用户名: 密码: 验证码:
酸式还原酮双加氧酶模型配体和模型配合物的合成、表征及其反应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕当今国际上有关分子氧的活化及利用分子氧的生物氧化等研究热点,以分子水平上阐明Glu102的羧基、His98、金属中心离子、配体的电子效应及空间效应等对酸式还原酮双加氧酶(Acireductone dioxygenase简称ARD)活性中心的结构、反应性、分子氧的活化机理的影响及其构-效关系为目的,开展了如下探索性的工作:
     (1)设计合成了分子内苯基侧臂上导入羧基,而且羧基的对位导入供电子基甲基和一个吡啶环6-位导入苯基的甲基二吡啶胺(bis(2-pyridylmethyl)amine)两个新的ARD模型配体L8H和L9H,并用IR、质谱、1H NMR及熔点测定等方法进行了表征。
     (2)用所合成的模型配体以乙酸根作为共配体,设计合成了6个新的相应过渡金属M(II)(M:Ni、Fe、Cu)的ARD二元模型配合物,并用IR、UV-Vis、ESI/MS、X射线衍射等方法进行了表征。解析了2个铜模型配合物3和6的X射线晶体结构,分别具有单核四方锥和双核四方锥配位环境。
     (3)用UV-Vis追踪的方法研究了所合成的二元模型配合物分别与模型底物S1和S2及分子氧的反应性,并通过比较研究初步探讨了金属中心离子、分子内导入的羧基、配体的电子效应及空间效应对ARD模型配合物的结构、反应性的影响及其构-效关系,得到了一些重要的结论,而这方面的研究尚未见文献报道。
     (Ⅰ)相同配体、不同金属离子:铁模型配合物的反应性优于镍模型配合物,即Fe>Ni。
     (Ⅱ)相同金属离子、不同配体:羧基的对位导入给电子基团甲基的L8H模型配合物的反应性不如没有取代基的L1H模型配合物,即LSH     (Ⅲ)相同金属离子、不同配体:吡啶环上6-位导入取代基的模型配合物的反应性不如未导入取代基的模型配合物,而且取代基越大,其反应性越差,即反应性顺序是:L9H     (Ⅳ)相同金属、相同配体时:模型配合物对模型底物S2的反应性较S1好,即活性顺序为:S2>S1。
     (4)NiⅡ模型配合物催化氧化模型底物S2的反应产物中有苯甲酸,而FeⅡ模型配合物的产物中却有α-氧代苯乙酸,这与天然酶Ni(Ⅱ)和Fe(II)-ARD的催化反应产物相一致,很好地模拟了这两种天然酶。有关同时生物模拟Ni(Ⅱ)和Fe(II)-ARD一对天然酶的研究尚未见文献报道。
Dioxygen activation and biomimetic oxidation of carbohydrate is one of the most active areas, and have been received considerable attention recently. This work focus on this active area, aiming at getting insights into the catalytic role of Glu102, His98、metal ion effects, electronic effects and steric effects on the structure and reactivity of acireductone dioxygenase (ARD).
     Two new model ligands bis(2-pyridylmethyl)amine model ligand carrying para-methyl-ortho-benzoic acid derivative as the ligand sidearm L8H and (6-phenyl-2-pyridylmethyl)(2-pyridylmethyl)amine model ligand carrying ortho-benzoic acid derivative as the ligand sidearm L9H have been designed, synthesized, and characterized by IR, UV-Vis, ESI/MS,1H-NMR and melting point measurement.
     Six novel binary complexes M(II) (M:Ni, Fe, Cu) have been designed, synthesized, and characterized as the structural and functional models for the active site of ARD. Our design of model ligands and complexes focus on both catalytic site and substrate binding site of the enzyme. The structures of complex 3 and 6 have been determined by X-ray diffraction.
     The reactivity of the model complexes towards model substrates and dioxygen have been investigated by UV-Vis monitoring. Although the structures of the model complexes are similar, the reactivities show notable differences. The caboxylate effects, metal ion effects, electronic effects, and steric effects on the reactivity of the model complexes have been investigated. The conclusions of our research are as follows:
     (I) With the same ligand, the reactivity of different metal ion model complexes show some differences and in the order:Fe> Ni.
