用户名: 密码: 验证码:
汉坦病毒受体的筛选及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉坦病毒属布尼亚病毒科,是一种有囊膜的单股负链RNA病毒,基因组分为大(L)、中(M)、小(S)3个节段,分别编码病毒的RNA依赖的RNA聚合酶、囊膜糖蛋白(G1和G2)以及核蛋白(NP)。糖蛋白G1和G2构成了病毒吸附蛋白(VAP)。汉坦病毒主要引起两种急性传染性疾病:一种是以发热、出血、急性肾功能损害和免疫功能紊乱为突出表现的肾综合征出血热(HFRS),另一种是以肺浸润及肺间质水肿,迅速发展为呼吸窘迫、衰竭为特征的汉坦病毒肺综合征(HPS)。我国是世界上HFRS疫情最为严重的国家,年发病人数为5-10万人,临床病情严重,病死率较高。目前,针对汉坦病毒引起的疾病尚无特异性治疗药物,其发病机理尚未最后阐明。
     病毒与细胞表面相应受体的结合是病毒感染复制过程中的始动环节,是决定病毒的宿主特异性、组织嗜性及致病性的主要因素之一。因此,汉坦病毒受体的研究有助于阐明其致病机制,为抗病毒治疗和疫苗的研制提供新的方法。
     目前汉坦病毒受体的研究已取得长足进展。国外研究表明,β_3整合
Hantaviruses are enveloped viruses which define a unique genus within the Bunyaviridae and contain a tripartite negative-stranded RNA genome. The viral RNA segments, L, M and S, encode an RNA dependent RNA polymerase (RDRP), two envelope glycoprotein (GP, G1 and G2), and nucleoprotein (NP), respectively. Gl and G2 are thought as the virion attachment protein (VAP) exposed on the virions surface. Pathogenic hantaviruses mainly cause two kinds of acute diseases: one is hemorrhagic fever with renal syndrome (HFRS), which is charactered by fever, vascular hemorrhage, kidney dysfunction and immunologic dysfunction, another is hantavirus pulmonary syndrome (HPS), which is charactered by pulmonary infiltration, pulmonary interstitial edema and quickly developed respiratory distress and failure. In China about 50,000 -100,000 people per year were infected by Hantavirus with the severe symptoms and high mortality. There are no therapeutic approaches for hantaviruses diseases, and the etiologic mechanism of hantaviruses infections have not yet been defined.The first step in a viral infection and propagation is binding of the virus to cell surface molecules. It is one of the main factors that determining virus
    host specificity, tissue-tropism and pathogenicity. Therefore, the studies about Hantavirus receptor may help to explain the etiologic mechanism and to find useful new strategy for antivirus treatments and new potent vaccines.At present, it has been reported that integrin β3 maybe one of the receptors of HFRS/HPS-associated hantaviruses. However, the receptor of Hantavirus is still not completely defined. First, HTNV is causes of HFRS and SNV is causes of HPS, they however share the same receptor integrin β3. Second, the antibody and ligands of integrin β3 can not inhibit the infectivity totally. So there should be some others receptors or coreceptors exist on the cells. At the same time, the specificity of integrin β3 subunit as Hantavirus receptor needs to be further investigated.In this study, we explored the new type yeast two-hybrid system—RRS system, and use G1 and G2 as baits to screen preys out from cDNA yeast expression library. Meanwhile, further studies to elucidate the interactions of integrin β3 and G1/ G2 are needed.1. In order to construct human umbilical vein endothelial cell (HUVEC) cDNA library, total RNA and purified mRNA were extracted from human umbilical vein endothelial cell line HUVEC. cDNAs were synthesized though the cDNA synthesis kit and cDNA fragments smaller than 500bp and redundant EcoR I adaptors were removed. Then, cDNAs were connected with the yeast expression vector pYesMApolyA. The results showed that the HUVEC cell line cDNA library consisting of 5.2x 105 recombinants had been constructed successfully. The average exogenous inserts of the recombinants were larger than 1.6kb. The constructed cDNA library is suitable to screen target genes.2. Met-G1、 Met-G1、 Met-G2 和 Met-G2'were constructed successfully and the results of activations test showed that all of the four baits could be used to screen target genes..
