006, 128(23): 7613-7621.
    [52] Lovallo, C. C.; Klbukowski, M. Transition metal-noble gas bonding: the next frontier [J]. Chem. Phys Lett. 2003, 589-593.
    [53] Lantto, P.; Vaara, J. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: Interplay of relativistic and electron correlation effects [J]. J Chem. Phys. 2006, 125: 174315-1-174315-7.
    [54] (a) Ghanty, T. K. Insertion of noble-gas atom (Kr and Xe) into noble-metal molecules(AuF and AuOH): are they stable? [J]. J. Chem. Phys. 2005, 123: 074323-1-074323-7.; (b) Ghanty, T. K. I. How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNgF(M=Cu and Ag, and Ng=Ar, Kr, and Xe)? [J]. J. Chem. Phys. 2006, 124: 124304-1-124304-7.
    [55] Seidel, S.; Seppelt, K. Xenon as a Complex Ligand, The Tetra Xenono Gold(Ⅱ) Cation in AuXe_4~(2+) (Sb_2F_(11))_2 [J]. Science 2000, 290:117-118.
    [56] Seppelt, K. Metal-Xenon Complexes [J]. Z Anorg. Allg. Chem. 2003, 629: 2427-2430.
    [57] Drews, T., Seidel, S., Seppelt, K. Gold—Xenon Complexes [J]. Angew. Chem. Int. Ed 2002, 41(3): 454-456.
    [58] Hwang, I.-C.; Seidel, S.; Seppelt, K. Gold(Ⅰ) and Mercury(Ⅱ) Xenon Complexes [J]. Angew. Chem. Int. Ed. 2003, 42: 4392-4395.
    [59] Ono, Y.; Taketsugu, T. Theoretical study ofNg-NiN_2 (Ng=Ar, Ne, He) [J]. J. Chem. Phys. 2004, 120: 6035-6040.
    [60] Ono, Y.; Taketsugu, T. Theoretical study of chemical binding of noble gas atom and transition metal complexes: Ng-NiCO, Ng-NiN_2, Ng-CoCO(Ng=He—Xe) [J]. Monatsch Chem. 2005, 136: 1087-1106.
    [61] Whittle, E.; Dows, D. A.; Pimentel, G. C. Matrix Isolation Method for the Experimental Study of Unstable Species [J]. J. Chem. Phys. 1954, 22(12): 1943-1943.
    [62] Jacox, M. E. The vibrational energy levels of small transient molecules isolated in neon and. argon matrices [J]. Chem. Phys. 1994, 189: 149-170.
    [63] Jacox, M. E. The spectroscopy of molecular reaction intermediates trapped in the solid rare gases [J].Chem. Soc. Rev. 2002, 31:108-115.
    [64] Gerber, R. B.; Krylov, A. I. Dynamics of the Cage effect for Molecular Photodissociation in Solids Reaction dynamics in Clusters and Condensed Phases [M]. Pullman: Jortner, J. et al. 1994, 509-520.
    [65] Apkarian, V. A.; Schwentner, N. Molecular photodynamics in rare gas solids [J]. Chem. Rev. 1999, 99: 1481-1514.
    [66] Perutz, N. R.; Turner, J. J. Photochemistry of the Group 6 Hexacarbonyls in Low-Temperature Matrices, 111. Interaction of the Pentacarbonyls with Noble Gases and Other Matrices [J]. J. Am. Chem. Soc. 1975, 97: 4791-4800.
    [67] Burdett, J. K.; Grzybowsky, J. M.; Perutz, R. N.; Poliakoff, M.; Turner, J. J.; Turner, R. F. Photolysis and Spectroscopy with Polarized Light, Key to the Photochemistry of Cr(CO)_5 and Related Species [J]. Inorg. Chem. 1978, 17(1): 147-154.
    [68] Turner, J. J.; Burdett, J. K.; Perutz, R. N.; Poliakoff, M. Matrix photochemistry of metal carbonyl [J].Pure Appl. Chem. 1977, 49(3): 271-285.
    [69] Simpson, M. B. Poliakoff, M.; Turner, J. J.; Maier, W. B.; McLaughlin, J. G. [Cr(CO)_5Xe] in Solution: the First Spectroscopic Evidence [J]. J. Chem. Soc. Chem. Commun. 1983, 1355-1357.
    [70] Wells, J. R.; Weitz, E. Rare Gas-Metal Carbonyl Complexes, Bonding of Rare Gas Atoms to the Group VI Pentacarbonyls [J]. J. Am. Chem. Soc. 1992,114(8): 2783-2787.
    [71] Weiller, B. H. Metal Carbonyl Complexes with Xenon and Krypton, IR Spectra, CO Substitution Kinetics, and Bond Energies [3].J.Am. Chem. Soc. 1992,114(27): 10910-10915.
    [72] Sun, X.; George, M. W.; Kazarian, S. G.; Nikiforov, S. M.; Poliakoff, M. Can Organometallic Noble Gas Compounds Be Observed in Solution at Room Temperature? A Time-Resolved Infrared (TRIR) and UV Spectroscopic Study of the Photochemistry of M(CO)_6 (M) Cr, Mo, and W) in Supercritical Noble Gas and CO_2 Solution [J]. J. Am. Chem. Soc. 1996, 118(43): 10525-10532.