     (II) With the same metal ion, the reactivity of para-CH3 substituted one is much lower than non-substituted one:L8H< L1H.
     (III) With the same metal ion, the reactivity of substituted by different bukyl groups are quite different and in the order:L9H< LH< L1H.
     (IV) With the same metal ion and ligands, the reactivity towards S2 is better than S1: S2> S1.
     The reaction products of model complexes towards model substrate S2 and dioxygen have been investigated by ESI/MS. The products of Ni(II)-complexes contain benzoic acid, while the products of Fe(II)-complexes containα-oxo-benzeneacetic acid. This results are consistent with the corresponding native Ni(II) and Fe(II)-ARD, just mimic to the catalytic reaction of native Ni(II) and Fe(II)-ARD.
引文
[1]Sono M, Roaeh M P, Coulter E D, et al. Heme containing oxygenase [J].Chem.Rev.,1996,96(7): 2841-2887.
    [2]a) Poulos T L, Finzel B C, Gunsalus I C, et al. The 2.6 A crystal structure of Pesudomonas Putida cytoehrome P-450 [J].J.Biol.Chem.,1985,260(30):16122-16130. b) Poulos T L, Finzel B C, Howard A J. Crystal structure of substrate-free pseudomonas putida cytoehrome P-450 [J]. Biochemistry,1986, 25(18):5314.
    [3]llme S, Joel B, Kelvin C et al. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution [J].Science,2000,287(5458):1615-1622.
    [4]Gray H B, Ellis W R, Jr.In:Bertini I, Gray H B, Lippard S J, ed.Bioinorganic Chemistry.USA: University Seience Books, Mill Valley,1994:315-364.
    [5]B.J.Wallar, J.D.Lipscomb, Dioxygen activation by enzymes containing Binuclear non-heme iron clusters.Chem.Rev.,1996,96(7),2625-2657.
    [6]Tshuva E Y, Lippard S J.Synthetic Model for Non-heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics [J]. Chem.Rev.2004,104(2):987-1012.
    [7]Ohlendorf D H, Lippscomb J D, Weber P C. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature,1988,336(24):403-405.
    [8]Orville A M, Lipscomb J D, Ohlendorf D H. Crystal Structure of Substrate and Substrate Analog Complex of Protocatechuate 3,4-Dioxygenase:Endogenous Fe3+ Ligand Displacement in Response to Substrate Binding. Biochemistry,1997,36:10052-10066.
    [9]Fusetti F, Schroter K H, Steiner R A, et al. Crystal Structure of the Copper-Containing Quercetin 2,3-Dioxygenase from Aspergillus japonicus [J]. Structure,2002,10:259-268.
    [10]Steiner R A, Kalk K H, Dijkstra B W, et al. Anaerobic enzyme-substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase [M]. Proc. Natl. Acad. Sci. U.S.A.,2002 99(26):16625-16630.
    [11]Bowen S K; Francisco W A, et al.19th Rocky Mountain Regional Meeting of the American Chemical Society [C], Tucson, United States:AZ, October 14-18 2006.
    [12]Steiner R A, Meyer-Klaucke W, Dijkstra B W. Functional Analysis of the Copper-Dependent Quercetin 2,3-Dioxygenase.2. X-ray Absorption Studies of Native Enzyme and Anaerobic Complexes with the Substrates Quercetin and Myricetin [J]. Biochemistry,2002,41(25):7963-7968.
    [13]Gopal B, Madan L L, Betz S F, et al. The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s) [J].Biochemistry,2005,44(1):193-201.
    [14]Schaab M R, Barney B M, Francisco W A. Kinetic and Spectroscopic Studies on the Quercetin 2,3-Dioxygenase from Bacillus subtilis [J]. Biochemistry,2006,45(3):1009-1016.
    [15]Hund H K, Breuer J, Lingens F, et al. Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2 Cull-containing glycoprotein [J]. Eur. J. Biochem.,1999,263:871-878.