    3. The cDNA library was hybridized with two kinds of baits vectors Met-G1 and Met-G2, respectively. The ligands were sequenced and then analyzed on BLASTP. The results showed that one recombinant of Gl ligand and two recombinants of G2 ligand were obtained. The Gl ligand was similar to containing EH1 domain protein. The EH domain has been shown to be an important motif in proteins involved in protein-protein interactions, endocytosis, vesicle transport and signal transduction. It implicated that this recombinant associated with Hantavirus endocytosis. The G2 ligands were similar to TNFRSF1A and RNP24. TNFRSF1A was Tumor necrosis factor receptor superfamily member 1A precursor contained TNFR domain and Death domain. TNFRs triggered multiple signal transduction pathways. They were involved in inflammation response, apoptosis, and autoimmunity. RNP24 belonged to p24 family, and members of this family were implicated in bringing cargo forward from the ER and binding to coat proteins by their cytoplasmic domains. So this two ligands might be associate the infection and maturation of Hantavirus.4. The recombinants were constructed successfully, including pVpDisplay, β3-pYesMApolyA, β3EGFP-N3, G1-pDisplay, G1-EGFP-N3, G2-pDisplay and G2-EGFP-N3. The results of reconstruction of Hantavirus-associated receptor system suggested that the TCID50 of CHO tranfected with integrin β3 compared to CHO went up 10 times higher. The results of two hybridize assay and coimmunoprecipitation assay suggested that the interactions existed between integrin β3 and G2 but did not exist between integrin β3 and G1. All results above suggested that integrin β3 was one of Hantavirus receptors.Above all, cDNA library was constructed and the library contained 5.2x105 recombinants. There existed some more complex mechanisms in attachment and internalization of Hantavirus. It suggested that the Hantavirus
引文
1.李明远.病毒感染与病毒受体[J].病毒学杂志.1989:3:219-226.
    2. Rajeani J. Molecular mechanisms of virus spread and virion components as tools of virulence[J]. Acta Microbiol Immunol Hung. 2003; 50(4): 407-431.
    3. Jackson T, King AM, Stuart DI, Fry E. Structure and receptor binding[J]. Virus Res. 2003; 91(1): 33-46.
    4.徐耀先,解梦霞,向近敏.病毒命名与分类系统研究进展[J].中国病毒学.1999;14(3):155-169.
    5. Gavrilovskaya I N, Shepley M, Shaw R, Ginsberg MH, Mackow ER. Beta 3 integrins mediate the cellular entry of hantaviruses that cause respiratory failure[J]. Proc Nat Acad SciUSA. 1998; 95(12): 7074-7079.
    6. Gavrilovskaya IN, Brown E J, ginsberg MH, Mackow ER. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by integrins[J]. J Virol. 1999; 73(5): 3951-3959.
    7. Maekow ER, Gavriiovskaya IN. Cellular receptors and hantavirus pathogenesis[J]. Curr Top Microbiol Immunol. 2001; 256: 91-115.
    8. Schmaljohn C, Hjelle B. Hantaviruses: A Global Disease Problem[J]. Emerg Infect Dis. 1997; 3(2): 95-104.
    9. Israeli E, Gitelman J. Hantaviruses-a global problem[J]. Harefuah. 1998; 135(5-6): 236-239.
    10. Park-Ho-Sun. The role of alpha-5-beta-1 integrin on infection of hantaan virus in fibroblast[J]. Journal of the Korean Society for Microbiology. 1997, 32(2): 255-263.
    11. Kim TY, Choi Y, Ceong HS, Choe J. Identification of a cell surface 30 kDa protein as a candidate receptor for Hantaan virus[J]. JGen Viro. 2002; 83(Pt.4): 767-773.
    12. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling[J]. Cell. 2002; 110(5): 599-611.
    13. Giancotti FG, Ruoslahti E. Integrin signaling[J]. Science. 1999; 285(5430): 1028-1032.
    14. Clark EA, King WG, Brugge JS, Symons M, Hynes RO. Integrin-mediated signalsregulated by members of the rho family of GTPases[J]. J Cell Biol. 1998; 142(2): 573-586.
    15. Collins LR, Ricketts WA, Yeh L, Cheresh D. Bifurcation of cell migratory and proliferative signaling by the adaptor protein Shc[J]. J Cell Biol. 1999; 147(7): 1561-1568.
    16. Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH. Suppression of integrin activation: a novel functions of a Ras/Raf-initiated MAP kinase pathway [J]. Cell. 1997; 88(4): 521-530.
    17. Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins[J]. JCell Sci. 2000; 113 ( Pt.20): 3563-3571.
    18. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion[J]. Cell. 1992; 69(1): 11-25.