    [73] Fairhurst, S. A.; Morton, J. R. Perutz, R. N.; Preston K. F. EPR Spectra of KrMn(CO)_5 and KrFe(CO)_5~+ in a Krypton Matrix [J]. Organometallics 1984, 3(9): 1389-1391.
    [74] Portius, P.; Yang, J. X.; Sun, X.; Grills, D. C; Matousek, P.; Parker, A. W.; Towrie, M.; George, M. W. Unraveling the Photochemistry of Fe(CO)_5 in Solution, Observation of Fe(CO)_3 and the Conversion between~3Fe(CO)_4 and ~1Fe(CO)_4(Solvent) [J]. J. Am. Chem. Soc. 2004, 126(34): 10713-10720.
    [75] Cotton, F. A.; Edwards, W. T.; Rauch, F. C; Graham, M. A.; Perutz, N. R.; Turner, J. J. An Approach to Direct Evaluation of Pi Bonding in Metal Carbonyls [J]. Coord. Chem. Rev. 1973, 2: 247-250.
    [76] Wrighton, M. Photoreactions of aminepentacarbonylmolybdenum(O) and -tungsten(O) [J]. Inorg. Chem. 1974,13(4): 905-909.
    [77] Demuynck, J.; Kochanski, E.; Veillard, A. Metal-rare gas interaction. A new bond? [J]. J. Am. Chem. Soc. 1979,101: 3467-3472.
    [78] Ehlers, A. W.; Frenking, G.; Baerends, E. J. Metal Carbonyl Complexes with Xenon and Krypton, IR Spectra, CO Substitution Kinetics, and Bond Energies [J]. Organometallics 1997, 16(22): 4896-4902.
    [79] Grills, D. C; George, M. W. Transition metal-noble gas complexes [J]. Adv. Inorg. Chem. 2001, 52:113-150.
    [80] Bengali, A. A.; Schultz, R. H.; Moore, C. B.; Bergman, R. G. Activation of the C-H Bonds in Neopentane and Neopentane-d12 by (η~5-C_5(CH_3)_5)Rh(CO)_2: Spectroscopic and Temporal Resolution of Rhodium-Krypton and Rhodium-Alkane Complex Intermediates [J]. J. Am. Chem. Soc. 1994,116(21): 9585-9589.
    [81] Weiller, B. H. ; Wasserman, E. P.; Moore, C. B.; Bergman, R. G. Organometallic carbonyl substitution kinetics in liquid xenon by fast time-resolved IR spectroscopy [J]. J. Am. Chem. Soc. 1993,115(10): 4326-4330.
    [82] Brookhart, M.; Chandler, W.; Kessler, R. J.; Liu, Y.; Pienta, N. J.; Santini, C. C.; Hall, C.; Perutz, R. N.; Timney, J. A. Matrix isolation and transient absorption studies of (bis(bis(pentafluoroethyl)phosphino)ethane)tetracarbonylchromium: intermolecular alkane complexes and intramolecular F-coordination [J]. J. Am. Chem. Soc. 1992,114(10): 3802-3815.
    [83] Horton-Mastin, A.; Poliakoff, M.; Turner, J. J. Photochemistry of matrix-isolated MeMn(CO)_5: evidence for two isomers of MeMn(CO)_4 [J]. Organometallics. 1986, 5(3): 405-408.
    [84] Mawby, R. J.; Perutz, R. N.; Whittlesey, M. K. Matrix Photochemistry of Ru(CO)_2(PMe_3)_2(H_2) and Ru(CO)_3(PMe_3)_2, Formation of Ru(CO)_2(PMe_3)_2...S (S = Ar, CH_4, Xe) [J]. Organometallics. 1995,14(7): 3268-3274.
    [85] Bengali, A. A.; Schultz, R. H. ; Tauber, M. J.; Weiller, B. H. Wasserman, E. P. Kyle, K. R.; Moore, C. B.; Bergman, R. G. IR Flash Kinetic Spectroscopy of C-H Bond Activation of Cyclohexane-d_0and d_(12) by Cp*Rh(CO)_2 in Liquid Rare Gases, Kinetics, Thermodynamics, and an Unusual Isotope Effect [J]. J. Am. Chem. Soc. 1994,116: 1369-7311.
    [86] Grills, D. C; Sun, X. Z. ; Childs, G. I.; George, M. W. An Investigation into the Reactivity of Organometallic Noble Gas Complexes, A Time-Resolved Infrared Study in Supercritical Noble Gas and Alkane Solution at Room Temperature. (η~5-C_5R_5)M(CO)_2L (M) Mn and Re; R) H, Me. and Et (Mn only); L ) Kr and Xe) [J]. J. Phys. Chem. A 2000,104(18): 4300-4307.
    [87] Grills, D. C; Childs, G. I.; George, M. W. The characterization and reactivity of (η~5-C_5H_5)M(CO)_3(Xe) (M = Nb or Ta) in solution at room temperature [J]. Chem. Commun. 2000, 1841-1842.