    [16]Bors W, Heller W, Michel C, et al. Radical chemistry of flavonoid antioxidants [J].Adv. Exp. Med.Biol.1990,264:165-170.
    [17]Jovanovic S V, Steenken S, Tosic M, et al. Flavonoids as Antioxidants [J]. J. Am. Chem. Soc.,1994, 116(11):4846-4851.
    [18]Oka T, Simpson F J. Quercetinase, a dioxygenase containing copper [J].Biochem. Biophys. Res. Commun.,1971,43(1):1-5.
    [19]Lippai I, Speier G, Quercetinase model studies. The oxygenation of flavonol catalyzed by a cationic 2,2'-bipyridine copper(II) flavonolate complex [J].J. Mol. Catal.,1998,130:139-141.
    [20]Balogh-Hergovich E, Kaizer J, Speier G. Synthesis and characterization of copper(Ⅰ) and copper(Ⅱ) flavonolate complexes with phthalazine ligand, and their oxygenation and relevance to quercetinase [J].Inorg. Chim.Acta,1997,256:9-10.
    [21]Balogh-Hergovich E, Kaizer J, Speier G, et al. Quercetin 2,3-Dioxygenase Mimicking Ring Cleavage of the Flavonolate Ligand Assisted by Copper. Synthesis and Characterization of Copper(Ⅰ) Complexes [Cu(PPh3)2(fla)] (fla= Flavonolate) and [Cu(PPh3)2(O-bs)] (O-bs= O-Benzoylsalicylate) [J].Inorg. Chem.,1999,38:3787-3788.
    [22]Balogh-Hergovich E, Kaizer J, Speier G, et al. Kinetic studies on the copper(II) Mediated oxygenolysis of the flavonolate ligand. Crystal structures of [Cu(fla)2] (fla= flavonolate) and [Cu(O-bs)2(py)3] (O-bs= O-benzoylsalicylate) [J].J. Chem. Soc.,Dalton Trans.,1999:3847-3849.
    [23]Balogh-Hergovich E, Kaizer J, Speier G. Kinetics and mechanism of the Cu(I) and Cu(II) flavonolate-catalyzed oxygenation of flavonol. Functional quercetin 2,3-dioxygenase models [J]. J. Mol. Catal. A.,2000,159:215.
    [24]Barhacs L, Kaizer J, Pap J, Speier G. Kinetics and mechanism of the stoichiometric oxygenation of [CuⅡ(fla)(idpa)]ClO4 [fla= flavonolate,idpa=3,3'-imino-bis(N,N-dimethylpropylamine)] and the [CuII(fla)(idpa)]ClO4-catalysed oxygenation of fla-vonol [J].Inorg. Chim. Acta,2001,320:83-84.
    [25]Speier G, Karlin K D, et al. Bioinorganic Chemistry of Copper [M]. York:Chapman & HallNew,1992.
    [26]Balogh-Hergovich E, Kaizer J, Speier G, et al. Kinetic studies on the copper(II)-mediated oxygenolysis of the flavonolate ligand. Crystalstructures of [Cu(fla)2] (fla= flavonolate) and [Cu(O-bs)2(py)3] (O-bs= O-benzoylsalicylate) [J].J. Chem. Soc.,Dalton Trans,1999,21:3847-3849.
    [27]Ga'bor Bara'th, Jo'zsef Kaizer, Ga'bor Speier, La'szlo' Pa'rka'nyi, ErnO Kuzmann and Attila Ve'rtesc One metal-two pathways to the carboxylate-enhanced, iron-containing quercetinase mimics [J].Chem. Commun.,2009,3630-3632.
    [28]Malkhasian A Y S, Maila E, Borislava N, et al. N,N'-Dimethylformamide-Derived Products from Catalytic Oxidation of 3-Hydroxyflavone [J].Inorg. Chem.,2007,46(8):2950-2952.
    [29]Katarzyna Grubel, Katarzyna Rudzka, Atta M.Arif, Katie L.Klota, Jason A.Halfen, and Lisa M.Berreau Synthesis,Characterization, and Ligand Exchange Reactivity of a Series of First Row Divalent Metal 3-Hydroxyflavonolate Complexes [J].Inorg.Chem.,2010,49:82-96.