    19. Bazan-Socha S, Bukiej A, Marcinkiewicz C, Musial J. Integrins in pulmonary inflammatory diseases[J]. Curr Pharm Des. 2005; 11(7): 893-901.
    20. Chavakis T, Preissner KT. Integrin-mediated leukocyte adhesive interactions: regulation by haemostatic factors[J]. Hamostaseologie. 2005; 25(1): 33-38.
    21. Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix[J]. J Cell Physiol. 1999; 179(3): 325-335.
    22. Kagami S, Kondo S, Loster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y. Alphalbetal integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-beta and platelet-derived growth factor-BB[J]. J Am Soc Nephol. 1999; 10(4): 779-789.
    23. Wang X, Ferreira AM, Shao Q, Laird DW, Sandig M. Beta3 integrins facilitate matrix interactions during transendothelial migration of PC3 prostate tumor cells[J]. Prostate. 2005; 63(1): 65-80.
    24. Pelletier AJ, Kunicki T, Quaranta V. Activation of the integrin alpha v beta 3 involves a discrete cation-binding site that regulates conformation[J]. J Biol Chem. 1996; 271(3): 1364-1370.
    25. Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS. A push-pull mechanism for regulating integrin function[J]. Proc Natl AcadSci US A. 2005; 102(5): 1424-1429.
    26. Akula SM, Pramod NP, Wang FZ, Chandran B. Integrin alpha3betal (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells[J]. Cell. 2002; 108(3): 407-419.
    27. Chiu CY, Mathias P, Nemerow GR, Stewart PL. Structure ofadenovirus complexed with its internalization receptor, alphavbeta5 integrin[J]. J Virol. 1999; 73(8): 6759-6768.
    28. Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK. VLA-2 (alpha2betal) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment[J]. J Virol. 2002; 76(3): 1109-1123
    29. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S, Arias CE Integrin alpha(v)beta(3) mediates rotavirus cell entry[J]. Proc NatIAcadSci USA. 2000; 97(26): 14644-14649.
    30. Hewish M J, Takada Y, Coulson BS. Integrins alpha2betal and alpha4betal can mediate SAll rotavirus attachment and entry into cells[J]. J Virol. 2000; 74(1): 228-236.
    31. Jackson T, Mould AP, Sheppard D, King AM. Integrin alphavbetal is a receptor for foot-and-mouth disease virus[J]. J Virol. 2002: 76(3): 935-941.
    32. Yoon CS, Kim KD, Park SN, Cheong SW. alpha(6) Integrin is the main receptor of human papillomavirus type 16 VLP[J]. Biochem Biophys Res Commun. 2001; 283(3): 668-673.
    33. MeMillan NA, Payne E, Frazer IH, Evander M. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells[J]. Hrology. 1999; 261(2): 271-279.
    34. Takada A, Watanabe S, Ito H, Okazaki K, Kida H, Kawaoka Y. Downregulation of betal integrins by Ebola virus glycoprotein: .implication for virus entry[J]. Virology. 2000; 278(1): 20-26.
    35. Triantafilou M, Wilson KM, Triantafilou K. Identification of Echovirus 1 and coxsackievirus A9 receptor molecules via a novel flow cytometric quantification method[J]. Cytometry. 2001; 43(4): 279-289.
    36. Triantafilou K, Triantafilou M, Takada Y, Fernandez N. Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbetal as receptors[J]. J Firol. 2000; 74(13): 5856-5862.
    37. Williams CH, Kajander T, Hyypia T, Jackson T, Sheppard D, Stanway G. Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9[J]. J Virol. 2004; 78(13): 6967-6973.
    38. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling[J]. Cell. 2002; 110(5): 599-11.42. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Amaout MA. Crystal structure of the extracellular segment ofintegrin alpha Vbeta3[J]. Science. 2001: 294(5541): 339-45.
    39. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand[J]. Science. 2002: 296(5565): 151-155.
    40. Raymond T, Gorbunova E, Gavrilovskaya IN, Mackow ER. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers[J]. Proc Natl Acad Sci U S A. 2005; 102(4): 1163-1168.
    41. Koch J, Liang M, Queitsch I, Kraus AA, Bautz EK. Human recombinant neutralizing antibodies against hantaan virus G2 protein[J]. Virology. 2003: 308(1): 64-73.
    42.吕欣,薛小平,杨乔欣,马文煜,尹文.利用噬菌体肽库筛选汉滩病毒受体结合表位的研究[J].细胞与分子疫学杂志.2002:18(1):73-75.