    [88] (a) Weiller, B. H.; Wasserman, E. P.; Bergman, R. G.; Moore, C. B.; Pimentel, G. C. Time-resolved IR spectroscopy in liquid rare gases: direct rate measurement of an intermolecular alkane carbon-hydrogen oxidative addition reaction [J]. J. Am. Chem. Soc. 1989, 111(21): 8288-8290.; (b) Schultz, R. H.; Bengali, A. A.; Tauber, M. J.; Weiller, B. H.; Wasserman, E. P.; Kyle, K. R.; Moore, C. B.; Bergman, R. G. IR Flash Kinetic Spectroscopy of C-H Bond Activation of Cyclohexane-d0 and -d12 by Cp*Rh(CO)_2 in Liquid Rare Gases: Kinetics, Thermodynamics, and Unusual Isotope Effect [J]. J. Am. Chem. Soc. 1994,116(16): 7369-7377.
    [89] Jina, O. S.; Sun, X. Z.; George, M. W. Do early and late transition metal noble gas complexes react by different mechanisms? A room temperature time-resolved infrared study of (η~5-C_5R_5)Rh(CO)_2(R=H or Me) in supercritical noble gas solution at room temperature [J] Dalton Trans. 2003, 1773-1778.
    [90] Yeston, J. S.; McNamara, B. K.; Bergman, R. G.; Moore, C. B. Flash Infrared Kinetics of the Photochemistry of Tp~*Rh(CO)_2 and Bp~*Rh(CO)_2 in Liquid Xenon Solution [J]. Organometallics, 2000, 19(17): 3442-3446.
    [91] Sun, X. Z.; Grills, D. C.; Nikiforov, S. M.; Poliakoff, M.; George, M. W. Remarkable Stability of (η~5-C_5H_5)Re(CO)_2L(L=n-Heptane, Xe, and Kr), A Time-Resolved Infrared Spectroscopic Study of (η~5-C_5H_5)Re(CO)_3 in Conventional and Supercritical Fluid Solution [J]. J. Am. Chem. Soc. 1997, 119(32): 7521-7525.
    [92] Ball, G. E.; Darwish, T. A.; Geftakis, S.; George, M. W.; Lawer, D. J.; Portius, P. Rourke, J. Characterization of an organometallic xenon complex using NMR and IR spectroscopy Re(~iPrCp)(CO)(PF_3)Xe [J]. PANS. 2005, 120: 1853-1858.
    [93] McMaser, J.; Portius, P.; Ball, G. E.; Rourke, J. P.; George, M. W. Density Functional Theoretical Studies of the Re-Xe Bonds in Re(Cp)(CO)(PF_3)Xe and Re(Cp)(CO)_2Xe [J]. Organometallics, 2006, 25(22): 5242-5348.
    [94] Zhou, M. F.; Andrews, L.; Li, J.; Bursten, B. E.Reaction of Laser-Ablated Uranium Atoms with CO, Infrared Spectra of the CUO, CUO~-, OUCCO, (η~2-C_2)UO_2, and U(CO)x (x=1—6) Molecules in Solid Neon [J]. J. Am. Chem. Soc. 1999, 121(41): 9712-9021.
    [95] Andrews, L.; Liang, B. Y.; Li, J.; Bursten, B. E. Ground-state reversal by matrix interaction, electronic states and vibrational frequencies of CUO in solid argon and neon [J]. Angew. Chem. Int. Ed 2000, 39(24): 4565-4567.
    [96] Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Noble Gas-Actinide Compounds, Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices [J]. Science 2002, 295: 2242.
    [97] Liang, B. Y.; Andrews, L.; Li, J.; Bursten, B. E Noble Gas-Actinide Compounds, Evidence for the Formation of Distinct CUO(Ar)_(4-n)(Xe)_n and CUO(Ar)_(4-n)(Kr)_n(n=1, 2, 3, 4) Complexes [J]. J. Am. Chem. Soc. 2002, 124(31): 9016-9017.
    [98] Andrews, L.; Liang, B. Y.; Li, J.; Bursten, B. E. Noble Gas-Actinide Complexes of the CUO Molecule with Multiple Ar, Kr, and Xe Atoms in Noble-Gas Matrices [J]. J. Am. Chem. Soc. 2003, 125(10): 3126-3139.
    [99] Andrews, L.; Liang, B. Y.; Li, J.; Bursten, B. E. Noble gas-uranium coordination and intersystem crossing for the CUO(Ne)_x(Ng)_n(Ng=Ar, Kr, Xe) complexes in solid neon [J]. New. J. Chem. 2004, 28: 289-294.
    [100] Liang, B. Y.; Andrews, L.; Li, J.; Bursten, B. E.Bonding of Multiple Noble-Gas Atoms to CUO in Solid Neon, CUO(Ng)_n (Ng=Ar, Kr, Xe; n=1, 2, 3, 4) Complexes and the Singlet—Triplet Crossover Point [J]. Chem. Eur. J. 2003, 9: 4781-4788.
    [101] Liang, B. Y.; Andrews, L.; Li, J.; Bursten, B. E On the Noble-Gas-Induced Intersystem Crossing for the CUO Molecule, Experimental and Theoretical Investigations of CUO(Ng)_n (Ng=Ar, Kr, Xe; n=1, 2, 3, 4) Complexes in Solid Neon [J]. Inorg. Chem. 2004, 43(3): 882-894.
    [102] Hunt, R. D.; Andrews, L. Reactions of pulsed-laser evaporated uranium atoms with molecular oxygen: Infrared spectra of UO, UO_2, UO_3, UO_2~+, UO_2~(2+), and UO_3-O_2 in solid argon [J]. J. Chem. Phys. 1993, 98: 3690-3696.