    [30]Jonathan W.Wray and Robert H. Abeles. The Methionine Salvage Pathway in Klebsiella pneu moniae and Rat Liver [J].The Journal Of Biological Chemistry,1995,270(7):3147-3153.
    [31]Sergio C. Chai, Tingting Ju, Marina Dang, Rachel Beaulieu Goldsmith, Michael J. Maroney, and Thomas C. Pochapsky. Characterization of Metal Binding in the Active Sites of Acireduct one Dioxygenase Isoforms from Klebsiella ATCC 8724* [J].Biochemistry,2008,47(8):2428-24 38.
    [32]Jonathan W.Wray and Robert H. AbelesB. A Bacterial Enzyme That Catalyzes Formation of Carbon Monoxide* [J].The American Society for Biochemistry and Molecular Biology,1993, 268(29):21466-21469.
    [33]Tingting Ju, Rachel Beaulieu Goldsmith, Sergio C. Chai, Michael J. Maroney, Susan Sondej Pochapsky and Thomas C. Pochapsky. One Protein, Two Enzymes Revisited:A Structural Entropy Switch Interconverts the Two Isoforms of Acireductone Dioxygenase [J].J. Mol. Biol.2006, 393:823-834
    [34]Yong Dai, Thomas C. Pochapsky and Robert H. Abeles. Mechanistic Studies of Two Dioxygenases in the Methionine Salvage Pathway of Klebsiella pneumoniae* [J].Biochemistry, 2001,40(21):6379-6387.
    [35]Yalin Zhang, Melissa H. Heinsen, Milka Kostic, Gina M. Pagani, Thomas V. Riera, Iva Perovic, Lizbeth Hedstrom, Barry B. Snider and Thomas C. Pochapskya. Analogs of 1-phosph-onooxy-2,2-dihydroxy-3-oxo-5-(methylthio)-pentane, an acyclic intermediate in the methionine salvage pathway:a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca [J]. Bioorganic & Medicinal Chemistry,2004,12(14):3847-3855.
    [36]Ewa Szajna, Atta M. Arif, and Lisa M. Berreau Aliphatic Carbon-Carbon Bond Cleavage Reactivity of a Mononuclear Ni(II) cis-β-Keto-Enolate Complex in the Presence of Base and 02:A Model Reaction for Acireductone Dioxygenase (ARD) [J].J. AM. CHEM. SOC.,2005,127:17186-17187
    [37]Ewa Szajna, Piotr Dobrowolski, Amy L. Fuller, Atta M. Arif and Lisa M. Berreau. NMR Studies of Mononuclear Octahedral Ni(II) Complexes Supported by Tris((2-pyridyl)methyl)-amine-Type Ligands [J].Inorg. Chem.,2004,43(13):3988-3997
    [38]Ewa Szajna-Fuller, Katarzyna Rudzka, Atta M. Arif and Lisa M. Berreau. Acireductone Dioxygenase-(ARD-) Type Reactivity of a Nickel(II)Complex Having Monoanionic Coordinati on of a Model Substrate:Product Identification and Comparisons to Unreactive Analogues [J]. Inorg. Chem.,2007,46(14):5499-5507.
    [39]Ewa Szajna-Fuller, Bonnie M. Chambers, Atta M. Arif and Lisa M. Berreau. Carboxylate Coordination Chemistry of a Mononuclear Ni(II) Center in a Hydrophobic or Hydrogen Bond Donor Secondary Environment:Relevance to Acireductone Dioxygenase [J].Inorg. Chem.,2007, 46(14):5486-5498.
    [40]Katarzyna Rudzka, Atta M. Arif, and Lisa M. Berreau. A Trinuclear Nickel(II) Enediolate Complex:Synthesis, Characterization, and O2 Reactivity [J].Inorg. Chem.,2008,47(23):10832-10840.
    [41]F. Purification of Laboratory Chemicals [M]. UK:Butterworth-Heinemann,1996.