    43.徐芳玲,杨占秋料,程丽,杨继江,刘汉燕,肖红,文利,丁晓华,陈文凯.汉坦病毒感染细胞整合素受体信号转导相关差异表达基因筛选[J].中国病毒学.2004;19(4):315-319
    44. Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN, Mackow ER. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses[J]. ProcNatIAcadSci USA. 2002: 99(21): 13837-13842.
    45. Geimonen E, LaMonica R, Springer K, Farooqui Y, Gavrilovskaya IN, Mackow ER. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved and functional ITAM signaling elements[J]. J Virol.11003; 77(2): 1638-1643.
    46. Ogino M, Yoshimatsu K, Ebihara H, Arikawa J. N-acetylgalactosamine (GalNAc)specific lectins mediate enhancement of Hantaan virus infection[J]. Arch Virol. 1999: 144(9): 1765-1777.
    47. Jin M, Park J, Lee S, Park B, Shin J, Song K J, Ahn TI, Hwang SY, Ahn BY, Ahn K. Hantaan virus enters cells by clathin-dependent receptor-mediated endocytosis[J]. Virology. 2002; 294(1): 60-69.
    48. Naniche, D., T. F. Wild, C. Rabourdin-Combe, and D. Gerlier. A monoclonal antibody recognized a human cell surface glycoprotein involved in measles virus binding[J]. J. Gen. Virol. 1993; 73: 2617-2624.
    49. Nobis P, Zibirre R, Meyer G, Kuhne J, Warnecke G, Koch G. Production of a monoclonal antibody against an epitope on HeLa cells that is the functional poliovirus binding site[J]. J Gen Virol. 1985: 66 (Pt.12): 2563-2569.
    50. Hanham CA, Zhao F, Tignor GH. Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor[J]. J Virol. 1993; 67(1): 530-542.
    51. Wang KS, Schmaljohn AL, Kuhn RJ, Strauss JH. Antiidiotypic antibodies as probes forthe Sindbis virus receptor[J]. Virology. 1991; 181(2): 694-702.
    52. Dalziel RG, Hopkins J, Watt N J, Dutia BM, Clarke HA, McConnell I. Identifi- cation of a putative cellular receptor for the lentivirus visna virus[J]. JGen Virol. 1991; 72 ( Pt8): 1905-11.
    53. Haywood AM. Virus receptors: Binding, adhesion strengthening, and changes in viral structure[J]. J Virol. 1994: 68(1): 1-5.
    54. Shimojima M, Miyazawa T, Ikeda Y, McMonagle EL, Haining H, Akashi H, Takeuchi Y, Hosie MJ, Willett BJ. Use of CD134 as a primary receptor by the feline immunodeficiency virus[J]. Science. 2004; 303(5661): 1192-1195.
    55. Salas-Benito JS, and Del-Angel RM. Identification of two surface proteins from C6/36 cells that bind Dengue type 4 virus[J]. J Virol. 1997; 71(10): 7246-7252.
    56. Martinez-Barragan JJ, and Del-Angei RM. Identification of a putative coreceptor on Vero cells that participates in Dengue 4 virus infection[J]. J Virol. 2001; 75(17): 7818-7827.
    57. Pandey A, and Mann M. Proteomics to study genes and genomes[J]. Nature, 2000; 405: 837-846.
    58. Mendelsohn, C. L., E., Wimmer, and V. R. Racaniello. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily[J]. Cell. 1989; 56: 855-865.
    59.李海红,王秦秦.cDNA文库的构建策略[J].昆明医学院学报.2003;4:22-25
    60. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[J]. Analy Biochem, 1987; 162(1 ): 156-159.
    61. Roth M J, Tanese N, Goff SP. Punfication and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli[J]. ,I Biol Chem. 1985; 260(16): 9326-9335
    62. Santini C, Brennan D, Mennuni C, Hoess RH, Nicosia A, Cortese R, Luzzago A. Efficient display to the eDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda.[J]. JMol Biol, 1998; 282(1): 125-135.
    63. Okayama H & Berg P. High-efficiency cloning of full-length cDNA[J]. Mol Cell Biol, 1982; 2(2): 161-170
    64. Gubler U & Hohman BJ. A sample and very efficient method for generating cDNA library[J]. Gene.1983; 25(2-3): 263-269
    65. Bodescot M & Brison O. Efficient second-strand cDNA synthesis using T7 DNA polymerase[J]. DNA-Cell Biol. 1994;13(9):977-985
    66. Davis CA & Benzer S. Generation of cDNA expression libraries enriched for in-frame sequences[J]. Pro natl Acad Sci USA. 1997; 94(6): 2128-2132
    67. Snead MA, Alting-Mees MA, Short JM. CDNA library construction for the lambda ZAP-based vectors[J].Methods Mol Biol. 1998; 81: 255-267.