    [103] Zhou, M.; Andrews, L.; Ismail, N.; Marsden, C. Infrared spectra of UO_2, UO_2~+, and UO_2~- in solid neon [J]. J. Phys. Chem. A 2000, 104(23): 5495-5502.
    [104] Li, J.; Bursten, B. E.; Andrews, L.; Marsden, C. J. On the Electronic Structure of Molecular UO_2 in the Presence of Ar Atoms, Evidence for Direct U-Ar Bonding [J]. J. Am. Chem. Soc. 2004, 126(11): 3424-3425.
    [105] (a) Gagliardi, L.; Roos, B. O.; Malmqvist, P.; Dyke, J. M. On the Electronic Structure of the UO_2 Molecule [J]. J. Phys. Chem. A 2001, 105(46): 10602-10606.; (b) Chang, Q. M.S. Thesis, The Ohio State University, 2002.
    [106] Han, J.; Kaledin, L. A.; Goncharov, V.; Komissarov, A. V.; Heaven, M. C. Accurate Ionization Potentials for UO and UO_2: A Rigorous Test of Relativistic Quantum Chemistry Calculations [J]. J. Am. Chem. Soc. 2003, 125: 7176-7177.
    [107] Wang, X. F.; Andrews, L.; Li, J.; Bursten, B. E. Significant Interactions between Uranium and Noble-Gas Atoms, Coordination of the UO_2~+ Cation by Ne, Ar, Kr, and Xe Atoms [J]. Angew. Chem. Int. Ed. 2004, 43: 2554-2557.
    [108] (a) Perutz, R. N. Photochemical reactions involving matrix-isolated atoms Chem. Rev. 1985, 85, 77-96; (b) Bondybey, V. E.; Smith, A. M.; Agreiter, J. New Developments in Matrix Isolation Spectroscopy [J]. Chem. Rev. 1996, 96:2113-2134.; (c) Ozin, G A.; Mitchell, S. A. Ligand-free metal clusters [J]. Angew. Chem. Int. Ed. Engl. 1983, 22: 674-694.; (e) Bondybey, V. E. Laser vaporization of silicon carbide. Lifetime and spectroscopy of silicon carbide (SiC_2) [J]. J. Phys. Chem. 1982, 86: 3396-3399.
    [109] Zhou, M.; Andrews, L.; Bauschlicher, C. W. Jr. Spectroscopic and Theoretical Investigations of Vibrational Frequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions [J]. Chem. Rev. 1999, 101(7): 1931-1961.
    [110] Gaussian 03, Revision B.05, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 2003.
    [111] Pople, J. A. Quantum chemical models(Nobel Lecture) [J]. Angew. Chem. Int. Ed. 1999, 38: 1894-1902.
    [112] (a) Becke, A. D. Density-functional thermochemistry Ⅲ. The role of exact exchange [J]. J. Chem. Phys. 1993, 98: 5648-5652.; (b) Lee, C.; Yang, E.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B 1988, 37: 785-789.; (c) Miehlich, B.; Savin, H.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr [J]. Chem. Phys. Lett. 1989, 157(3): 200-206.
    [113] (a) Wachter, A. J. H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms [J]. J. Chem. Phys. 1970, 52: 1033-1036; (b) Hay, P. J. Gaussian basis sets for molecular calculations. The representation of3d orbitals in transition-metal atoms [J]. J. Chem. Phys. 1977, 66: 4377-4384; (c) Raghavachari, K.; Trucks, G W. Highly correlated systems. Excitation energies of first row transition metals Sc—Cu [J]. J. Chem. Phys. 1989, 91: 1062-1065.
    [114] (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions [J]. J. Chem. Phys. 1980, 72: 650-654; (b) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements [J]. Theor. Chim. Acta. 1990, 77: 123-141.
    [115] McLean, A. D.; Chandler, G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18 [J]. J. Chem. Phys. 1980, 72: 5639-5648.
    
    [116] Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds [J]. J. Phys. Chem. 1992, 96: 6630-6636.
    [117] Pople, J. A.; Gordon, M. H.; Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies J. Chem. Phys. 1987, 87, 5968-5975.
    [118] Chertihin, G. V.; Andrews, L.; Rosi, M.; Bauschlicher, C. W. Jr. Reactions of laser-ablated scandium atoms with dioxygen, infrared spectra of ScO, OScO, (O_2)ScO, (ScO)_2, and Sc(O_2)_2 [J]. J. Phys. Chem. A 1997,101(48): 9085-9091.
    [119] Bauschlicher, C. W. Jr.; Zhou, M. F.; Andrews, L.; Johnson, J. R. T.; Panas, I.; Snis, A.; Roos, B. O. A further study of the products of scandium and dioxygen reactions [J]. J. Phys. Chem. A 1999,103(28): 5463-5467.
    [120] Andrews, L.; Zhou, M. F.; Chertihin, G V. Bauschlicher, C. W. Jr. Reaction of laser-ablated Y and La atoms, cations and electrons with O_2. Infrared spectra and density functional calculations of the MO, MO~+, MO_2, MO_2~+, and MO_2~- species in solid argon [J]. J. Phys. Chem. A 1999, 103(33): 6525-6532.