    [42]Mark A. Matulenko, Chih-Hung Lee, Meiqun Jiang, Robin R. Frey,Marlon D. Cowart, Erol K. Bayburt, Stanley DiDomenico, Jr., Gregory A. Gfesser, Arthur Gomtsyan, Guo Zhu Zheng, Jeffery A. McKie, Andrew O. Stewart, Haixia Yu, Kathy L. Kohlhaas, Karen M. Alexander, Steve McGaraughty, Carol T. Wismer, Joseph Mikusa, Kennan C. Marsh, Ronald D. Snyder, Marilyn S. Diehl, Elizabeth A. Kowaluk, Michael F. Jarvis and Shripad S. Bhagwat,5-(3-Bromo-phenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido-[2,3-d]pyrimidin-4-ylamine:structure-activity relationships of 7-substituted heteroaryl analogs as non-nucleoside adenosine kinase inhibitors [J],Bioorganic & Medicinal Chemistry,2005,
    13:3705-3720
    [43]Padwa, Albert, Sa, Marcus Mandolesi. Rhodium(Ⅱ)-catalyzed intramolecular insertion reaction of multifunctional diazo compounds:synthesis of oxetan-3-one-2-carboxylate and other heterocycles [J].Quimica Nova,1999,22(6):815-820.
    [44]Sompong Wattanasin, William S.Murphy. An Improved Procedure for the Preparation of Chalcones and Related Enones [J]. Georg Thieme Verlag,Stuttgart.New York,1980:647-650.
    [45]Bernd Plietker. The RuO4-Catalyzed Ketohydroxylation. Part 1. Development,Scope and Limita tion[J].J. Org. Chem.,2004,69(24):8287-8296.
    [46]Luo Chengcai, Zhang Huaxing, Yang Zhijie. Method for synthesizing 2-arylimidazo[2,1-a] Isoquinoline [J]. Faming Zhuanli Shenqing Gongkai Shuomingshu,2007,7pp.
    [47]Hao Wei, Yong Jian Zhang, Feijun Wang and Wanbin Zhang. Novel atropisomeric bisphosphine ligands with a bridge across the 5,5'-position of the biphenyl for asymmetric catalysis [J], Tetrahedron: Asymmetry 19 (2008),482-488.
    [48]Cachia Marc, Wahl Henri. Preparation and esterification of 2,6-dimethylterephthalic acid [J]. Fac. sci., Nancy,Bulletin de la Societe Chimique de France, (1958),310-14.
    [49]Mohammed Khan, Khalid; Hayat, Safdar; Zia-Ullah; Atta-ur-Rahman; Iqbal Choudhary, M.; Maharvi, Ghulam Murtaza; Bayer, Ernst. An Alternative Method for the Synthesis of Lactones by Using Cesium Fluoride-Celite/Acetonitrile Combination [J]. Synthetic Communications,2003,33(19): 3435-3453.
    [50]Dave R. van Staveren, Eberhard Bothe, Thomas Weyhermller and Nils Metzler-Nolte. Spectros copic Properties, Electrochemistry, and Reactivity of Mo,Mo(I) and Mo(II) Complexes with the [Mo(bpa)(CO)3] Unit [bpa bis(2-picolyl)amine] and Their Application for the Labelling of Peptides [J]. Eur. J. Inorg. Chem.,2002,(6):1518-1529.
    [51]Hanmin Huang, Huilin Chen, Xinquan Hu, Changmin Bai and Zhuo Zheng. Structural probing of D-fructose derived ligands for asymmetric addition of diethylzinc to aldehydes [J].Tetrahedron: Asymmetry 14 (2003),297-304.
    [52]YILMA GULTNEH, BIJAN AHVAZIy, YOHANNES T. TESEMAz,TESHOME B. YISGEDUx and RAY J. BUTCHER Structures of Mn(II) complexes of bis(2-pyridylmethyl)amine(bpa) and (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amine (Mebpa):geometric isomerism in the solid state [J]. Journal of Coordination Chemistry,2006,59(16):1835-1846.
    [53]中本一雄,无机和配位化合物的红外和拉曼光谱[M].中译本,北京,化学工业出版社,1991:256-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700