    68. Sche PP, McKenzie KM, White JD, Austin DJ. Display cloning: functional identification of natural product receptors using cDNA-phage display[J]. Chem-Biol. 1999; 6(10):707-716.
    69. Wang RF, Wang X, Johnston SL, Zeng G, Robbins PF, Rosenberg SA. Development of a retrovirus-based complementary DNA expression system for the cloning of tumor antigens[J]. Cancer Res. 1998; 58(16): 3519-3525.
    70. Helfman DM, Feramisco JR, Fiddes JC, Thomas GP, Hughes SH. Identification of clones that encode chicken tropomyosin by direct immunological screening of a cDNA expressing library[J]. Proc Natl Acad Sci USA. 1983; 80(1): 31-35.
    71. Young RA, Davis RW. Yeast RNA Polymerase II genes: isolation with antibody probes[J]. Science. 1983; 222(4625): 778-782.
    72. Swaroop A & Xu J. CDNA libraries from human tissues and cell lines[J]. Cytogenet Cell Genet. 1993; 64(3-4): 292-294.
    73. Bradley KA, Mogridge J, Mourez M, Collier RJ, and Young JAT. Identification of the cellular receptor for anthax toxin[J]. Nature, 2001,414: 225-229.
    74. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor[J]. Science. 1996; 272(5263): 872-877.
    75. Young JA, Bates P, Varmus HE. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses[J]. J Virol. 1993; 67(4): 1811-1816.
    76. Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A. The major human rhinovirus receptor is 1CAM-1[J]. Cell. 1989; 56(5): 839-47.
    77. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S. Binding of hepatitis C virus to CD81[J]. Science. 1998; 282(5390): 938-941.
    78. Fields S, Song O. A novel genetic system to detect Protein-Protein Interactions[J]. Nature 1989; 340(6230): 245-246
    79. Chien CT, Bartel PL, Steruglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that Interact with a protein of interest[J]. Proc Nail Acad Sei USA. 1991; 88 (21): 9578-9582
    80. Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH, Elledge SJ. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit[J]. Genes Dev, 1993; 7 (4): 555-569.
    81. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases[J]. Cell. 1993; 75(4): 805-816.
    82. Serrano M, Hannon GJ, Beach-D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4[J]. Nature. 1993; 366(6456): 704-707.
    83. Hardy CF, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation[J]. Genes-Dev. 1992; 6(5): 801-814.
    84. Gyuris J, Golemis E, Chertkov H, Brent R. Cdil,a human G1 and S phase protein phosphatase that associates with Cdk2[J]. Cell. 1993; 75(4): 791-803.
    85.梁庆华,蒋栋,谢尧,高建恩,范涛,陶其敏.酵母双杂合体系研究丙型肝炎病毒进入肝细胞的受体[J].北京医科大学学报.2000;32(6):540-542.
    86. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast[J]. Genetics 1996; 144: 1425-1436
    87. Marsolier M-C, Prioleau M-N, Sentenac A: An RNA polymerase Ⅲ-based two-hybrid system to study RNA polymerase Ⅱ transcriptional regulators[J]. J Mol Biol 1997; 268: 243-249.
    88. Kasten MM, Ayer DE, Stillman DJ. SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein[J]. Mol Cell Biol, 1996; 16: 4215-4221.
    89. Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-proteininteractions[J]. Mol Cell Biol. 1997; 17(6): 3094-3102.
    90. Aronheim A. Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives[J]. Nucleic Acids Res. 1997; 25(16): 3373-4.
    91. Huang W, Wang SL, Lozano G, de Crombrugghe B. cDNA library screening using the SOS recruitment system[J]. Biotechniques. 2001; 30(1): 94-98, 100.
    92. Broder YC, Katz S, Aronheim A. The ras recruitment system, a novel approach to the study of protein-protein interactions[J]. Curr Biol. 1998; 8(20): 1121-1124.
    93. Hennemann H, Vassen L, Geisen C, Eilers M, Moroy T. Identification of a novel Kruppel-associated box domain protein, Krim-1, that interacts with c-Myc and inhibits its oncogenic activity[J]. J Biol Chem. 2003; 278(31): 28799-28811.