    [121] Chertihin, G. V.; Andrews, L.; Bare, W. D.; Andrews, L. Reactions of laser-ablated chromium atoms with dioxygen. Infrared spectra of CrO, OCrO, CrOO, CrO_3, Cr(OO)_2, Cr_2O_2, Cr_2O_3 and Cr_2O_4 in solid argon [J]. J. Chem. Phys. 1997, 107: 2798-2806.
    [122] Chertihin, G. V.; Andrews, L. Reactions of Laser-Ablated Manganese Atoms with Dioxygen. Infrared Spectra of MnO, OMnO, Mn(O_2), (MnO)_2, and Higher Oxide Complexes in Solid Argon [J]. J. Phys. Chem. A. 1997,101(45): 8547-8553.
    [123] (a) Fanfarillo, M.; Cribb, H. E.; Downs, A. J.; Greene, T. M.; Almond, M. J. Photooxidation of matrix-isolated iron pentacarbonyl. 1. Peroxo- and oxoiron carbonyl reaction intermediates [J]. Inorg. Chem. 1992, 31(13): 2962-2979.; (b) Andrews, L.; Chertihin, G. V.; Ricca, A.; Bauschlicher, C. W. Reactions of Laser-Ablated Iron Atoms with Oxygen Molecules: Matrix Infrared Spectra and Density Functional Calculations of OFeO, FeOO, and Fe(O_2) [J]. J. Am. Chem. Soc. 1996,118: 467-470.; (c) Chertihin, G. V.; Saffel, W.; Yustein, J. T. ; Andrews, L.; Neurock, M.; Ricca, A.; Bauschlicher, Jr., C. W. Reactions of Laser-Ablated Iron Atoms with Oxygen Molecules in Condensing Argon. Infrared Spectra and Density Functional Calculations of Iron Oxide Product Molecules [J]. J. Phys. Chem. 1996,100: 5261-5273.
    [124] Green, D. W.; Reedy, G. T.; Kay, J. G. Matrix-isolated FeO, NiO, and CoO: Ground-state vibrational frequencies [J]. J. Mol. Spectrosc. 1979, 78(2): 257-266.
    [125] Chertihin, G. V.; Citra, A.; Andrews, L.; Bauschlicher, C. W., Jr. Reactions of Laser-Ablated Cobalt Atoms with O_2. Infrared Spectra of Cobalt Oxides in Solid Argon [J]. J. Phys. Chem. A 1997, 101(47): 8793-8802.
    [126] Citra, A.; Chertihin, G. V.; Andrews, L.; Neurock, M. Reactions of Laser-Ablated Nickel Atoms with Dioxygen. Infrared Spectra and Density Functional Calculations of Nickel Oxides NiO, ONiO, Ni_2O_2, and Ni_2O_3, Superoxide NiOO, Peroxide Ni(O_2), and Higher Complexes in Solid Argon [J]. J. Phys. Chem. A 1997, 101(17): 3109-3118.
    [127] Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand-Reinhold: New York, 1979.
    [128] (a) Cheung, A. S. C.; Zyrnicki, W.; Merer, A. J. Fourier transform spectroscopy of CrO: Rotational analysis of the A~5∑-X~5П(0,0) band near 8000 cm~(-1)[J]. J. MoL Spectrosc. 1984, 104(2): 315-336.; (b) Barnes, H.; Hajigeorgion, P. G.; Merer, A. J. Rotational Analysis of the A′~5△-X~5∏ Transition of CrO [J]. J. Mol. Spectrosc. 1993, 160(1): 289-310.
    [129] Bauschlicher, C. W. Jr. Maitre, P. Theoretical study of the first transition row oxides and sulfides [J]. Theor. Chim. Acta 1995, 90(2): 189-203.
    [130] Harrison, J. F. Electronic Structure of Diatomic Molecules Composed of a First-Row Transition Metal and Main-Group Element(H-F) [J]. Chem. Rev. 2000, 100: 679-716.
    [131] Gutsev, G. L.; Andrews, L.; Bauschlicher, C. W. Jr. Similarities and differences in the structure of3d-metal monocarbides and monoxides [J]. Theor. Chem. Acc. 2003, 109: 298-308.
    [132] Furche, F.; Perdew, J. P. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry [J]. J. Chem. Phys. 2006, 124: 044103-1-044103-27.
    [133] Krasnov, K. S. Molecular Constants of Inorganic Compounds; Khimia: Leningrad, 1979.
    [134] (a) Cheung, A. S. C.; Lee, N.; Lyyra, A. M.; Merer, A. J.; Taylor, A. W. Spectroscopic properties of the ~5△_i ground state of FeO [J]. J. Mol. Spectrosc. 1982, 95(1): 213-225.; (b) Cheung, A. S. C.; Lyyra, A. M.; Merer, A. J.; Taylor, A. W. Laser spectroscopy of FeO: Rotational analysis of some subbands of the orange system [J]. J. Mol. Spectrosc. 1983, 102(1): 224-257.
    [135] DeVore, T. C.; Gallaher, T. N. The vibrational infrared spectrum of CoO [J]. J. Chem. Phys. 1979, 71: 474-475.
    [136] Srdanov, V. I.; Harris, D. O. Laser spectroscopy of NiO: The ~3∑~- ground state [J]. J. Chem. Phys. 1988, 89: 2748-2753.
    [137] (a) Zhou, M. F.; Zhang, L. N.; Qin, Q. Z. Chromium Oxide Complexes with Dinitrogen. Formation and Characterization of the (NN)_xCrO and (NN)_xCrO_2 (x=1, 2) [J]. J. Phys. Chem. A 2001, 105(26): 6407-6413.; (b) Zhou, M. F.; Zhang, L. N.; Shao, L. M.; Wang, W. N.; Fan, K. N.; Qin, Q. Z. Formation and Characterization of the (η~-H_2)CrO_2, (η~2-H_2)_2CrO_2 and HCrO(OH) Molecules [J]. J. Phys. Chem. A 2001, 105(47): 10747-10752.
    [138] (a) Zhou, M. F.; Zhang, L. N.; Qin, Q. Z. Reactions of Mn with H_2O and MnO with H_2. Matrix-Isolation FTIR and Quantum Chemical Studies [J]. J Phys. Chem. A 2001, 105(24): 5801-5807.; (b) Zhang, L. N.; Zhou, M. F.; Shao, L. M.; Wang, W. N.; Fan, K. N.; Qin, Q. Z. Reactions of Fe with H_2O and FeO with H_2. A Combined Matrix Isolation FTIR and Theoretical Study [J]. J. Phys. Chem. A 2001, 105(29): 6998-7003.
    [139] Wang, G. J.; Chen, M. H.; Zhou, M. F. Matrix Isolation Infrared Spectroscopic and Theoretical Studies on the Reactions of Manganese and Iron Monoxides with Methane [J]. J. Phys. Chem. A 2004, 108(51): 11273-11278.
    [140] Zhou, M. F.; Andrews, L. Infrared spectra and density functional calculations of the CrO_2~-, MOO_2-, and WO_2~- molecular anions in solid neon [J]. J. Chem. Phys. 1999, 111: 4230-4238.
    [141] Danset, D.; Manceron, L. Mid- and Near-IR Electronic Absorption Spectrum of CoO Isolated in Solid Neon. Vibronic Data for Low-Lying Electronic States [J]. J. Phys. Chem. A 2003, 107: 11324-11330.
    [142] Allouti, F.; Manceron, L.; Alikhani, M. E. The Ni+O_2 reaction: A combined IR matrix isolation and theoretical study of the formation and structure of NiO_2 [J]. Phys. Chem. Chem. Phys. 2006, 8(4): 448-455.
    [143] (a) Merer, A. J.; Huang, G.; Cheung, A. S. C.; Taylor, A. W. New quartet and doublet electronic transitions in the near-infrared emission spectrum of VO [J]. J. Mol. Spectrosc. 1987, 125(2), 465-480.; (b) Huang, G.; Merer, A. J.; Clouthier, D. J. Intracavity laser spectroscopy of VO: Hyperfine parameters and electron configuration of the B~4∏ state [J]. J. Mol. Spectrosc. 1992, 153(1): 32-40.; (c) Adam, A. G.; Barnes, M.; Berno, B.; Bower, R. D.; Merer, A. J. Rotational and Hyperfine Structure in the B~4∏-X~4∑~- (0,0) Band of VO at 7900 A: Perturbations by the a~2∑~+, v=2 Level [J]. J. Mol. Spectrosc. 1995, 170(1): 942130.; (d) Ram, R. S.; Bernath, P. F.; Davis, S. P.; Merer, A. J. Fourier Transform Emission Spectroscopy of a New ~2φ-1~2△ System of VO [J]. J. Mol. Spectrosc. 2002, 211(2): 279-283.
    [144] Karlsson, L.; Lindgren, B.; Lundevall, C.; Sassenberg, U. Lifetime Measurements of theA ~4∏, B~4Π, andC~4~Σ~-States of VO [J]. J. Mol. Spectrosc. 1997, 181(2): 274-278.
    [145] Langhoff, S. R.; Bauschlicher, C. W. Jr. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS [J]. J. Chem. Phys. 1986, 85(10): 5936-5942.
    [146] Dyke, J. M.; Gravenor, B. W. J.; Hastings, M. P.; Morris, A. High-temperature photoelectron spectroscopy: the vanadium monoxide molecule [J]. J. Phys. Chem. 1985, 89(21): 4613-4617.
    [147] Carter, E. A.; Goddard, W. A. Early- versus late-transition-metal-oxo bonds: the electronic structure of VO~+ and RuO~+ [J]. J. Phys. Chem. 1988, 92(8): 2109-2117.
    [148] Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Ab initio pseudopotential study of the first row transition metal monoxides and iron monohydride [J]. J. Chem. Phys. 1987, 86(4): 2123-2131.
    [149] Bakalbassis, E. G.; Stiakaki, M. D.; Tsipis, A. C.; Tsipis, C. A. Ground and low-lying excited state properties of the first-row transition-metal oxide diatomics calculated by an improved ASED-MO model [J]. Chem. Phys. 1996, 205(3): 389-399.
    [150] Pykavy, M.; Wullen, V. C. Multireference Correlation Calculations for the Ground States of VO~(+/0/-) Using Correlation Consistent Basis Sets [J]. J. Phys. Chem. A 2003, 107(29): 5566-5572.
    [151] Weltner, W., Jr.; McLeod, D., Jr. Spectroscopy of TaO and TaO_2 in Neon and Argon Matrices at 4 and 20 K [J]. J. Chem. Phys. 1965, 42(3): 882-891.