    94. Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ. Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal[J]. Science. 1989; 243(4898): 1600-1603.
    95. Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated[J]. Cell. 1989; 57(7): 1167-1177.
    96. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences[J]. Annu Rev Biochem. 1996; 65: 241-269.
    97. Hennemann H, Vassen L, Geisen C, Eilers M, Moroy T. Identification of a novel Kruppel-associated box domain protein, Krim-1, that interacts with c-Myc and inhibits its oncogenic activity[J]. J Biol Chem. 2003; 278(31): 28799-28811.
    98. Hubsman M, Yudkovsky G, Aronheim A. A novel approach for the identification of protein-protein interaction with integral membrane proteins[J]. Nucleic Acids Res. 2001; 29(4): E18.
    99. Maroun M, Aronheim A. A novel in vivo assay for the analysis of protein-protein interaction[J]. Nucleic Acids Res. 1999; 27(13): e4.
    100. De Falco S, RuvdeRoMG, Verdoliva A, Ruvo M, Raucci A, Marino M, Senatore S, Cassani G, Alberti A, Pontisso P, Fassina G. Cloning and expression of a novel hepatitis B virus-binding protein from HepG2 cells[J]. J Biol Chem. 2001; 276(39): 36613-36623.
    101. Hubsman M, Yudkovsky G, Aronheim A. A novel approach for the identification of protein-protein interaction with integral membrane proteins[J]. Nucleic Acids Res. 2001; 29(4): e18.
    102.黄宝成,陈志南,黄文晋,姜绍谆.建立cDNA文库时cDNA的合成条件[J].第四军医大学学报.2001;22(3):278-279.
    103.廖博,范清宇,马保安.人骨肉瘤9901细胞cDNA表达文库的构建及鉴定.第四军医大学硕士毕业论文.2004.6.
    104. Davis CA & Benzer S. Generation of cDNA expression libraries enriched for in-frame sequences[J] Pro natl Acad Sci USA, 1997; 94(6): 2128-2132.
    105. Clare L, Cardon J. A colony bank containing sythetic ColE , hybrid plasmids representative of the entire E. Coli genome[J] Cell. 1976; 9(1): 91-95.
    106.张芳琳,徐志凯,罗雯,阎岩,吴兴安,刘勇.汉滩病毒S基因0.7kb片段与M基因G2片段不同拼接方式嵌合基因原核表达产物的初步比较[J] 学技术与工程.2002;2(5):21-25.
    107.张芳琳,徐志凯,阎岩,薛小平,吴兴安,罗雯,刘勇,白文涛,赵茜,王海涛.汉滩病毒M、S基因部分片段嵌合基因原核载体的构建及表达产物的鉴定[J].中国人兽共患病杂志,2003;19(1):34-36.
    108.罗雯,徐志凯,阎岩等.汉滩病毒M、S基因部分片段在大肠杆菌中的融合表达[J].细胞与分子免疫学杂志 2001;17(2):115-117.
    109.吴元明,陈苏民,陈南春.人和鼠era基因的功能研究.第四军医大学博士学位论文.2003.6.
    110. Barak O, Aronheim A, Shaul Y. HBV X protein targets HIV Tat-binding protein 1[J]. Virology. 2001; 283(1): 110-120.
    111. Hancock JF, Magee AI, Childs J and Marshall CJ, All ras proteins are polyisoprenylated but only some are palmitoylated[J]. Cell 1989; 57: 1167-1177.
    112. Magee T and Marshall C. New insights into the interaction of Ras with the plasma membrane. Cell 98: 9-12, 1999.
    113. Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B and Abo A, Chp, a homologue of the GTPase Cdc42, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 1998; 8: 1125-1128.
    114. Ami Aronheim. Protein Recruitment Systems for the Analysis of Protein-Protein Interactions. Biochemical Pharmacology. 2000; 60: 1009-1013,.
    115. Bendixen C, Gangloff S, Rothstein R. A yeast mating-selection scheme for detection of protein-protein interactions[J]. Nucleic Acids Res. 1994; 22(9): 1778-1779.
    116. Bendixen C, Gangloff S, Rothstein R. A yeast mating-selection scheme for detection of protein-protein interactions. Nucleic Acids Res. 1994; 22(9): 1778-1779
    117. Tolkunova EN, Fujioka M, Kobayashi M, Deka D, Jaynes JB. Two distinct types of repression domain in engrailed: one interacts with the groucho corepressor and is preferentially active on integrated target genes[J]. Mol Cell Biol. 1998; 18(5): 2804-2814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700