    [152] Green, D. W.; Korfmacher, W.; Gruen, D. M. Infrared absorption spectra of isotopic NbN and NbO isolated in an Ar matrix [J]. J. Chem. Phys. 1973, 58(1): 404-405.
    [153] Wu, H. B.; Wang, L. S. A photoelectron spectroscopic study of monovanadium oxide anions (VO_x~-, x=1-4) [J]. J. Chem. Phys. 1998, 108(13): 5310-5318.
    [154] Matsuda, Y.; Bernstein, E. R. Identification, Structure, and Spectroscopy of Neutral Vanadium Oxide Clusters [J]. J Phys. Chem. A 2005, 109(17): 3803-3811.
    [155] Knight, L. B. Jr.; Babb, R.; Ray, M.; Banisaukas, T. J.; Russon, L.; Dailey, R. S.; Davidson, E. R. An electron spin resonance investigation of vanadium dioxide (~(51)V~(16)O_2 and ~(51)V~(17)O_2) and ~(51)V~(17)O in neon matrices with preliminary assignments for VO_3 and V_2~+: Comparison with ab initio theoretical calculations [J]. J. Chem. Phys. 1996, 105(23): 10237-10250.
    [156] Chertihin, G. V.; Bare, W. D.; Andrews, L. Reactions of Laser-Ablated Vanadium Atoms with Dioxygen. Infrared Spectra of VO, VO_2, OOVO_2, and V_2O_2 in Solid Argon [J]. J. Phys. Chem. A 1997, 101(28): 5090-5095.
    [157] Calatayud, M.; Silvi, B.; Andres, J.; Beltran, A. A theoretical study on the structure, energetics and bonding of VO_x~+ and VO_x (x=1-4) systems [J]. Chem. Phys. Lett. 2001, 333(6): 493-503.
    [158] Gutsev, G. L.; Rao, B. K.; Jena, P. Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions [J]. J. Phys. Chem. A 2000, 104(51): 11961-11971.
    [159] Schroder, D.; Schwarz, H.; Shaik, S. Characterization, Orbital Description, and Reactivity Patterns of Transition-Metal Oxo Species in the Gas Phase [J]. Struct. Bonding 2000, 97: 91-123.
    [160] Zhou, M.; Andrews, L. Reactions of Laser-Ablated Niobium and Tantalum Atoms with Oxygen Molecules: Infrared Spectra of Niobium and Tantalum Oxide Molecules, Anions, and Cations [J]. J. Phys. Chem. A 1998, 102(43): 8251-8260.
    [161] See, for example, (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidation of Organic Compounds [M]. (Academic), New York: 1981.; Martell, A. E.; Sawyer, D. T. Oxygen Complexes and Oxygen Activation by Transition Metals [M]. (Plenum), New York: 1988.
    [162] Goodenough, J. B. Metallic oxides [J]. Prog. Solid State Chem. 1971, 5: 145-399.
    [163] Brandle, H.; Weller, D.; Scott, J. C.; Sticht, J.; Oppeneer, P. M.; Gunterodt, G. On the electronic-structure of CrO_2-new experiments and theory [J]. Int. J Mod. Phys. B 1993, 7(1-3): 345-348.
    [164] Gustev, G. L.; Jena, P.; Zhai, H. J.; Wang, H. J. Electronic structure of chromium oxides, CrO_n~- and CrO_n (n=1-5) from photoelectron spectroscopy and density functional theory calculations [J]. J. Chem. Phys. 2001, 115(17): 7935-7944.
    [165] Tono, K.; Terasaki, A.; Ohta, T.; Kondow, T. Chemically induced ferromagnetic spin coupling: Electronic and geometric structures of chromium-oxide cluster anions, Cr_2O_n~- (n=1-3), studied by photoelectron spectroscopy [J]. J. Chem. Phys. 2003, 119(21): 11221-11227.
    [166] Zhai, H. J.; Huang, X.; Cui, L. F.; Li, X.; Li, J.; Wang, L. S. Electronic and Structural Evolution and Chemical Bonding in Ditungsten Oxide Clusters: W_2O_n and W_2O_n (n=1-6) [J]. J. Phys. Chem. A 2005, 109(27): 6019-6030.
    [167] Zhai, H. J.; Huang, X.; Waters, T.; Wang, X. B.; O'Hair, R. A. J.; Wedd, A. G.; Wang, L. S. Photoelectron Spectroscopy of Doubly. and Singly Charged Group VIB Dimetalate Anions: M_2O_7~(2-), MM'O_7~(2-), and M_2O_7~- (M, M'= Cr, Mo, W) [J]. J. Phys. Chem. A 2005, 109(46): 10512-10520.
    [168] Zhai, H. J., Wang, L. S. Probing the electronic properties of dichromium oxide clusters Cr_2O_n~- (n=1-7) using photoelectron spectroscopy [J]. J. Chem. Phys. 2006, 125:164315-1-164315-9.
    [169] Toropova, A.; Kotliar, G.; Savrasov, S. Y.; Oudovenko, V. S. Electronic structure and magnetic anisotropy of CrO_2 [J]. Phys, Rev. B. 2005, 71(17): 172403-1-172403-4.
    [170] Vaska, L. Dioxygen-metal complexes: toward a unified view [J]. Acc. Chem. Res. 1976, 9: 175-183.
    [171] Dickman, M.; Pope, M. T. Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten [J]. Chem. Rev. 1994, 94: 569-584.
    [172] B agchi, R. N.; Boad, A. M.; Scholz, F.; Stosser, T. Characterization of the ESR Spectrum of the Superoxide Anion in the Liquid Phase [J]. J. Am. Chem. Soc. 1989, 111: 8270-8271.
    [173] Huang, X.; Zhai, H. J.; Waters, T.; Li, J.; Wang. L. S. Matrix infrared study of the chlorine superoxide radical [J]. Angew. Chem. Int. Ed. 2006, 45(4): 657-660.
    [174] Takahashi, Y.; Hashimoto, M.; Hikichi, S.; Akita, M.; Moro-oka, Y. Conversion of Molecular Oxygen into a Hydroperoxo Species by Ring-Opening Protonation of a Cyclic η~2-Peroxo Intermediate: Characterization of the η~2-Peroxo and Hydroperoxo Complexes [J]. Angew. Chem. Int. Ed. 1999, 38(20): 3074-3077.
    [175] Abreu, I. A.; Rodrigues, J. A.; Cabelli, D. E. Theoretical Studies of Manganese and Iron Superoxide Dismutases: Superoxide Binding and Superoxide Oxidation [J]. J. Phys. Chem. B 2005, 209(51): 24502-24509.
    [176] (a) Andrews, L.; Ault, B. S.; Grzybowski, J. M.; Allen, R. O. Proton and deuteron radiolysis of argon matrix samples of O_2 and Cl_2. Infrared spectra of charged species [J]. J. Chem. Phys. 1975, 62(6): 2461-2464.; (b) Chertihin, G. V.; Andrews, L. On the spectrum and structure of the isolated O_4~- anion in solid argon [J]. J. Chem. Phys. 1998, 108: 6404-6407.; (c) Thompson, W. E.; Jacox, M. E. The vibrational spectra of molecular ions isolated in solid neon. Ⅱ. O_4~+ and O_4~- [J]. J. Chem. Phys. 1989, 91(7): 3826-3837.
    [177] Zhou, M. F.; Andrews, L. Matrix Infrared Spectra and Density Functional Calculations of Ni(CO)_x~-, x=1-3 [J]. J. Am. Chem. Soc. 1998, 120(44): 11499-11503.
    [178] (a) Arkell, A.; Schwager, I. Matrix infrared study of the chlorine superoxide radical [J]. J. Am. Chem. Soc. 1967, 89: 5999-6006.; (b) Tevault, D. E.; Smardzewski, R. R. Matrix infrared spectrum of the O_2 Br radical. Bonding in the O_2X species [J]. J. Am. Chem. Soc. 1978, 100: 3955-3957.
    [179] Apra, E.; et al. NWChem, A Computational Chemistry Package for ParallelComputers, version 4.7; Pacific Northwest National Laboratory: Richland, WA, 2005.
    [180] The ab initio coupled cluster calculations were performed at the CCSD and CCSD(T) levels of theory, and the DFT calculations were performed using the local density approach (LDA), generalized gradient approach (GGA), BLYP and PW91, and the hybrid GGA approach, B3LYP, B3PW91, X3LYP, PBE0, and Becke half-and-half (BHLYP). The Stuttgart relativistic energy consistent pseudopotential and the aug-cc-pVQZ-PP basis set were used for Xe (Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. Ⅱ. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements [J]. J. Chem. Phys. 2003, 119(21): 11113-11123), with the aug-cc-pVQZ basis sets for O (Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions [J]. J. Chem. Phys. 1992, 96: 6796-6806). Extra fine integration grid and tight convergence criteria were used in the DFT geometry optimizations. To assess the accuracy of the method used, the bond length and vibration frequency for O_2 were calculated at the CCSD(T)/aug-cc-pVQZ level. The calculated results (1.2081 (?) and 1597 cm~(-1)) are in excellent agreement with the experimental values (1.2075 (?) and 1580.2 cm~(-1)).
    [181] Pyykko, P.; Tamm, T. Calculations for XeO_n (n=2-4): Could the Xenon Dioxide Molecule Exist? [J]. J. Phys. Chem. A 2000, 104(16): 3826-3828.
    [182] Van der Waals radii were taken from http://www.webelements.com.
    [183] Lin, S. H.; Ono, Y.; Ng, C. Y. A study of the ion-molecule half reactions O_2~+…(O_2)_m~+—(O_2)_(m+1)~++O, m=1, 2, 3, using the molecular beam photoionization method [J]. J. Chem. Phys. 1981, 74: 3348-3352.
    [184] Frenking, G.; Cremer, D. The chemistry of the noble gas elements helium, neon, and argon-Experimental facts and theoretical predictions [J]. Struct. Bonding 1990, 73:17-95.
    [185] (a) Nicovich, J. M.; Krufter, K. D.; Shockolford, C. J.; Wine, P. H. Thermochemistry and kinetics of the Cl+O_2 association reaction [J]. Chem. Phys. Lett. 1991, 179: 367-373.; (b) Alcami, M.; Cooper, I. L. Ab initio calculations on bromine oxide and dioxides and their corresponding anions [J]. J. Chem. Phys. 1998, 108: 9414-9424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700